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Abstract

We provide a concrete example of a normal basis for a finite Galois extension which is not abelian. More
precisely, let C(X(N)) be the field of meromorphic functions on the modular curve X(N) of level N. We
construct a completely free element in the extension C(X(N))/C(X(1)) by means of Siegel functions.
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1. Introduction

Let E be a finite Galois extension of a field F with
G =QGal(E/F) ={o1,02,...,0,}.

The well-known normal basis theorem (see [12]) states that there always exists an
element a of E for which

{a”,a%,...,a°"}

is a basis for E over F. We call such a basis a normal basis for the extension E/F
and say that the element a is free in E/F. In other words, E is a free F[G]-module of
rank one generated by a. Blessenohl and Johnson proved in [1] that there is a primitive
element a for E/F which is free in E/L for every intermediate field L of E/F. Such
an element a is said to be completely free in the extension E/F. Not much is known
about explicit constructions of (completely) free elements when F is infinite. When F'
is a number field, we refer to [2, 7-9, 11]. In [4], there is an example of completely
free elements in function field extensions which are abelian.
For a positive integer N, let

T(N) = {0 € SLy(Z) | o = I, (mod N - My(Z))}
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be the principal congruence subgroup of SL,(Z) of level N which acts on the upper
half-plane H = {r € C | Im(7) > 0} by fractional linear transformations. Corresponding
to I'(N), let

X(N) = T(N)\H*

be the modular curve of level N, where H* = HU Q U {ico} [10, Ch. 1]. We denote
its meromorphic function field by C(X(N)). As is well known, C(X(N)) is a Galois
extension of C(X(1)) with

Gal(C(X(N)/C(X(1))) =T(1)/ + I(N) = SLo(Z/NZ)[{+1} (1.1)

([6, Ch. 6, Theorem 2] and [10, Proposition 6.1]). Further, if N > 2, then C(X(N)) is
not an abelian extension of C(X(1)). We shall find a completely free element g(7) in
C(X(N))/C(X(1)) in terms of Siegel functions (Theorem 3.3). This gives a concrete
example of a normal basis for a nonabelian Galois extension.

Let K be an imaginary quadratic field and let Ky, be the ray class field of K modulo
N for an integer N > 2. Jung et al. showed in [3] that a certain function in C(X(N))
evaluated at a point in K becomes a completely free element in K(,/K. We conjecture
that the completely free element in the function field extension C(X(N))/C(X(1)) given
in Theorem 3.3 will also give rise to a completely free element in the number field
extension Ky)/K.

2. Siegel functions as modular functions

We briefly introduce Siegel functions and their basic properties and develop some
results for later use.
For a lattice A in C, the Weierstrass o-function relative to A is defined by

@A) =2 1_[(1 Z)exp(z+ Zz) z€C
) - - 3 5 _2 s .
1envio) A A 22
Taking the logarithmic derivative, we obtain the Weierstrass {-function
"GN 1 1 1
K(Z;A):&,A)=—+ Z(_/l+/_l+%)’ zeC.
oAz A\
One can readily see that
1 1 1
(@A =-5+ ) (——2 + —2),
=& (z-1* A

which is periodic with respect to A. Thus, for each A € A, there is a constant 7(4; A)
such that

L+ M) =LA = A), zeC.
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Now, for v = [}!] € Q*\Z?, we define the Siegel function g,(t) for € H by

gv(7) = exp(=(1/2)vin(z; [1, 11) + van(1; [, 1)1 7 + v2)or(vi T + vas [1, 1D)n(7)?,

where [7, 1] = 7Z + Z and n(7) is the Dedekind n-function given by
n(t) = @emmql/zzx l—[(l —q"), g=éT reH.
n=1

Let
Bz(x):xz—x+é, xeR

be the second Bernoulli polynomial and let (x) be the fractional part of x in the interval
[0, 1).

ProposiTion 2.1. Let v = [}}] € (1/N)Z*\Z? for an integer N > 2.

(1) [5, K4 on page 29] gv(7) has the infinite product expansion

gv(T) — _em'vz(v]—l)q(l/Z)Bz(vl)(l _ qvl eZm'vz) l—[(l _ qn+v1 e27rivz)(1 _ qn—vle—Znivz)
n=1

with respect to q = e*™".

(1) [5, page 31] The g-order of gy(7) is given by
ordygy(7) = B2 ((v1)).

