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Abstract

LetX = {Xt : t ≥ 0} be a stationary piecewise continuous Rd -valued process that moves
between jumps along the integral curves of a given continuous vector field, and let S ⊂ Rd

be a smooth surface. The aim of this paper is to derive a multivariate version of Rice’s
formula, relating the intensity of the point process of (localized) continuous crossings of
S byX to the distribution ofX0. Our result is illustrated by examples relating to queueing
networks and stress release network models.
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1. Introduction

The classical Rice formula going back to [11] gives the intensity ν(u) of crossings (originally,
upcrossings) of a given level u by a univariate continuous stationary Gaussian process Xt in
terms of the joint distribution of (Xt ,X′

t )
d= (X0, X

′
0), the process’ value and its derivative at a

fixed time (provided that the derivative exists in some suitable sense, e.g. in mean quadratic):

ν(u) =
∫

|z|p(u, z) dz, (1.1)

where p(·, ·) is the joint density (X0, X
′
0) which is assumed to exist. Later, the result was

extended to more general classes of differentiable (in some suitable sense) stationary processes,
covering not only the first moments but also higher-order factorial moments of the numbers of
crossing, and even to more general settings for continuous random processes and fields. The
formula proved to be quite useful in a number of applied areas, including signal processing,
reliability, and sea waves. For detailed accounts of the history of results of this kind and further
bibliography, the interested reader is referred to [12], [10], and Chapter 3 of [2].

The case of processes with jumps and degenerate finite-dimensional distributions has
received far less attention, although, from an applications viewpoint, it is scarcely less
interesting than the case of continuous processes. However, the heuristics behind the formula
based on ‘Kac’s counting formula’ giving the number of crossings of a level u by aC1-function
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f on [0, 1] as

lim
δ→0+

1

2δ

∫ 1

0
|f ′(t)|1{|f (t)− u| < δ} dt (1.2)

(under a couple of further technical assumptions and denoting by 1A ≡ 1A the indicator function
of the set A) seems to be applicable in that case as well, provided that the process jumps at
finite intensity and is smooth between the jump times. We note that (1.2) is a consequence of
Federer’s coarea theorem (see, e.g. (7.4.15) of [1])

∫ 1

0
g(t)|f ′(t)| dt =

∫ ∞

−∞

∑
s∈[0,1]

g(s)1{f (s) = t} dt,

applied to the function g(s) := 1{|f (s)− u| < δ}.
An analogue of (1.1) for the intensity νc(u) of continuous level crossings (i.e. crossings that

are not induced by a jump) by general univariate piecewise-deterministic Markov processes
that has the form

νc(u) = |µ(u)|p(u),
where µ(·) is the drift coefficient of the process and p(·) is the density of X0, was established
in [6] (see also Theorem 3.2 below; it is worth mentioning here the earlier paper by Bar-David
and Nemirovsky [4], who considered the case of Poisson shot noise processes). The result was
used in [6] to obtain the asymptotic behaviour of the point processes of high-level crossings
(i.e. as u → ∞) in a number of interesting and special cases important for applications.

The proof in [6] relied on the Markov structure of the process and in fact did not assume
the existence of the density p. The natural question of whether Rice’s formula for piecewise-
smooth processes can be extended to the multivariate and non-Markovian cases remained open.
In the present paper we answer this question in the affirmative.

The paper is organized as follows. In Section 2 we describe the main class of processes we
will be working with. In Section 3 we present the main result together with its proof. Section 4
provides examples to illustrate our main result.

2. Model description

First we will describe the main model of multivariate random processes X = {Xt : t ≥ 0}
dealt with in this paper. The two key elements of the model are a point processN = {N(B) : B ∈
B(R+)} of jumps in our process X (here and in what follows, B(·) denotes the class of Borel
subsets of ·), and a vector fieldµ : D → Rd defined on an open domainD ⊂ Rd and specifying
the dynamics of X between the jumps.

The point process N can be identified with the counting process Nt := N([0, t]), t ≥ 0.
We assume that N is stationary, simple (i.e. Nt − Nt− ∈ {0, 1} for all t > 0 and N0 = 0), and
nonnull. Then N(R+) = ∞ almost surely and we can enumerate the (jump) points of N in
increasing order. We denote them by 0 < T1 < T2 < · · · and set T0 := 0 for convenience (this
is not a point of N ). We also assume that N has a finite intensity λN := EN((0, 1]).

