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ABSTRACT. Climate models suggest surface warming in the Arctic will be rapid and
pronounced, implying substantial changes in snowmelt onset are likely. This research
therefore examines spatial and temporal variability in passive-microwave derived snow-
melt-onset dates over Arctic sea ice. The objectives are to understand better the regional
characteristics of snowmelt and to document whether the snowmelt-onset record shows
signs of climate change. Snowmelt-onset dates are derived with Scanning Multichannel
Microwave Radiometer and Special Sensor Microwave/Imager brightness-temperature
data, and they are subsequently stratified into 13 regions to analyze spatial and temporal
variability. Results illustrate significant spatial variability in snowmelt onset, with the
median annual snowmelt-onset date in one region of the Arctic typically being statisti-
cally different from most other regions. The examination of temporal variability also
shows large interannual differences in the median snowmelt-onset date in most regions.
Additionally, trends towards earlier snowmelt onset are documented in the West Central

Arctic, Lincoln Sea, Beaufort Sea and Canadian Arctic Archipelago regions.

INTRODUCTION

General circulation models suggest climate warming will be
rapid and pronounced in the Arctic, leading to large reduc-
tions in sea ice and other components of the Arctic (Maxwell
and others, 1998). Consistent with the projected warming,
passive-microwave derived sea-ice concentrations in the
Arctic have decreased in extent (Gloersen and Campbell,
199]; Johannessen and others, 1995; Bjorgo and others, 1997,
Cavalieri and others, 1997), while the passive-microwave
derived summer melt season has increased (Parkinson, 1992;
Smith, 1998b). Nonetheless, it is possible these reductions
could be related to naturally occurring local variations in
atmospheric or oceanic circulation (Walsh, 1991). A regional
assessment of climatically influenced Arctic components
would therefore be a valuable addition to understanding
spatial and temporal trends in the Arctic. The objectives of
this paper are therefore to examine the spatial and temporal
variability in passive-microwave-derived snowmelt-onset
dates over Arctic sea ice from 1979 to 1998. For the purposes
of this study, “snowmelt onset” is defined as the point in time
when microwave brightness temperatures first react to the
appearance of liquid water in the snowpack. It coincides
with the “early melt” season discussed by Livingstone and
others (1987), and it is important to note that melt/freeze
cycles may occur after the snowmelt-onset date. An accom-
panying paper (Drobot and Anderson, 2001) examines how
variability in the atmosphere explains some of the spatial
and temporal variability observed in this paper.

COMPUTATION OF REGIONAL SNOWMELT-
ONSET DATES

Snowmelt-onset dates are derived with 25 km? daily-aver-
aged brightness-temperature data from Scanning Multi-
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channel Microwave Radiometer (SMMR) and Special
Sensor Microwave/Imager (SSM/I) radiometers, for the
years 1979-98. Since brightness-temperature data originated
from four different radiometers, all data were converted to
be consistent with the F8 SSM/I data using regression
analysis obtained during overlap periods. Brightness tem-
peratures at 18 and 37 GHz horizontal polarizations from
the SMMR were converted to F8 data using slope and inter-
cept values provided by Jezek and others (1991), while bright-
ness temperatures at 19 and 37 GHz from the F11 SSM/I were
converted to I'8 with values from Abdalati and others (1995).
Brightness temperatures from the F13 SSM/I were first con-
verted to F11 using values from Stroeve and others (1998),
and then converted from F11 to F8 with values from Abdalati
and others (1995). The conversion of brightness temperatures
to a consistent data record is especially important in deter-
mining temporal variability in the snowmelt-onset dates. If
the data are not consistent, it is possible that temporal trends
in the snowmelt-onset dates could be attributed to instru-
ment differences, rather than real-world conditions.
Variations in the snowpack alter the emissivity of the
emitting snow-covered sea-ice surface during snowmelt
onset, so that the difference between 18 GHz and 37 GHz
horizontal polarizations decreases to near zero or below zero
(Kiinzi and others, 1982). The Advanced Horizontal Range
algorithm (AHRA; Drobot, 2000), an updated version of
the Horizontal Range algorithm developed by Anderson
(1997), exploits changes in the difference between 18 GHz
(19GHz on SSM/I) and 37 GHz brightness temperatures
over a 20day period to derive snowmelt-onset dates over
Arctic sea ice from 1979 to 1998. The AHRA tracks the 18 or
19 GHz horizontal-polarization brightness temperature
minus the 37 GHz horizontal-polarization brightness tem-
perature for each data point on each day. If the difference is
>4 K at a given point, winter conditions are assumed to
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Fig. 1. Regional study sites: 1. East Central Arctic; 2. Mid
Central Arctic; 3. West Central Arctic; 4. Lincoln Sea; 5.
Beaufort Sea; 6. Canadian Arctic Archipelago; 7. Hudson
Bay; 8. Baffin Bay; 9. Sea of Okhotsk; 10. Barents Sea; 11.
Kara Sea; 12. Laptev Sea; 13. East Siberian Sea.