(iii) [5, Ch. 2, Theorem 1.2] g4(7)'*" belongs to C(X(N)) and has neither zeros nor
poles on H.
(iv) [5, Ch. 2, Proposition 1.3] gy(7)'?" depends only on +v (mod Z?) and satisfies

12N

NYT = (g1 0 0)(1) = gory(0)'H, o € SLy(2),

(gv(7)
where 0T stands for the transpose of o
For a positive integer N, let I';(V) be the congruence subgroup of SL,(Z) defined
by
I(V) = {0' € SLy(Z) ‘ o= [(1) ”{] (mod N - MZ(Z))}.

Now we let N > 2 and consider the function

g(r) = 8[ 0 ](T)_lzN[g[l/N](T)_lsz
1N 0

>

where ¢ and m are integers such that £ > m > 0. From Proposition 2.1(iii), g(7) belongs
to C(X(N)).
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Fiure 1. The graph of y = B,({x)).

NIM
NI'—'

Lemma 2.2. For all o € SL,(Z),

ordq(g;;?; ) >0.

The equality holds if and only if o € £I'{(N).

Proor. Let o = [4 5] € SL,(Z). Note that @ = ¢ = 0 (mod N) is impossible. We get by
Proposition 2.1(iv) and (ii) that

d/N
[ 1?N](T)—lZNfg[ 16N](.,-)—IZNm

=ON({B2(0) + mBy(1/N) — (B> ((c/N)) — mB>({a/N})).

ord (g(T)”):

—12N¢ —12Nm
(g[c/N](T) 8[2%](7') )
N\ g(1) g

From the fact that £ > m > 0 and Figure 1, we deduce that

ord ( g(:;r ) >0

with equality if and only if
(¢/Ny=0 and <(a/Ny=1/Norl-1/N. (2.1)

Moreover, by the relation det(o") = ad — bc = 1, the condition (2.1) amounts to
1%
o=+ [O 1} (mod N - M»(Z)).

This proves the lemma. o

Let R, denote the set of positive real numbers.

LemMma 2.3. Given any € € R,, we can take r € R, and an integer m large enough so
that

g7 (ri)
g(ri)

<¢g forall o e SLy(Z)\ =T (N).

https://doi.org/10.1017/5S0004972716001362 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972716001362

388 J. K. Koo, D. H. Shin and D. S. Yoon [5]

Proor. First, consider the case where o ¢ £I'1(N). By Lemma 2.2,
a
ordq(g(T) ) >0,
(M

which implies that g(7)?/g(7) has a zero at the cusp ico. Hence we can take r, € R,
sufficiently large so that

¢ (roi)
o) | °

Set
r=max{r, | o € SLo(2)\ = I'1|(N)}.

Second, let o € £I'1(N)\ = I'(N), so that o = %[ ?] (mod N - M»(Z)) for some b € Z
with b # 0 (mod N). Then

e o (DTN g yn (riy TN
gD L] - Lojw] | (by Proposition 2.1(iv))
g(ri) 8[ 0 ](”)_ th[l/N](”)_ Nm
/N 0
« [12Nm
8[161\/](”)
L
1 _RI/N 12Nm _* ’ (1 _Rn+1/N)(l _Rn—l/N) 12Nm
CI=RUNG L= RINE( - R )
(by Proposition 2.1(i), where R = ¢=> and {y = e>™/N)
| — RUN [12Nm
<f—_
SlT-RNE

because |1 — x| < |1 — x{| for any x € R, with x < 1 and any root of unity {. Therefore,
if m is sufficiently large,

g7 (ri)
g(ri)

<E&.

This completes the proof. o

3. Completely free elements in modular function fields

Let N > 2. In this section, we shall show that the elements

12N¢
8

g(T)Zg[l;)N](T)_ [I/N](T)_lsz with£>m >0

0

play an important role as completely normal elements in modular function field
extensions.
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Prorosition 3.1. The function g(t) generates C(X(N)) over C(X(1)).

Proor. Suppose that o = [¢ Z] € SL,(Z) leaves g(t) fixed. In particular, since
ord,g(r) = ord,g(7), Lemma 2.2 implies that o € +I'|(N). Furthermore, by
Proposition 2.1(iv) and (ii),

Ordqg(‘r)[(l) _01] = ordq(g[ 16N](T)_IZN[ng()/N](T)_Isz)
=—-6N{B,(1/N) — 6NmB,(0)

= ord, (gl 0]

= ord,g(r)la =¢]

_ —12N¢ —12Nm
= ord{eg a1y 7
=—6N{(B,({d/N)) — 6NmB,({b/N)).