For the vector field, we assume that µ ∈ C1(D). This implies that there exist continuous
functions t− : D → (−∞, 0) and t+ : D → (0,∞) such that, for any x ∈ D, there exists a
unique C1-function q(x, ·) : (t−(x), t+(x)) → D satisfying the integral equation

q(x, t) = x +
∫ t

0
µ(q(x, s)) ds, t ∈ (t−(x), t+(x)) (2.1)
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(Picard–Lindelöf theorem; see, e.g. [8, p. 8]). Moreover, for any fixed x ∈ D, there is
a neighbourhood of (x, 0) ∈ Rd+1 in which q(·, ·) will also be continuously differentiable
(Peano’s theorem on the dependence of initial conditions; see, e.g. [8, p. 95]). We also mention
the flow property

q(x, s + t) = q(q(x, s), t),

which holds whenever one (and then also the other) side is defined.
Using the integral curves q, we can now specify the dynamics of the process X between its

jumps. We assume that, for any n ≥ 0, we have XTn ∈ D, Tn+1 < Tn + t+(XTn), and

Xt = q(XTn, t − Tn), Tn ≤ t < Tn+1.

This means that, on any interval [Tn, Tn+1), n ≥ 0, X follows the smooth integral curve
generated by the (time-independent!) drift µ. In particular, a jump epoch t > 0 of X (that is,
Xt− 
= Xt ) must be a point ofN . It is not assumed, however, that any Tn is a jump epoch ofX.

Our key probabilistic assumption is thatX andN are jointly stationary, i.e. the distribution of
the bivariate process {(Xs+t , N((s, s+ t])) : t ≥ 0} does not depend on s ≥ 0. This means that
(X,N) can be extended from [0,∞) to a stationary pair on R in the sense of [9, Chapter 11]. Also
equivalent is the existence of a stationary marked point process ((T ∗

n , Y
∗
n ))n∈Z (see, e.g. [3] for

this notion and note thatT ∗
0 ≤ 0 < T ∗

1 ) such that the sequence q(Y ∗
0 ,−T ∗

0 ), T
∗

1 , Y
∗
1 , T

∗
2 , Y

∗
2 , . . .

has the same distribution as the sequenceX0, T1, XT1 , T2, XT1 , . . . . Apart from this stationarity,
the joint distribution of X and N may exhibit any sort of dependence. In particular, we stress
that we do not make Markovian assumptions of any kind.

Our next aim is to introduce continuous crossings of a surface. We assume that S ⊂ D is
the relative interior of a (d − 1)-dimensional (not necessarily connected) C1-manifold with or
without a boundary, and that {n(x) : x ∈ S} is a continuous field of unit normals to S. Denoting
by 〈·, ·〉 the Euclidean scalar product in Rd , we further assume that the trajectories of the flow
are not tangent to S, i.e.

〈n(x), µ(x)〉 
= 0, x ∈ S. (2.2)

We say that X has a continuous crossing of S at time s > 0 if Xs− = Xs ∈ S and there is a
δ > 0 such that Xt /∈ S for t ∈ (s − δ, s + δ) \ {s}.
Remark 2.1. Let τx := inf{t > 0 : q(x, t) ∈ S} be the first positive time the integral curve of
µ leaving from x at time 0 hits the surface S. It is not hard to see that if S′ is a compact subset
of S then, from (2.2) and the C1-assumption on the drift µ, it follows that

inf{τx : x ∈ S′} > 0. (2.3)

This (together with the fact thatX jumps only finitely often in finite time intervals) implies that
the times of continuous crossings of S through a compact subset of S cannot accumulate in
finite time.

The times of continuous crossings of S by X form an at most countable set Nc that will be
identified with a random counting measure on [0,∞). Then

�c(C) :=
∑
s∈Nc

1{(s,Xs) ∈ C} =
∫

1{(s,Xs) ∈ C}Nc(ds), C ∈ B([0,∞)× Rd),

defines a random (integer-valued) measure�c on [0,∞)×Rd . For t ≥ 0 and B ∈ B(Rd), the
random variable �c([0, t] × B) does not need to be finite. However, if B is a compact subset
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of S then (2.3) implies that �c([0, t] × B) < ∞. Moreover, since N has a finite intensity,

νc(B) := E�c((0, 1] × B), B ∈ B(Rd),

is finite, wheneverB is a compact subset of S. Therefore, νc(·) is a σ -finite measure on B(Rd).
For any compact B ⊂ S, the point process�c(·×B) is stationary. This is enough to derive the
(refined) Campbell theorem, which states that

E
∫
g(s,Xs)Nc(ds) =

∫∫
g(s, x) dsνc(dx) (2.4)

for any measurable function g : R+ × Rd → R+; cf., e.g. Equation (1.2.19) of [3].

