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1. Introduction. Let Q be a non-empty set, 9 a Boolean a-algebra of subsets of Q,
k a natural number, and let m:&->Mk be a non-atomic vector measure. Then, by the
celebrated theorem of Liapounov [11], the range m[3F] = {m(A): A e 3F} of m is a
compact convex subset of Uk. This theorem has been generalized in a number of ways.
For example Kingman and Robertson [8] and Knowles [9] have shown that, under
appropriate conditions, results in the same spirit can be proved for measures taking their
values in infinite-dimensional vector spaces. Another type of generalization was obtained
by Dvoretsky, Wald and Wolfowitz [6,7]. What they do is to take m as above together
with a natural number n > 1. They then consider the set Kn of all vectors

(m(Al), m(A2), . . . , m{An)) e Unk,

where (Au A2, . . • , An) is an ordered ^-measurable partition of Q (i.e. a partition
whose terms Ar all belong to 3*). They prove in [6] that Kn is a compact convex subset of
IR"\ and moreover that Kn is equal to the set of all vectors of the form

y 0 ! dm, J <p2 dm, . . . , J <pn dm) ,

where (0i, (f>2, • • • , (pn) is an ^-measurable partition of unity; i.e. it is an n-tuple of
non-negative ^-measurable real functions (pr on Q such that

£tfv(w) = l (coeQ).

Liapounov's theorem can be obtained as a corollary of this result by taking n = 2.
The present paper has two main objectives.
(1) To extend the Dvoretsky-Wald-Wolfowitz theorem to appropriate vector

measures with infinite-dimensional range space.
(2) To develop the methods used for (1) to obtain results in the same vein for

countably infinite ^-measurable partitions of Q.
Both objectives are reached with the help of techniques and ideas due to

Lindenstrauss [10], Kingman and Robertson [8], and Knowles [9], and we obtain
incidentally a somewhat simpler proof of the original theorem of Dvoretsky, Wald and
Wolfowitz [6].

It is convenient to explain now some of the terminology and notation to be used. We
can then state precisely some of the main results to be proved.

We shall denote by X a real Banach space, and by m we shall in future always mean
a (countably additive) measure m: &—* X. (A good general reference on vector measures
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is [3]). We recall that, by a theorem of Bartle, Dunford and Schwartz [2] there exists a
probability measure n: &-> U such that, for all A e &, fi(A) = 0 if and only if
m(A D B) = 0 for all B e 2F. Any such n is unique up to equivalence of measures. Given
m:SF-*X we choose such a /z once and for all and call it a control measure for m. If
<f> e L"(fi) we can construct

m(<p) = (f>dm

either as a weak integral or as in [2]. Both methods yield the same m(<f>) eX and we have

x*(m(<p))= l<f>d(x*°m)

for all 0eL°°(ju), x*eX*. If 0 = 0 a.e. (ju), then m(tf>) = 0. Since x*°m has an V
density with respect to \i we see at once that the map

is continuous with respect to the topologies o(Lx(n), L}(n)) and o(X, X*).
Now let

and for each 5 e 9 let

N(S) = {<t>eN:<t) = 0 a.e. (n) in Q\S}.

We call m a Liapounov measure if N(S) is non-trivial for all S 6 ^ such that n(S) > 0. In
this Banach-space setting the Knowles extension [9] of Liapounov's theorem states that m
is a Liapounov measure if and only if for each A e 9 the measure mA defined by
mA(B) = m(A (IB) (Be 9) has as range mA[9] a weakly compact convex subset of X.
This does extend the Liapounov theorem, because it is known that when X is
finite-dimensional m is Liapounov if and only if it is non-atomic [3]. When X is
infinite-dimensional non-atomicity of m is necessary but not sufficient for it to be
Liapounov [3].