exist, and the algorithm continues on to the next day for that
point. Conversely, if the difference is ~10 K or less (i.e. the
37 GHz horizontal-polarization brightness temperature is
10 K or more greater than the 18/19 GHz horizontal-polari-
zation brightness temperature), then liquid water is assumed
to be present in the snowpack, and the AHRA classifies that
day as the snowmelt-onset date. In the intermediate phase,
when the difference is less than 4 K and greater than —10 K,
the AHRA determines if snowmelt onset occurred based
upon a 20day time-series analysis of brightness tempera-
tures. A difference is computed by subtracting the minimum
TR (19H) - T (37H) from the maximum T (19H) —Tg (37H)
for the 10 days prior to the potential melt-onset date, as well as
for the period from the potential melt-onset date to 9days
later. The former number is subtracted from the latter
number, and if this difference is >7.5 K the algorithm assigns
melt to that particular pixel. A large difference indicates the
pattern in the time series of T (19H) —Tg (37H) has changed,
meaning much larger variability in the Tg(19H) —T5(37H)
range is noticed after the potential melt-onset date. The
appearance of liquid water in the snowpack is a likely
mechanism to cause this type of change. If the difference
remains <7.5 K, then it is unlikely that liquid water is present
in the snowpack, and the algorithm moves on to the next day.
Additional details on AHRA development and verification
are provided in Drobot (2000). Although the AHRA was
developed with 30 case sites spread over Arctic sea ice, it can-
not be guaranteed that the AHRA provides an accurate esti-
mate of snowmelt onset at each point in every year.

In order to examine the spatial and temporal variability in
snowmelt onset, the snowmelt-onset dates are averaged into 13
regions (Fig. 1), roughly based upon geography. The four
regions north of 80° N closely resemble regions developed by
Smith (1998a), but the regions in this study are shifted 45° from
Smith (1998a) in order to keep snowmelt-onset dates in the
Lincoln Sea in one region.

Spatial variations in the regional snowmelt-onset dates
are examined with quartile plots, and Pearson and simple
matching binary correlations on median annual snowmelt-
onset dates. In order to utilize simple matching binary cor-
relations for spatial analysis, median annual regional snow-
melt-onset dates are converted to binary data, with a value
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Fig. 2. Spatial variability in regional snowmelt-onset dates as
tllustrated by quartile plots.

of 1 indicating the melt-onset date is one of the ten earliest
median melt-onset dates, and a value of 0 indicating the
melt date is one of the ten latest median melt-onset dates.
The simple matching binary-similarity matrix produces a
percentage of the time where the melt anomalies of both
regions agree (e.g. an earlier median snowmelt-onset date
in one region and an earlier median snowmelt-onset date in
another). The higher the value for the simple matching
binary statistic, the better the correlation between the two
regions. The advantage of the simple matching binary-cor-
relation technique is that comparisons can be made between
the regions to highlight whether the timing of earlier (later)
snowmelt in one region corresponds with the timing of
ecarlier (later) snowmelt in another region.

Temporal variations in the snowmelt-onset dates are ana-
lyzed with regression analysis on the median annual snowmelt
dates. Trends in the median, rather than mean, annual snow-
melt-onset dates are examined in this study because (a) spatial
variability is examined with the median, (b) the median is a
more robust measure of central tendency than the mean, and
(c) the median is more resistant to outliers (Wilks, 1995).