Remark 2.2. Assuming that A is a small enough open set to ensure that νc(S ∩ A) < ∞,
observe that νc(S ∩ A)−1νc(· ∩ S ∩ A) can be interpreted as the distribution of the value of
X at a typical time of a continuous crossing of S ∩ A. This is a particular instance of a Palm
distribution. (Ergodicity is not required here.) We refer the reader to [3] for more details on
this standard concept of applied probability.

3. The main result

In this section we consider the process X = {Xt : t ≥ 0} and the surface S as introduced in
the previous section. Our main result requires the following assumption.

(A1) The distribution π of X0 has a continuous density p in a neighbourhood of S.

To introduce a second assumption, we define the following measure π0 on Rd × Rd :

π0(B) := E
∞∑
n=1

1{Tn ≤ 1, XTn− 
= XTn, (XTn−, XTn) ∈ B}, B ∈ B(Rd × Rd).

Note that π0(R
d × Rd) ≤ λN < ∞. The normalized version of π0 can be interpreted as the

distribution of the values ofX just before and after a ‘typical jump’ ofX; see again [3] for more
details on Palm distributions.

(A2) The measure π0 satisfies

min{π0((R
d \ S)× S), π0(S × (Rd \ S))} = 0. (3.1)

If (3.1) holds then at least one of the following two conditions is met: (i) the process does not
jump to the surface S from elsewhere, (ii) the process does not jump from S to its complement
(almost surely in both cases).

We now present the main result of our paper.

Theorem 3.1. Assume that (A1) and (A2) hold. Then

νc(B) =
∫
S∩B

|〈n(x), µ(x)〉|p(x)Hd−1(dx), B ∈ B(Rd), (3.2)

where Hd−1 is the normalized (d − 1)-dimensional Hausdorff measure on Rd .
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Remark 3.1. As will be seen from the first half of the proof of Theorem 3.1, the full continuity
assumption (A1) on p can actually be somewhat weakened to the boundedness of p in a
neighbourhood of S and its right continuity (in case the first number in (3.1) vanishes) on S
along the flow, meaning that p(q(x, 0+)) = p(x), x ∈ S.

In the one-dimensional case the above theorem simplifies to the following assertion.

Theorem 3.2. In the case d = 1, assuming that S = {u} for some u ∈ D such that µ(u) 
= 0,
and that (A1) and (A2) are satisfied, we have

νc({u}) = |µ(u)|p(u). (3.3)

Remark 3.2. In the case when X is a stationary univariate Markovian process, representation
(3.3) was established under broad conditions in [6]. More precisely, it was actually shown that
the stationary distribution π of X has a density p that satisfies (3.3). Note that, due to the
Markovian structure of the process, it was possible to derive the result under weaker technical
assumptions than those imposed in the general setting of the present paper.

In the case when
S = Su := {x ∈ Rd : x1 = u}

for some u ∈ R, a continuous crossing of S is a continuous crossing of the level u by the first
component of X. In this case Theorem 3.1 takes the following form.

Theorem 3.3. Let u ∈ R be such that Su ⊂ D, and let µ1(x) 
= 0 for all x ∈ Su, where µ1 is
the first component of µ. Assume that (A1) and (A2) hold with S = Su. Then, for B ∈ B(Rd),

νc(B) =
∫

· · ·
∫

1B(u, x2, . . . , xd)|µ1(u, x2, . . . , xd)|p(u, x2, . . . , xd) dx2 · · · dxd.

Remark 3.3. Theorem 3.3 is another, more straightforward, generalization of (3.3). Assume
now that 0 < νc(S

u) < ∞ and consider a ‘typical time’ of a continuous crossing of the
level u by the first component of X. Then the measure Qu(·) := νc(S

u)−1νc({u} × ·)
describes the distribution of the other components of X at this time. This distribution can be
interpreted in terms of the drift-modulated density p1 proportional to |µ1(x)|p(x) (assuming
that E |µ1(X0)| < ∞). If (Y1, . . . , Yd) is a random vector with density p1 then Qu is the
conditional distribution of (Y2, . . . , Yd) given that Y1 = u.