Now agree that two sets A, B e9 are almost disjoint if fi(A n B) = <p, and let 9n(\i)
be the set of all

A = (AuA2,...,An)e9"

such that the AT are pairwise almost disjoint, while 9\(\i) is

r=i

Now let Pn(n) denote the set of all n-tuples <|> = (</>!, <t>2,..., </>„) such that <f>r e
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and <f>r > 0 a.e. (/x) for all r and

a.e.

Finally let Pl(n) be the set of <|> in Pn{fx) such that
n

2<^r(«) = l a.e. ((U).
r = l

(Note. We intend to regard Pn(ii) and Pl,((i) as subsets of (L°°(JU))". We permit ourselves
the usual "abuse of language" in blurring the distinction between measurable functions
and their equivalence classes.)

We shall be concerned with subsets of the product space X". We can make this into a
Banach space by writing

\\{xux2, . . . ,xn)\\= max ||*r||..

Then the dual space of X" is X*", the norm in the latter space being given by

We can now state our first main theorem.

THEOREM 1.1. Let m : S'—^X be a Liapounov measure. Then

{(m(i40, m(A2), ..., m(An)):Ae?n(u)}
and

{(miAj, m(A2), ..., m{An)): A e 9\(n)}

are o(X", X*") - compact convex subsets of X".

This result will be established by showing that the two subsets of X" displayed in the
statement are respectively equal to

{ ( m ( * 0 . m(<p2), ..., m(<t>n)): * e Pn(j*)}
and

{ ( m ( 0 , ) > m(<p2), ..., m(<t>n)): $ e Pfo)}.
Since Pn(fi), Pl(n) are obviously convex sets, and are compact with respect to an

appropriate topology (see §2), it is then easy to conclude the proof. The proof of
Theorem 1.1 will be concluded in §3. In §§4-6 we shall establish results in the same spirit
for infinite sequences (An).

In addition to the references already given, we refer the reader, for some interesting
comments on Liapounov's theorem and that of Dvoretzky-Wald-Wolfowitz, to [5]. (For
further work on the subject of [5], though by methods not directly relevant to the present
paper, see [12]).

https://doi.org/10.1017/S0017089500006856 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006856


208 D. A. EDWARDS

Finally it should be mentioned that Liapounov's theorem has been extended to von
Neumann algebras by Azarnia and Wright [1]. It would be interesting to know whether
Theorem 1.1, for instance, admits of a similar extension. Professor E. B. Davies has
suggested that in looking for such generalizations one should seek to replace L°°(n) not by
a von Neumann algebra but by an appropriate ordered Banach space. This suggestion is
not pursued in the present paper.

2. The compact convex sets Pn(fi) and P\(n). In this section the vector measure m
plays no part and (Q, 3F, n) can be taken to be an arbitrary probability space. The
definitions of Pn{ii) and P\{n) have already been given in §1. They are easily seen to be
compact convex subsets of the product space (L°°(/i))" when the latter carries the product
weak* topology, i.e. the product topology constructed by starting with the topology
a(L°°(/i), Ll(fi)) in each factor space. (Alternatively one may regard this topology on
(L°V))" as the weak* topology for (L°°(/z))" qua dual of the Banach space (L\fi))". (One
way to norm (L^/x))" so as to set up this duality has already been indicated in §1.
Another will be indicated in §7.) By the Krein-Milman theorem the sets Pn((i) and Pi(/x)
are the closed convex hulls of their sets of extreme points. In what follows we shall need
to know what these extreme points are, and our next concern will therefore be to
characterize them. Given any convex set K we shall denote by deK the set of all extreme
points of K, and by a face of K we shall mean any non-empty convex set E c. K such that
if x, y e K and 0 < t < 1 with tx + (1 - t)y e E then x,y eE. If £ is a face of K then it is
easy to see that deE = E n deK.

PROPOSITION 2.1. The set Pl(^) is a face of Pn(ju).