SPATTALVARIABILITY IN THE REGIONAL SNOW-
MELT DATES

Timing of the median annual snowmelt-onset dates roughly
follows latitude, with the most northerly regions generally
reaching melt onset later than southerly regions (Fig. 2). For
instance, the latest median annual melt-onset date is day 170
in the West Central Arctic, closely followed by day 168 in the
Lincoln Sea and day 167 in the Mid Central Arctic. How-
ever, the fourth-latest median annual snowmelt-onset date
1s day 165 in the East Siberian Sea, and not the East Central
Arctic, even though the East Central Arctic is at a much
higher latitude than the East Siberian Sea. The median
annual melt-onset date in the East Central Arctic (day 157)
is only the seventh-latest date, behind the aforementioned
regions as well as the Beaufort Sea (day 163) and the
Canadian Arctic Archipelago (day 160). Presumably, land-/
ice-locked and ice-free areas upwind of a particular region
create different climate regimes which subsequently hinder
or enhance early arrival of snowmelt.

A more dynamic climate associated with the presence of
ice-free ocean could also account for the larger variability
in snowmelt-onset dates, expressed as the interquartile
range (gray shaded areas in Fig. 2), observed in areas such
as the Barents Sea. In contrast, the interquartile range in
the Beaufort Sea and the Canadian Arctic Archipelago is
much smaller, possibly because the land-/ice-locked areas
lead to a more stable climate regime.

75


https://doi.org/10.3189/172756401781818284

Anderson and Drobot: Variability in snowmelt onset over Arctic sea ice

Table 1. Pearson correlations between regions. Significant
relationships at oo = 0.05 indicated by bold text

Region 1 2 3 4 5 6 7 8 9 10 11 12
2 016
3 024 028
4 022 024 0.65
5 —041-012 026 041
6 003 034 0.57 048 0.34
7 031 046 028 0.04-039 0.07
8 011 000 031 025 003 046 007
9 -006-012 0.02-0.11 -0.03 0.06-0.31 —0.40
10 048 0.57 03 010 004 031-003 005 0.08
11 037 044 049 0.06-005 0.04 023-0.07 020 0.58
12022 070 042 023-014 030 049 009 007 0.50 044
13 -022 043 0.56 031 029 041 020 001 022 025 0.55 0.46

Pearson correlation analysis implies that median regional
annual melt-onset dates are largely independent of one
another (Table 1), as only 17% (13 of 78) of the correlations
are statistically significant. While many of the significant cor-
relations are found between neighboring regions, the lack of
many strong correlations between non-adjacent regions sug-
gests that factors influencing snowmelt onset, such as atmos-
pheric conditions, are regional in scale. Accordingly, Drobot
and Anderson (2001) explore relationships between atmos-

Table 2. Simple maiching binary-similarity matrix correlations

Region 1 2 3 4 5 6 7 8 9 10 11 12
2 050
3 065 055
4 070 050 0.65
5 025 045 060 045
6 055 065 070 065 070
7 065 055 060 0.55 030 0.50
8 055 055 070 055 060 070 0.60
9 065 035 040 045 040 040 030 040
10 065 065 060 045 060 060 030 050 0.60
11 065 065 050 045 060 060 030 050 070 0.80
12055 065 070 055 040 060 060 070 0.50 0.50 0.60
13025 045 060 055 070 060 030 050 0.50 0.50 0.50 0.60

pheric conditions and regional snowmelt-onset dates. The
abundance of non-significant correlations also implies that
many of the regions are independent of one another, and
therefore an examination of temporal trends in snowmelt-on-
set dates should be performed on a regional basis.
Correlation analysis based on the simple matching binary
statistic also indicates that there are regional differences in
snowmelt onset (Table 2). For instance, earlier (later) median
snowmelt-onset dates in the East Central Arctic correspond
with earlier (later) median snowmelt-onset dates in the