Remark 3.4. Let k ∈ {1, . . . , d}, and assume that S = S̃ × Rd−k , where S̃ ⊂ Rk is a (k − 1)-
dimensional smooth surface. Let {ñ(x) : x ∈ S̃} be a continuous field of unit normals to S̃. Let
X̃ := (X(1), . . . , X(k)) and Y := (X(k+1), . . . , X(d)), where X = (X(1), . . . , X(d)). There is
a one-to-one correspondence between the continuous crossings of S by the process X and the
continuous crossings of S̃ by the process X̃. Equation (3.2) can be written as

νc(B) =
∫

Y

∫
S̃

|〈ñ(x), µ̃(x, y)〉|1B(x, y)p(x | y)
× Hk−1(dx)P(Y0 ∈ dy), B ∈ B(Rk × Y),

where Y := Rd−k , µ̃(x, y) is the vector of the first k components ofµ(x, y), and x �→ p(x | y)
is the conditional density of X̃0 given that Y0 = y. In this form the result might be generalizable
to other stationary pairs (X̃, Y ). The process X̃ should remain piecewise deterministic for
given Y . But the process Y might take values in a more general space Y. In this paper we will
make no attempt to establish such an extension of our results.
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To prove Theorem 3.1, we will need an auxiliary result that requires some further notation.
First of all, note that the assertion of the theorem will immediately follow if we prove represen-
tation (3.2) in a ‘local setting’, i.e. with S replaced by S ∩ A, where A is a small enough open
subset of Rd . As can easily be seen from the observation that we made after (2.1) and from the
manifold properties of S, if we understand by S a ‘small piece’ of the original surface then the
following assumption will be satisfied.

(A3) The surface S is connected and relatively compact, (2.3) holds with S′ = S, and νc :=
νc(S) < ∞. Furthermore, there exists a u0 > 0 such that t+(x) ≥ u0 for all x ∈ S and,
for any u ∈ [0, u0],

Su := {q(x, u) : x ∈ S}
is a C1-surface with a continuous field {nu(x) : x ∈ Su} of unit normals to it satisfying

inf{〈nu(x), µ(x)〉 : x ∈ Su, u ∈ [0, u0]} > 0. (3.4)

Moreover, π has a density p in a neighbourhood of S(0,u0), where

SI :=
⋃
u∈I

Su, I ⊂ R.

Now denote by Nu
c the stationary point process of the times of all continuous crossings of

Su by X. For any C ∈ B([0,∞) × Rd), let �uc (C) be the number of all s ∈ Nu
c such that

(s,Xs) ∈ C and νuc (B) := E�uc ([0, 1] × B), B ∈ B(Rd).

Proposition 3.1. Assume that (A3) holds. Then, for any measurable g : Rd → R+,

∫
g(x)νuc (dx) =

∫
Su

|〈nu(x), µ(x)〉|g(x)p(x)Hd−1(dx) (3.5)

for H1-almost all u ∈ [0, u0].
Proof. For any j ≥ 0, set T ′

j := Tj ∧ 1 and, in particular, T ′
0 := 0. For j ≥ 1, we define

Ij := (T ′
j−1, T

′
j ), Lj := {Xt : t ∈ Ij } = {q(XT ′

j−1
, t − T ′

j−1) : t ∈ Ij }.

Fix a B ∈ B(Rd), and assume that u ∈ (0, u0). By definition, �uc (Ij × B) > 0 if and only if
Lj ∩ Su ∩ B 
= ∅. On the other hand, (3.4) implies that �uc (Ij × B) ≤ 1, so that

�uc (Ij × B) = 1{Lj ∩ Su ∩ B 
= ∅}.
Therefore,

�uc ((0, 1)× B) =
∞∑
j=1

1{Lj ∩ Su ∩ B 
= ∅}

and, for any v ∈ (0, u0),

∫ v

0
�uc ((0, 1)× B) du =

∞∑
j=1

∫ v

0
1{Lj ∩ Su ∩ B 
= ∅} du. (3.6)
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Now set

Jj (v) := {t ∈ Ij : Xt ∈ S(0,v)}, Uj (v) := {u ∈ (0, v) : Lj ∩ Su 
= ∅}.

Clearly, the last two sets are either simultaneously empty or are open intervals of the same
length; in the latter case, put uj (v) := inf Uj(v). Therefore,

∫ v

0
1{Lj ∩ Su ∩ B 
= ∅} du =

∫
Uj (v)

1{q(Xuj (v), u− uj (v)) ∈ B} du

=
∫
Jj (v)

1{Xt ∈ B} dt

=
∫
Ij (v)

1{Xt ∈ S(0,v) ∩ B} dt, (3.7)

so that (3.6) becomes

∫ v

0
�uc ((0, 1)× B) du =

∫ 1

0
1{Xt ∈ S(0,v) ∩ B} dt.