This is almost obvious. For if <j>, ty e P«(JU) and 0 < t < 1 with

n n

then E 0 r ^ l a . e . , E ty, — 1 a.e. and so
r= l r= l

r + ( 1 " 0 E tfr = 1 a.e.
= 1

Hence E 0r = la .e . , E i/v = 1 a.e. and so (j), t|» e Pl
n(n).

This result with the remark immediately preceding it shows that it will be enough to
characterize the points of dePn([i). Here is the characterization.

THEOREM 2.2. Let tyedePn(n). Then there exists a member (Au A2,..., An) of
&n(n) such that

<• = ( ! * , . U 2 , • • • , U . ) a . e . ( ju) .

Conversely any (j> constructed in this manner belongs to dePn{n).
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Here lAl, for instance, is the characteristic function of the set Ax. The symbol &n(n)
has already been denned in §1. The basic idea for the proof is the same as that for
Theorem 2 in [6], though the present situation is slightly more complicated.

To prove the theorem suppose that <j>ePn(ju) but that for no AieS^ do we have
0! = I,,, a.e. (//). Then for some e > 0 and 5 e & we have /i(5) > 0 and e < 4>x < 1 - e on

n n

S. Two cases now arise: (i) S f = l a.e. in 5, (ii) £ <f>r < 1 on some subset T of 5 such
l lr = l

that F e f , //(T) > 0. (If n = 1 then of course only case (ii) can occur, and we can take
T = S.)

n

Consider case (i). We have £ < E #r < 1 - e a.e. in S. Writing, when 2 < r < n,
r=2

we see that S and (j Sr differ by at most a null set. Hence there exists an integer k such
r=2

that 2 ^ fc < n and [i(Sk) >0. Now since (pk >0 on S*. there exist rj e (0, e] and FcSk such
that Fe&, n(F) > 0 and (f>k > ?j on F Now define, for 1 < / < n,

0 i ± r / l F if ' = 1,
(t>k-f-i]lF if / = A:.

Then the two vector (j)* lie in Pn(/i) and <(> = 2(<|)+ + <j>~). Since /i(F) > 0 this shows that <|>
is not extreme in Pn(n).

Now consider case (ii). Choose <5 e (0, e] and H e 2F such that /*(//) > 0, H c.T and

E 0 r < 1 - 6 in // . Now define, for 1 < / < n,
r= 1

! ± 61W if / = 1,
if «=£ 1.

Then tp* e Pn(n) and <|> = 2(^ + +1|>~)- This tells us that <j> is not extreme in Pn{n).
It follows that if <J> e dePnhi) then 0 , is equal a.e. to a characteristic function. But the

same argument applies to each component <pr, and so we conclude that for each r there
exists Are3P such that (t>r = lA, a.e. Since <p e Pn(fi) it follows easily that
(Ai, A2, • • • , An) e S^nhi), so that <(> is of the stated form. The converse statement is an
easy exercise.

COROLLARY 2.3. Let <j> e 3ePi(/i). Then there exists a member (Au A2, .. . , An) of
S'Kfi) such that

<(> = (lAl, \Al, . . . , lAn) a.e. (,u).

Conversely, any <j> constructed in this manner is a member of dePl(n).
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This follows from Theorem 2.2 and Proposition 2.1.

3. Proof of Theorem 1.1. In this section Q, &, X will have the same meanings as in
§1, m: 3F—>X will be a vector measure, and ju will be a control measure for m. We shall
interpret X" as a Banach space with dual X*n, as already explained in §1.

Given <{> = (<t>1; <t>2,. . . , <>„) e (L°°(/x))" we shall write

mnW) = M 0 i ) > m((t>2), ••-, m((f)n)).

Given a subset E of (L°°(JU))" we shall write mn[E] for the set {mn(<j>):<|> e £}.

PROPOSITION 3.1. 77te map mn:(L°°(ju))n—•A™ is continuous with respect to the
product weak* topology in (U°(n))n and the weak topology o(Xn, X*n) in X".