= %l + I+%+?H—¢$J“T+?+*T¥#‘*?:
100 — =
= East *-*-‘"‘"‘“'i“'“": — T il kT T T T T T M S B T Y A ]
l rT 11T T rrrrrTTrrTrrTTrrrnra
?33'**?%%% MTH A gL SR T i
- u'\e's‘l uzn"ml 1m:m: T L""ﬂ‘-"" an _

Fi—r

b= Eml.\:u" &u

Zetine w-?#r**?h

1
I I T I T
200~

150
100

Julan day
T

B

Ehm..luﬂ.ﬁr..ul..ﬁrl.hpelupu
11
*‘H‘*%?
[ T T N R N |

150
1004,

l

bea00F

B EE "E"'l[E 5&3
I

il o
1500
100k

50

}H*%ﬁ

I T I |
rrrr

+%

Ltpl.l.'\' S-EH

'.tll:l-—
150-
100

0= East Sibsrian Sea
I |

=

1880 19E-\J 1'390

Wear

1580 1965

Yesar

Fig. 3. Temporal variability in median annual melt-onset dates for each region. Gray lines indicate linear regression slopes. Slope

values and significance indicated in Table 5.
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Beaufort and East Siberian Seas in only 5 of the 20 years
(25% of the time). Additionally, earlier snowmelt-onset
dates in Hudson Bay are associated with earlier snowmelt-
onset dates in the Beaufort, Barents, Kara and Laptev Seas
and the Sea of Okhotsk only 30% of the time. An examin-
ation of these regions (Fig. 1) indicates they are generally
located on opposite sides of the Northern Hemisphere, sug-
gesting a hemispheric dichotomy in snowmelt-onset dates is
present. Temporal variations in snowmelt dates should
therefore be monitored on regional scales, since a positive
trend in the East Central Arctic and a negative trend in the
Beaufort Sea, for example, could average into no trend
when analyzed at the hemispheric scale.

TEMPORAL VARIABILITY IN THE REGIONAL
SNOWMELT DATES

Temporal variations in regional snowmelt-onset dates are
illustrated with box plots constructed for each region (Fig. 3).
Interannual variability in snowmelt-onset dates is prominent
in several regions, in terms of both the interquartile range
and the median annual melt-onset date. In regions such as
the East Central Arctic, Baffin Bay and the Barents Sea, large
fluctuations are noticeable in the interquartile range, while in
regions such as the Mid Central Arctic, West Central Arctic
and the Beaufort Sea the interquartile range is consistently
small. Additionally, the median melt-onset date in some
regions, such as the East Central Arctic, is fairly consistent
from year to year, while in other regions, such as the East
Siberian Sea, the median melt-onset date varies considerably
from year to year. Drobot and Anderson (2001) discuss how
variations in atmospheric conditions may be responsible for
some of the large fluctuations noted in these regions.

Temporal trends in regional snowmelt-onset dates are
shown with regression analysis. Regression slopes for each
region (Table 3) indicate trends towards earlier snowmelt on-
set are present (o =0.05) in the West Central Arctic, Lincoln
Sea, Beaufort Sea and the Canadian Arctic Archipelago.
Considering that these regions are located adjacent to one
another (Fig. 1), it is clear that there is a statistical trend
towards earlier snowmelt across much of the western Arctic.
These results contrast with the findings of Smith (1998a), who
noted no significant trends in his regional analysis of snow-
melt onset. There are, however, several factors that might
explain the differences between the studies. One possibility
1s the difference in spatial coverage. In two of the regions
where statistically significant trends are noted in this study,
Smith (1998a) has limited coverage (Beaufort Sea) or no
coverage (Canadian Arctic Archipelago), because Smith
(1998a) does not analyze first-year ice regions. Additionally,
the regions above 80° N in this study are offset 45° from the
Smith (1998a) study. As previously mentioned, this was done
to ensure snowmelt dates from the Lincoln Sea are grouped
together. It is feasible that the differences in spatial coverage
could lead to contrasting results.