Taking expectations on both sides of the last relation and using Fubini’s theorem and the
stationarity of X, we obtain

∫ v

0
νuc (B) du = E

∫ 1

0
1{Xt ∈ S(0,v) ∩ B} dt = P(X0 ∈ S(0,v) ∩ B).

As functions of B ∈ B(Rd), both sides specify a measure, and so the standard argument shows
that, for any measurable function g : Rd → R+,

∫ v

0
du

∫
g(x)νuc (dx) =

∫
S(0,v)

g(x)p(x)Hd(dx). (3.8)

Now we can assume without loss of generality that S admits a C1-parametrization (w1, . . . ,

wd−1) �→ z(w1, . . . , wd−1), where (w1, . . . , wd−1) varies in an open set W ⊂ Rd−1. For
(w1, . . . , wd−1) ∈ W and u ∈ [0, u0], define

ψ(w1, . . . , wd−1, u) := q(z(w1, . . . , wd−1), u),

which, for a fixed u ∈ [0, u0], will be a C1-parametrization of the ‘parallel’ surface Su.
Next we denote by ∂i the operator of partial differentiation with respect to wi, i = 1, . . . ,

d − 1, and let ∂dψ := ∂ψ/∂u. A simple linear algebra calculation shows that the Jacobian Jψ
of ψ = ψ(w1, . . . , wd−1, u) satisfies

|Jψ | = |〈nu(ψ), ∂dψ〉|√H ≡ |〈nu(ψ), µ(ψ)〉|
√
H,

where H = H(w1, . . . , wd−1, u) is the determinant of the matrix (〈∂iψ, ∂jψ〉)i,j=1,...,d−1.
However, for any fixed u ∈ [0, u0],

√
H(w1, . . . , wd−1, u) dw1 · · · dwd−1 is the surface

element of Su in the coordinates (w1, . . . , wd−1), so that changing coordinates on the right-hand
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side of (3.8) yields

∫
S(0,v)

g(x)p(x)Hd(dx) =
∫
W×(0,v)

g(ψ)p(ψ)|Jψ | dw1 · · · dwd−1 du

=
∫
W×(0,v)

g(ψ)p(ψ)|〈nu(ψ), µ(ψ)〉|
√
Hg dw1 · · · dwd−1 du

=
∫ v

0
du

∫
Su

g(x)p(x)|〈nu(x), µ(x)〉|Hd−1(dx), (3.9)

which immediately implies the assertion of Proposition 3.1.

Remark 3.5. Assume that f is a real-valuedC1-function defined on an open domain D̃ ⊂ Rd ,
with nonvanishing gradient and such that Su = {x ∈ D̃ : f (x) = u} for all small enough u.
Such a function exists, at least for suitably small pieces of S. We may then apply Federer’s
coarea theorem (see, e.g. Equation (7.4.15) of [1]) on each open interval (T ′

j−1, T
′
j ) to the level

sets of the function t �→ f (Xt ). While this would provide an alternative way for deriving (3.7),
we opted to give the direct argument presented in the proof of Proposition 3.1. In a quite
similar spirit the coarea theorem can be used to derive Rice’s formula for smooth processes; see
Section 11.4 of [1]. It was actually Zähle [13] who first used the coarea theorem to prove Rice’s
formula for certain continuous processes. Observe also that the coarea formula could be used
to establish (3.9) as well. However, our more explicit argument yields additional information
on the continuity properties of the surface element of Su, which is needed in the proof of
Theorem 3.1.

Proof of Theorem 3.1. Since both sides of (3.2) are σ -additive in B, it is no restriction of
generality to assume that assumption (A3) is satisfied. Moreover, we can assume that S admits
a smooth parametrization as in the proof of Proposition 3.1. This is due to the fact that the
surface S can be represented as a ‘mosaic’ of ‘small pieces’ for which the assumption will be
satisfied owing to our assumptions on the original S.

Furthermore, it is not hard to see that, to prove the theorem, it suffices to demonstrate
that (3.5) holds at u = 0 for continuous and bounded g. We will show this by proving that,
under the assumption that π0((R

d \ S) × S) = 0, both sides of (3.5) are right continuous at
u = 0, as Proposition 3.1 will then imply the desired result. The case when only the second
term on the left-hand side of (3.1) is zero (i.e. π0(S×(Rd \S)) = 0) can be dealt with in exactly
the same way by establishing the left continuity of both sides of (3.5) at u = 0 (essentially via
a time-reversal argument).