To see this is suffices to show that whenever x*, x*,. . . , x* belong to X* the map

is continuous with respect to the product weak* topology in (L"(/i))". To prove that, let
fx>, for each x* eX*, be the density of the measure x* °m with respect to n and recall
that£. eL\n). Then

n n r

2 X* o m{<pr) = 2) <t>rfxt d\l,

which makes the desired continuity property evident.

COROLLARY 3.2. The sets mn[Pl
n(n)] and mn[Pn(fi)] are weakly compact convex

subsets of X".

By the properties of Pl(n) and Pn(fi) noted at the beginning of §2 this follows at once
from Proposition 3.1.

Now write

Then Nn is a linear subspace of (L"(/i))" that is closed with respect to the product weak*
topology.

LEMMA 3.3. If the measure m is Liapounov then
(a) P\di)cdePM + Nn,
(b) PM^dePn(n) + Nn.

The proof is similar to that for Theorem 2.2. The case n = 1 of statement (b) is
already well known (see [10], [8] and [9]).

We consider first statement (b). Let tyePn(n) and let \p be an extreme point of
(<t> + Nn) n Pn(n). Suppose if possible that t|> $ dePn((i). Then, by Theorem 2.2, some
component of \J>, rpi say, is not a.e. equal to a characteristic function. But that means that
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for some e > 0 and S e f with fi(S) > 0 we have e s i/;, < 1 — e on 5. We now distinguish
n n

two cases. Either (i) E ^ = 1 a.e. on 5 or (ii) E xj>r < 1 on some subset of 5 that is of
r = l r = l

positive /i-measure.
If we are in case (i) then, as in the proof of Theorem 2.2 we can find rj e (0, e], F a

subset of 5, and k such that F e f , n(F)>0, 2<k<n, and ^ > t ) o n F. Now choose %
in N(F) with 0< | | ^ | | . < i / . For l < / < « let

if l*

Then i|>* e (<|> + Nn) D Pn(n) and t|> = |(i|>+ + ^~) . Hence tj) is not extreme in (<> + #„) n
Pn([i), contrary to hypothesis. To avoid the contradiction we must conclude that if tp is an
extreme point of (<(> + Nn)r\Pn([i) then for some AcS v/e have ipi = lA a.e. (/*). The
same argument applies now to every component of t|>. Since t|) e Pn{n) it is immediate, by
Theorem 2.2, that t|> e dePn{n). Hence we have shown that <> e dePn(n) + Nn.

Before examining case (ii) it is convenient to pause to note that formula (a) is now
evident. For suppose that ty e P},(fi) and that t|> is an extreme point of (<|> + Â n) D Pl

n(fi)-
Then, by Proposition 2.1, i|) is an extreme point of (<|> + Nn) D Pn{(i). By what we have
already proved concerning statement (b) (note that we are now automatically in case (i))
we have i|> e dePn(n). Since \|> e Px

n(n) this shows that t|> e deP],{pL) (via Proposition 2.1).
Hence <> e deP

l
n{(x) + Nn, and the proof of formula (a) is complete.

We return to our consideration of formula (b). It remains for us to deal with case (ii).
n

We assume therefore that for some T e <F we have T c 5, n{T) > 0 and E %l>r<l on T.

As in the proof of Theorem 2.2 we choose 6 e (0, e] and / / e f such that ju(//)>0,

/ / e l a n d E Vr< l -<5 on //. Now choose 6eN(H) such that O<| |0 |U<6, and, for

1 < i < n, let

) , ± 0 if i = l,
if

Then 6+, 6 lie in (<j> + Nn) (1 Pn(n) and t|> = ^(6+ + 6"). Hence t|> is not extreme in
(<(> + A/«) D Pn{n), contrary to hypothesis. Arguing as before we conclude that t|) e
3ePn{fx), and hence that ty e dePn([i) + Nn. This disposes of case (ii) and completes the
proof of formula (b), and of the Lemma.