Another possibility is the differences in the calculation
of snowmelt-onset dates. Although a comparison of snow-
melt-onset dates between the two studies shows good agree-
ment over selected case sites in 1992 (Table 4), Smith (1998a)
did not create a consistent brightness-temperature record
between the SMMR and SSM/I radiometers. Therefore,
Smith (1998a) may not show statistically significant trends
because of sensor bias.
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Table 3. Regression slopes by region

Region Slope Poalue
East Central Arctic 0.07 0.82
Mid Central Arctic 0.03 0.92
West Central Arctic -0.89 0.03
Lincoln Sea -0.44 0.05
Beaufort Sea -0.51 0.05
Canadian Arctic Archipelago 0.67 0.04
Hudson Bay 0.87 0.15
Baffin Bay -0.82 0.18
Sea of Okhotsk —0.29 0.21
Barents Sea —0.32 0.17
Kara Sea -0.29 0.21
Laptev Sea -0.05 0.84
East Siberian Sea 0.76 0.07

A third possibility is the difference in temporal coverage
between the studies, since the present study examined snow-
melt dates from 1979 to 1998, while the Smith (1998a) study
examined snowmelt dates from 1979 to 1996. However, regres-
sion slopes run for each of the regions in this study from 1979
to 1996 still indicate significant trends towards earlier snow-
melt onset (o =0.05) in the West Central Arctic, Beaufort Sea
and the Canadian Arctic Archipelago. It therefore seems
unlikely that the temporal differences between the studies
could account for the contrasting results.

Although these findings disagree with results from
Smith (1998a), they do agree with a study by Parkinson
(1992) concerned with variability in the length of the sea-
ice season. Using passive-microwave data, Parkinson (1992)
noted a shortening of the sea-ice season in the Kara and
Barents Seas, the Sea of Okhotsk and part of the Arctic
Ocean. While quantitative studies have not examined the
link between snowmelt onset and the length of the sea-ice
season, it is reasonable to hypothesize earlier snowmelt on-
set could lead to greater energy absorption into the sea-ice

Table 4. Comparison of AHRA snowmelt-onset dates with
Smath (1998a) snowmelt-onset dates in 1992

Lat. Long. Smith AHRA
81.6 129.5 171 172
8L.5 142.0 170 172
8L.1 —153.9 168 169
80.4 —-164.3 169 171
79.7 -130.5 170 174
79.7 -140.8 167 171
794 —-150.7 167 172
787 159.7 166 172
77.8 -1676 163 164
776 -1484 165 167
771 -156.3 164 173
76.8 1744 164 167
76.1 —-1317 167 168
76.1 -139.3 166 167
75.8 146.7 164 163
75.6 -180.0 164 164
7.3 1537 164 166
74.7 —-160.2 157 162
74.3 —132.1 165 162
74.3 —-138.8 164 162
74.0 145.3 163 162
73.6 151.7 163 162
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volume, leading to earlier ablation, and shortening the sea-
ice season. It is hoped the results presented here will stimu-
late future research into snowmelt—sea-ice interactions.

SUMMARY

Utilizing brightness-temperature data from SMMR and
SSM/I radiometers, snowmelt-onset dates were computed
over Arctic sea-ice surfaces, and subsequently stratified in 13
regions. An examination of the spatial variability in snow-
melt onset suggested the timing of snowmelt onset in a given
region within a given year is largely independent of the tim-
ing of snowmelt onset in most other regions. A reasonable
hypothesis is that the spatial variations in snowmelt onset
are influenced by local atmospheric conditions.

An examination of temporal variability in regional
snowmelt onset further demonstrated large interannual
variations in median snowmelt-onset dates and interquar-
tile ranges for most of the regions. Variations in atmospheric
conditions are again a likely explanation for the observed
variability. In addition, regression analysis illustrated sig-
nificant trends towards earlier snowmelt onset in the West
Central Arctic, Lincoln Sea, Beaufort Sea and Canadian
Arctic Archipelago regions. These findings contrast with
the results of an earlier study by Smith (1998a), but are in
rough agreement with decreases in the sea-ice season noted
by Parkinson (1992). While the trends in snowmelt-onset
dates support climate-model projections of surface tempera-
ture warming in the Arctic, a longer temporal record would
be valuable to ascertain whether the observed trends are
indeed an indication of a changing climate, or whether they
are simply part of a long-term oscillation.
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