Using the notation from the proof of Proposition 3.1 and setting

hu(w) := 〈nu(ψ), µ(ψ)〉g(ψ)p(ψ), w = (w1, . . . , wd−1), ψ = ψ(w, u),

we have, for u ∈ [0, u0],
∫
Su

〈nu(x), µ(x)〉g(x)p(x)Hd−1(dx) =
∫
hu(w)

√
H(w, u)Hd−1(dw). (3.10)

As noted above, we have q ∈ C1, and so nu(ψ(y, u)) is a continuous function of u, leading to

h0+(w) = 〈n(z(w)), µ(z(w))〉g(z(w))p(z(w)).
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Similarly, as u → 0+, H(w, u) converges to the value of the determinant of the matrix
(〈∂iz(w), ∂j z(w)〉)i,j=1,...,d−1. Now the dominated convergence theorem implies that (3.10)
converges to the right-hand side of (3.5) at u = 0.

To establish the desired right continuity of the left-hand side of (3.5), we assume that (3.4)
holds. Introduce the following point process �d on R+ × Rd × Rd :

�d(·) :=
∞∑
n=1

1{XTn− 
= XTn}1{(Tn,XTn−, XTn) ∈ ·}.

Let u ∈ [0, u0] and t ≥ 0. A continuous crossing of Su can only occur on a trajectory ofX that
arrives at the surface from the inside of S(0,u) along an integral curve ofµ (cf. (3.4)). Therefore,
each such crossing of Su should be preceded by an entry to S[0,u), either along a drift line or by
a jump. Taking into account the possibility of having X0 ∈ S[0,u), we obtain the bound

Nu
c ([u, t + u]) ≤ Nc([0, t + u])+�d([0, t + u] × (Rd \ S[0,u])× S[0,u])+ 1.

Therefore,∫ t+u

u

g(Xs)N
u
c (ds) ≤

∫ t+u

0
(g(Xs)+ ε(u))Nc(ds)

+ g∗[�d([0, t + u] × (Rd \ S[0,u])× S[0,u])+ 1],
where g∗ := supx g(x) and

ε(u) := sup{|g(q(x, v))− g(x)| : x ∈ S, 0 ≤ v ≤ u} → 0 as u → 0+, (3.11)

owing to the uniform continuity of the mapping (x, u) �→ g(q(x, u)) on S̄×[0, u0], S̄ denoting
the closure of S.

Now taking expectations on both sides of the obtained inequality and using Campbell’s
formula (2.4) yields

t

∫
g(x)νuc (dx) ≤ (t + u)

∫
(g(x)+ ε(u))νc(dx)

+ g∗((t + u)π0((R
d \ S[0,u])× S[0,u])+ 1),

where we also used Campbell’s theorem for π0(·) = E�d([0, 1] × ·). After dividing by t and
letting t → ∞, we obtain∫

g(x)νuc (dx) ≤
∫
g(x)νc(dx)+ ε(u)νc(S)+ g∗π0((R

d \ S[0,u])× S[0,u]).

In view of (3.11) and the fact that the assumption that π0((R
d \ S) × S) = 0 implies that

π0((R
d \ S[0,u])× S[0,u]) → 0 as u → 0+, this leads to

lim sup
u→0+

∫
g(x)νuc (dx) ≤

∫
g(x)νc(dx).

To derive the converse inequality, we start with the observation that any continuous crossing
of S in [0, t] is followed either by a continuous crossing of Su or by a jump from S(0,u] to its
complement within the time interval [0, t + u], so that

Nu
c ([0, t + u]) ≥ Nc([0, t])−�d([0, t + u] × S(0,u] × (Rd \ S(0,u]))− 1.
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Next, similarly to our argument above, we obtain
∫
g(x)νuc (dx) ≥

∫
g(x)νc(dx)− ε(u)νc(S)− g∗π0(S(0,u] × (Rd \ S(0,u])).

Since limu→0+ S(0,u] = ∅, it is clear that the continuity of π0 implies now that

lim inf
u→0+

∫
g(x)νuc (dx) ≥

∫
g(x)νc(dx),

which completes the proof of the theorem.

4. Examples

In this section we present a couple of examples showing possible uses of our main result.
Deriving closed-form expressions for stationary distributions for nontrivial processes of the type
we are dealing with in the paper is notoriously difficult. To give an analytically computable
result, we will begin with a rather simple example. The other two examples are less trivial and,
accordingly, require numerical evaluation of the quantities of interest.