THEOREM 3.4. Suppose that the measure m is Liapounov. Then mn[deP
l
n{n)\ =

mn[P\{n)\ and mn[dtPn{p)\ = mn[Pn{p)\. Consequently mn[dcP\{p)\ and mn[dePn(n)] are
weakly compact convex subsets of X".
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For, by Lemma 3.3, we have

mn[Pl
n(n)] <= mn[dePl{v) + Nn] = mn[deP

l
n(fi)] c mn[Pl

n(fi)].

Hence mn[Pl
n(n)] = mn[deP

l
n(fi)]. The same argument, mutatis mutandis, applies to Pn((i).

The rest is clear, by Corollary 3.2.

COROLLARY 3.5. (= Theorem 1.1). Suppose that the measure m is Liapounov. Then

{(/n(i4,), m{A2), ..., m(An)):Ae^
and

{{m{Ax, m{A2), ..., m{An)):Ae 9n

are weakly compact convex subsets of X".

By the results of §2 this follows at once from Theorem 3.4.
4. Extension of Theorem 1.1 to infinite sequences I. We continue with the notation

of §3. We shall denote by ^(fi) the set of all infinite sequences

A. = { A X , A 2 , ... , A n , . . . )

such that (i) Ane SF for all n and (ii) the An are pairwise almost disjoint. Our object is to
show that if m: &-*• X is a Liapounov measure then

{(m(Ax), m ( A 2 ) , . . . , m ( A n ) , . . , ) : A

is a convex subset of X", compact with respect to an appropriate topology. (By X" we of
course mean the space of all infinite sequences (xn)nzX with xn e X for all n).

It would seem natural to introduce at the same time (by analogy with ^i(ju)) the set

and to prove a similar result about it. This we shall eventually do. However it turns out
that it is not convenient to treat $L(ju) and ^ ( M ) together, and we shall deal in this
section only with S'J^i). The method follows closely that for ^,(ju), and we shall
therefore be rather brief about it.

We shall denote by (Le°(/i))™ the space of all infinite sequences

<t> = ( 0 1 . 4>2> • • • ' <t>n, • • • )

of members of L°°(ju). We take this space to be endowed with the product weak*
topology. By P^(fi) we understand the set

It is easy to see (compare Dor [4]) that Poo(n) is a compact convex subset of (
(For the reader who would prefer to see P^(n) realized as a weak*-compact convex subset
of a Banach space we shall indicate an alterntive treatment below).

https://doi.org/10.1017/S0017089500006856 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006856


LIAPOUNOV MEASURES 213

In the following theorem m plays no role and (Q, 3>, ft) can be an arbitrary
probability space.

THEOREM 4.1. Let <|> e deP«,(n). Then there exists an A = (An) in ^L(ju) such that

4> = ( W W - - - » U , , • • • ) a .e . O ) .
Conversely any (f> constructed in this manner is an extreme point of P»(M)-

This is proved by an obvious and easy modification of the demonstration of Theorem
2.2 and the details may safely be left to the reader.

For the rest of this section Q, SF, X, m, fi will be as in §3. We shall always suppose
that X°° carries the product weak topology (i.e. the product topology in which each factor
space X is given the topology o(X, X*)).

We define a map ma,:(L
c"(f*))°°-^Xa> by

"»-(<(>) = (m(<Pi)> m(<f>2), •• • , m{<l>n). . .).

PROPOSITION 4.2. The map moo:(L°=(^))=°—^X" is continuous with respect to the
product weak* topology in (L (fi))°° and the product weak topology in X°°.

To see this it is enough to show that for each r > l and each x*eX* the map
ty^>x* °m((pr) is continuous with respect to the product weak* topology in (L°°(ju))™.
Since, as we have seen in §3,

where fx. e Ll(n), this is clear.

COROLLARY 4.3. m^P^in)] is a compact convex subset of X™.