Thus we obtain » = 0 (mod N) and hence o € +I'(NV). Therefore, we conclude by (1.1)
and the Galois theory that g(7) generates C(X(N)) over C(X(1)). O

Turorem 3.2. Let X°(N) be the modular curve for the congruence subgroup
(V) = {0’ € SLy(Z) ‘ o= [: g] (mod N - Mz(Z))}

with the meromorphic function field C(X°(N)). Then the element g(t) is completely
free in C(X(N))/C(X°(N)).

Proor. Note that C(X(N)) is a Galois extension of C(X°(N)) with
Gal(C(X(N))/C(X*(N))) = T*(N)/ + T(N).

From Proposition 3.1, g(t) generates C(X(N)) over C(X°(N)).
Now, let L be any intermediate field of C(X(N))/C(X°(N)) with

Gal(C(X(N))/L) ={o =1d,09,...,0%}.
Since TO%(N) N +I'{(N) = +I'(N),
o ¢ xI(N), i=2,...,k (3.1)
Set
gi=gm’, i=1,2,...,k
and suppose that

c181 + gy + -+ crgr =0 for some ¢y, cy,...,cr € L. (3.2)
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Leto; (i=1,2,...,k) act on both sides of (3.2). This yields the system of equations

cig] +egy +- +ag =0,
gy’ + gy + o +ag =0,

gyt +eagst + o+ aglt =0,

which can be rewritten as
C1 0
(%) 0 . o
A =1 with A = [gj']lgi,jsk-
Ck 0

Let S« be the permutation group on {1,2,...,k}. Then

det(A) = Z sgn(jij2 - jKgj 87 - 85
Jrj2jk€Sk
=+g" + D £gTNTIgIRTE o gTHTE

Jj1j2+jk€S k such that

U B D
TjiOjy O jpF0y 0y 0

. gO',-IO'I gO'/'z(Tz go'jkﬂ'k
=s(1+ {550
Z 8 8 8

J1Jj2-jk€S such that
1 1. 1
Tj)Tjy T jp#0y 0y 0

1 —1
-..o’k .

For each jijo -+ jx € Sy with o0}, -+ -0, # o]0
ojo;#1d forsomel <i<k.
Thus

ord, det(A) = ordqgk (by (3.1) and Lemma 2.2)
=—6kN({B,(0) + mB,(1/N)) (by Proposition 2.1(ii))
<0,

from the fact that £ > m > 0 and Figure 1. This implies that

det(A)#0 and c;=cy=---=¢,=0.
Therefore {g;, g2, ..., gk} is linearly independent over L and g(7) is completely free in
C(X(N))/CX(N)). O
Tueorem 3.3. There is a positive integer M for which
8@ =g[ o 10 gy (@7
1/N 0

is completely free in C(X(N))/C(X(1)) for £ > m > M.
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Proor. Let d = [C(X(N)) : C(X(1))]. From Lemma 2.3 and (1.1), there exist a positive

integer M and r € R, so that, if £ > m > M, then

g7 (ri) 1 .

=——| < —— forall o€ Gal(C(X(N))/C(X(1))) with o # Id. 3.3)
g(ri) d -1

Now let £ > m > M. Let L be any intermediate field of C(X(N))/C(X (1)) with

Gal(C(X(N))/L) ={oy =1d, 0%, ...,0,}.
From Proposition 3.1, g(7) generates C(X(N)) over L. Consider the n X n matrix
B= [g;ri]lsi,an where g; = g(1)7/.

As in Theorem 3.2, it suffices to show that det(B) # 0 in order to prove that
{g1,82,...,8n} 1s linearly independent over L. We derive

| det(B)(ri)| = ‘ Z sen(jija - ju)@T (ri)g T2 (ri) -+~ g7 (ri)
J1j2Jn€Sn
= ‘ig(ri)" + Z igo'jl(Tl(ri)gO'ij'z(ri) .. -g”f”””(ri)
Jij2++jn€S » such that

-
TjyOjp O jnF0| 0y 0y

> Ig(ri)I”(l - Z g7 (ri) || 872 (ri)| |87 (ri) )
B J1j2-+jn€S , such that 8(ri) g(ri) g(ri)
o—flO—I'Zmo:ll'n;jo—]_lo—gl"'o—;l
> (ri)l”(l - 3 ;)
=18 S d -1
J1Jj2:+jn€S , such that
T Ty Tty oy !
(by the fact oj,0; # Id for some 1 <i < n and (3.3))
> lg( ')I”(l n! — 1)
7 [ —
st a1
>0.
Thus det(B) # 0 and g() is completely free in C(X(N))/C(X(1)), as desired. o
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