Example 4.1. In this example we set D := Rd \ {0} and µ(x) := x/|x|. We consider a
divergent sequence (T ′

n)n≥0 of strictly increasing times with T ′
0 = 0 and a sequence (Y ′

n)n≥0
of random vectors with values on the unit sphere Sd−1 := {x ∈ Rd : |x| = 1}. We assume that
((T ′

n, Y
′
n))n≥0 is cycle stationary in the sense that (0, Y ′

1), (T
′
2 − T ′

1, Y
′
2), (T

′
3 − T ′

2, Y
′
3), . . . has

the same distribution as the original sequence; see [9, p. 205]. We let F denote the distribution
function of T ′

1 and M the distribution of Y ′
0, and we assume that F has a finite mean a > 0

and that M has a density m (with respect to Hd−1 on Sd−1). Our assumptions guarantee the
existence of a time-stationary version ((Tn, Yn))n∈Z of the marked point process ((T ′

n, Y
′
n))n≥0;

see [3, Section 1.3.5] or [9, Theorem 11.4] for more detail. As in Section 2, we can then
define the process {Xt : t ≥ 0} piecewise on the interval [0, T1) by letting the process start
in Y0 − T0Y0 (a point that is not in the unit sphere) and then follow the trajectory induced by
the drift µ (a ray that has the same direction as Y0). On the intervals [Tn, Tn+1), n ≥ 1, the
process starts in Yn and then again follows the trajectory induced by the drift µ. We consider
the surface S := rSd−1 = {x ∈ Rd : |x| = r} for some fixed r > 1. Clearly, the general model
assumptions of Section 2 are all satisfied.

To obtain an explicit formula for the intensities of continuous crossings, we now assume that
Y ′

0 and T ′
1 are independent. Using Formula (1.3.19) of [3] (or Formula (4) of [9, Chapter 11]),

we obtain, for any B ∈ B(Rd),

P(X0 ∈ B) = 1

a
E

∫ T ′
1

0
1{Y ′

0 + tY ′
0 ∈ B} dt

= 1

a

∫ ∞

0

∫
Sd−1

(1 − F(t))1{(1 + t)y ∈ B}m(y)Hd−1(dy) dt

= 1

a

∫ ∞

1

∫
Sd−1

(1 − F(t − 1))1{ty ∈ B}m(y)Hd−1(dy) dt.

Using polar coordinates, we obtain

P(X0 ∈ B) = 1

a

∫
Rd

1{|x| ≥ 1}(1 − F(|x| − 1))1{x ∈ B}m
(
x

|x|
)

|x|−(d−1) dx.
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Therefore,X0 has densityp(x) = a−1|x|−(d−1)m(x/|x|)(1−F(|x|−1)), |x| > 1, with respect
to the d-dimensional Lebesgue measure. This density is continuous in a neighbourhood of S
provided thatF is continuous in a neighbourhood of r−1. Assumption (A2) is trivially satisfied.
Now it remains to observe that |〈n(x), µ(x)〉| ≡ 1 on S, and so, by Theorem 3.1, the intensity
of continuous crossings of S ∩ B by X is clearly given by

νc(B) = a−1M(r−1B)(1 − F(r − 1)). (4.1)

Note thatS andµ are simple in this example. But our probabilistic assumptions are still rather
general. We have not assumed that the sequences (T ′

n) and (Y ′
n) have any special independence

or Markov properties. Neither have we assumed that these sequences are independent. What
is important for the explicit product form of (4.1) is the independence of Y ′

0 and T ′
1.

Example 4.2. Consider a general queueing network model with d servers operating in a
stationary regime, with arrivals of customers (possibly in batches) to the network being governed
by a stationary simple point process. Each customer, upon completion of its service at node
j ∈ {1, . . . , d} of the network, proceeds to another node for further service or leaves the
network, according to some routeing mechanism. All the arrival, transition, and departure
times form a stationary point process N , and it is at these times that the state of the process
Xt = (X

(1)
t , . . . , X

(d)
t ) ∈ Rd describing the residual workloads on the nodes can change by a

jump. Between the events, the values ofXt decrease according to the relation dXt/dt = µ(Xt)

for some C1-function µ : Rd → Rd−, so that the service rate at node j can depend on the
residual workload at the node and, moreover, it can even depend on the workloads at other
nodes i 
= j as well. To make this description compatible with the assumptions in Section 2,
we allow X

(j)
t < 0, interpreting max{X(j)t , 0} as the residual workload at node j at time t , and

let D := Rd .
For i ∈ {1, . . . , d}, let Si := {x = (x1, . . . , xd) ∈ Rd : xi = 0}. Then the continuous

crossing of the surface Si corresponds to server i becoming idle. Let νi(B) denote the intensity
of these crossings through a point inB ∈ B(Rd). Provided that the assumptions of Theorem 3.3
are satisfied, we obtain

νi(B) =
∫

· · ·
∫

1B(xi)|µi(xi)|p(xi) dx1 · · · dxi−1 dxi+1 · · · dxd (4.2)

forB ∈ B(Rd), where xi := (x1, . . . , xi−1, 0, xi+1, . . . , xd) andµi is the ith component ofµ.
The normalization of (4.2) yields the (Palm) distribution of the network at a typical departure
time from node i, making the node idle.