We can now conclude the business of the present section very rapidly by essentially
the same argument as in §3. The sequence of ideas is as follows. Let

= {« 6

LEMMA 4.4. If the measure m is Liapounov then Pa{ii) £ 3ePoo(ju) + Nm.

THEOREM 4.5. Suppose that the measure m is Liapounov. Then m«,[3ePoo(/u)] =
]. Consequently m0O[3eP«,(ju)] is a compact convex subset of X°°.

COROLLARY 4.6. Suppose that the measure m is Liapounov. Then the set of vectors

{(m{A,), m(A2), ..., m(An),.. .):Ae9L(ji)}

is a compact convex subset of X".

Since the proofs of these results resemble closely those of the corresponding
statements in §3, we omit them.
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We turn next to the problem of establishing similar results for ^ i (^ ) and

): X <t>X<o) = 1 a .e . (/Plfji) = {<» e

Here it no longer suffices to make a simple adaptation of the argument of §3. The reason
for this is that Pi(jU) is not a compact subset of (L°°(/i))°°. For if we write, for all m, n ^ 0,
and all co e Q, tfC(ft>) = dmn then

<|>m e Pl(ft) and <t>m—>-0$ Pl>{ii)

as m—»». This means that new methods are required. What we shall do is to realize
Pi(iu) as a weak* closed subset of the unit ball in a Banach dual space. By Alaoglu's
theorem Pi(ju) will then be weak* compact, and by using the weak* topology we shall
arrive at the appropriate analogues of the theorems of the present section.

5. A duality theorem. The purpose of this section is to realize PL(n) as a weak*
compact convex subset of a Banach dual space. It will be convenient however to make a
small change of notation, as follows. The space (L"(fi))" will now be the set of all infinite
sequences (0n)naO of members of L°°([i). By Pi(/i) we shall accordingly now mean the set

e (L°°(/i)+)°°: 2 0r(
<y) = 1 a-e- 0

We shall also assume that the definition of P^(fi) is modified in the same way.

Now let V be the Banach space c of all real sequences | = (§n)n^i such that the finite

limit ! 0 : = lim £„ exists, with the norm given by ||^|| = sup |fn|. The Banach dual of c is

the space Z1 of all absolutely summable real sequences t| = (r]n)n^0 endowed with the
oo

norm \\i\\\ = £ |»jn|, the duality being implemented by the pairing
n = 0

(n , S> = 2 !#.»?„.
n = 0

This is a duality of ordered Banach spaces. By Ll(n) we shall understand the following
space. Its members are the infinite sequences f = (fn)n^i with (i) /„ e Ll(n) for all n, (ii)
(/„((!)))„>] e c for almost all u> e Q, and (iii)

:= I sup \fn((o)\n(dco)< oo.
Jo nal

It is easy to see that (with the obvious choice for positive cone) Ll(fi) is an ordered
Banach space.

We have pointed out that V*, the dual of V, is /'. The space Ly.(n) is accordingly
defined as follows. Its members are the infinite sequences <|> = (<j>n)na0 of members of
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L°°(n) such that (i) (<f>n((o))n^0 e I1 for almost all (o e Q, and (ii)
oo

: = ess sup X I0n(«)l < °°-
Q

It is easy to show that Lv«(ju) is an ordered Banach space.
We define a pairing of Ly([i) and Ly.(fi) as follows:

THEOREM 5.1. 77ie ordered Banach space Ly(n) fr&s as dua/ f/ie ordered Banach space
Ly'(fi), the duality being implemented by the above pairing. Moreover Pi(/i) is a weak*
compact convex subset of the latter space.

The duality statement in this theorem is a special case of a theorem about
Bochner-integrable functions (see Theorem 1 in Ch. IV of [3]). However, it is much
simpler to prove it directly, and this we now do.