Note that our general model assumptions are rather mild and that Theorem 3.3 also requires
µi(x) < 0 for x ∈ Si . In assumption (A2) only the condition π0(Si × (Rd \ Si)) = 0 is of
relevance. This assumption says that if there is a jump at an instant when server i becomes
empty then the workload of this server is not allowed to increase by this jump, neither by an
internal transition (including feedback) nor by an external arrival. Again, this is a rather weak
assumption.

We can also consider the ‘composite surface’S := ⋃
i S(i), where S(i) is the set of all x ∈ Rd

with xi = 0 and xj 
= 0 for j 
= i. (Under weak assumptions, any continuous crossing of
Si is also a continuous crossing of S(i).) Theorem 3.3 provides the Palm distribution of the
residual workloads at the time when one of the servers becomes idle while all the others are
still working. The probability of server i becoming idle given a typical instant when (exactly)
one of the servers becomes idle is then given by νc(S(i))/νc(S). We omit further details.
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Example 4.3. The classical stress release model in seismology (see, e.g. [7] and the references
to earlier works therein) is a piecewise-deterministic Markov process Xt representing the level
of ‘stress’ at a seismic fault at time t . The value Xt continuously increases at a linear rate due
to the tectonic loading of the fault and drops by random jumps ξi < 0 (which may be assumed
independent and identically distributed) when the stress discharges by way of earthquakes that
occur at random times Ti whose intensity is given byψ(Xt) for some suitably chosen increasing
risk function ψ (e.g. ψ(x) = eβx for some β > 0). In other words, the generator A of the
process has the form

Ah(x) = µh′(x)+ ψ(x)(E h(x + ξ)− h(x))

for a constant µ > 0, ‘generic’ random jump size ξ , and functions h ∈ C1 on R.

Note that the remote measuring of stress levels at seismic faults is an extremely difficult
problem, so the value Xt is usually not observable. All the information on the process one can
have access to is contained in the times, locations, and magnitudes of the jumps.

A more interesting multinode analog of the model was discussed in [5], where it was
demonstrated, in particular, that a two-node stress release network can reproduce the famous
Omori’s law for the intensity of earthquake aftershocks.

In the multinode model, the values of the components of the random processXt = (X
(1)
t , . . . ,

X
(d)
t ) ∈ Rd represent the time t stress levels at individual seismic faults j ∈ {1, . . . , d}

constituting a local fault system. Between jumps, the dynamics of the process are given
by dXt/ dt = µ for a constant vector µ ∈ Rd . Note that we can have µj < 0 which
corresponds to the tectonic unloading of stress at node j (of course, we can consider a more
general model with a variable µ as well; similar remarks apply to all the other elements of
the model construction). The occurrrence of jumps (‘seismic events’) at node j is driven by
a Markovian random mechanism with the probability of a jump occurring at the node in the
infinitesimal time interval dt given by ψj (X

(j)
t− ) dt for a given risk function ψj (x).

When the nth seismic event occurs at node j (say, at time Tj,n), the value of stress at the node
changes by a random quantity ξj,n, n = 1, 2, . . ., which may be assumed to be independent
and identically distributed random variables. Moreover, the stress levels at other nodes can
also change at that instance: for a given constant transfer matrix (rij ) ∈ Rd×d , we have

X
(i)
Tj,n

= X
(i)
Tj,n− + rij ξj,n, i 
= j (for more details, see [5]).

One of the main problems one hopes to be able to solve in mathematical seismology is
to give advanced earthquake warnings. Within the framework of the multinode stress release
model, that warning would have to be given at the time when the cumulative jump intensity∑d
j=1 ψj (X

(j)
t ) exceeds a given threshold u > 0. That is, we are looking at continuous

crossings of the surface S := {x : ∑d
j=1 ψj (xj ) = u} by our process Xt . Our main result

allows us to find the distribution of Xt at the (typical) time of such crossings and, hence, for
example, to derive the probability for a given fault to trigger the forthcoming seismic event.
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