Choose <j) e Ly.(fi) and write

We shall show that 4> e (Lv(n))* and that 11<X>11 = ||0||. First we have, for all f 6 Lyin),

= I f ( £ Mn) dV < f £ |/n0B| rfM

f
m >0

which shows that ||^>|| £ ||<HI- If <t* is z e r o w e clearly have equality here. To prove equality
when <(> is non-zero it suffices to show it for the case ||<j»|| = 1. So suppose this, and let
e > 0. Then we can find g e Ll(/i) with ||g||, = 1, g > 0 and

\gl\(t>n\d(i>l-E.

Now define / ( n ) e Ly(n) for each n ^ 1 as follows:

m Ig sgn 0o (" < "*).

Then ||/(n)|| < 1 and

f A

•> m=0
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Letting n -»oo and using the dominated convergence theorem we deduce that

«=o

Since £ was arbitrary and ||<j)|| = 1 we deduce that H^H^H^H- Hence we have shown that
||*|| = ||*|| for all ^eLi-O*).

Next, we must show that all continuous linear functionals on Ll
v{(i) are of the type

above. So let *P: L{^ju)-> U be a continuous linear functional and let ir: L
1^)—* L\,(fi) be

denned by

(irg)s = 5 r a g (g e L \ n ) ; r, s = 1 , 2 , 3 , . . . ) .

Similarly let ;:L1(/i)->Lv(/i) be defined by

Let us write 1Pr =
 1P»jr, W^ = W = / . Then »Pr, V^ belong to (L\n))* and hence there

exist ipr, i/»» in L"(/i) such that

Now take an arbitrary f in L {,(//). Then we can write

where the series on the right converges in norm. Hence we have

00

We now want to show that E IVrl belongs to L°°(^). To see this, let g e L'(^) with
lr= l

i < 1 and g >0, and let ^ e LKjit) be defined, for n = 1, 2, . . . , by

,(„) = fg sgn
m lO

Then f<"> e L U M ) > l l ^ l l ^ l . and
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On the other hand

By the monotone convergence theorem we therefore deduce that g £ \ipr\ e L\n) and
r= l

that

•> r=\

whenever g satisfies the conditions stipulated above. It follows that £ \\pr\ belongs to

L°°(n) with
CO

ess sup 2 IVr | s | | 1 ' | | .

(In the foregoing discussion £ means, as is customary, £ , and not £ .)
Now let tyo = ipn— E VV a nd let

V = (Vo, Vl, 1>2, •••)•

Then t|> e Lv-(^) and V(f) = (t|>, f) for all f e L\{n).
Next we consider the question of order. Suppose that <|> e Ly.(n). We must show that

<t>>0 if and only if (<>, f) > 0 for all f satisfying 0<f e Ll
v(n). The necessity is clear. To

prove the sufficiency we consider a number of special cases. Suppose then that (<J>, f) 3= 0
whenever 0 ^ f e L\,{n). If all coordinates of f are zero save the rth we get

This shows that (pr^0 for all r > l . It remains to prove that 0O — 0. To see this suppose
that 0 < h e L'(/i) and let, for all m, n > 1,

Then h(m) e L^/i) and h > 0, so that

Letting m->» we deduce, by the dominated convergence theorem, that
Hence 0O — 0; and so we have proved that ty^O, as desired. This completes the
discussion of duality, and it remains to deal with the statement about Pl(ju).
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Since Pi{n) is a subset of the unit ball in Ly.(fi) it suffices for the weak*-
compactness assertion to prove that Pl(n) is a weak* closed subset of the unit ball. Now
PJ^H) is the intersection of the (weak* closed) positive cone in Ly.(n) with the unit ball,
and hence is weak* compact. But if <|> e P*,(fi) then <|> e Pl(n) if and only if

So if we write, for each g e

then
Pl([i) = P^)

Since each Hg is weak* closed this makes it clear that PL(n) is weak* compact. This
completes the proof of Theorem 5.1.

We record for future use a characterization of 9eP
1(fi).

THEOREM 5.2. Let <j> e d^Plin). Then there exists an A e ^I(AO such that

<t> = ( W U , > • • • , U , > • • • ) a . e . ( j u ) .

Conversely, any <{> constructed in this manner is an extreme point of Pt(n).

This is proved by an easy modification of the argument for Theorem 2.2.

6. Extension of Theorem 1.1 to infinite sequences II. We take Q, &, X, m, n to be
as in §2. We shall also use the notation and results of §5. By us{X) we shall understand
the space of all unconditionally summable sequences x = {xn)ns;0 in X. This is a real vector
space and we topologize it as follows. For each x* eX* and each | e c construct the map

oo

x ^ S £.•**(*„)•
n=0

We define T to be the topology in us(X) that makes all these maps continuous. If
<(> e L!/•(/*) then it is easy to see, by the dominated convergence theorem for integrals
with respect to a vector measure, that

/n .(^) := (m(0o), m{4>i), • • •)

belongs to us(X). (Note that the symbol m«, is now used in a sense consistent with the
notational changes made at the start of §5).

THEOREM 6.1. The map m<»:L%.{n)^>us{X) is continuous with respect to the
topologies o(Ly.(fi), Lv(fi) and r.

To see this we have merely to check that if %ec and x* eX* then the map

n=0
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from L%.{n) to U is continuous with respect to CT(L£.(/Z), L\{n)). However, this fact is
evident from the equation

i %nx* o m(4>n) = £ Un<Pnd(x* ° m ) = \ 2 L<t>Jx- dp,
n=0 n=0J J n=0

and the fact that (%nfX')n*i belongs to L\{fi).
Recalling Theorem 5.1 we now have the following result.

COROLLARY 6.2. m^Piifi)] is a t-compact subset of us(X).

We can now complete the business of the present section very rapidly by means of
the argument, mutatis mutandis, used in §3. We now use the symbol Nn in the following
sense:

As in §4 we now have the following sequence of results.

LEMMA 6.3. If the measure m is Liapounov then

THEOREM 6.4. Suppose that the measure m is Liapounov. Then m«[dePl(fi)]
mx[Pl,(fi)]. Consequently m00[3e/

)
00(|u)] is a x-compact convex subset of us(X).

COROLLARY 6.5. Suppose that the measure m is Liapounov. Then the set of vectors

is a x-compact subset of us(X).

7. Concluding remarks. In §5 and §6 we have shown how to prove certain theorems
in the Dvoretsky-Wald-Wolfowitz spirit via a particular realization of /*«,(/!) and Pi(n)
as weak* compact subsets of a Banach dual space. It is worth pointing out that this
approach could have been adopted throughout the present paper.

For example in §2 we could have proceeded as follows. Let V denote the space I",
V* its dual ll Then LKfJ.) will be the space of all n-tuples f=(/i , f2, • • • ,/„) with
fr e L\yi) for all r and

= max |/r| dfi,
J l<r<n

while Ly.(fi) now consists of all /i-tuples <|> = (<t>u <p2, • • • , <pn) with <pr e L°°(JU) for all r
and

= ess sup 2
r=l

Then LXv{fi) and L^.((i) are ordered Banach spaces, the second being the dual of the
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first. Moreover Pn(ii) and Pl{n) are weak*-compact convex subsets of L%.(n). And §3
can be rewritten from this point of view (the only change required being to work with
Ly.(n) with its weak* topology throughout and to rewrite Proposition 3.1 and its proof
accordingly). All this should be immediately evident for the reader who has worked
through §§5 and 6. This approach is more complicated than that actually adopted in §§2
and 3, but also somewhat more natural, since Pn{n) is then precisely the positive part of
the unit ball in Lv*{n).

§4 can also be rewritten in the same spirit. Here we must take V = c and V* = f° and
follow the reasoning of §§5 and 6 fairly closely.

In view of what has been said the details of the above modifications may be left as an
exercise.
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