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Approximation of a Function and its
Derivatives by Entire Functions

Paul M. Gauthier and Julie Kienzle

Abstract. A simple proof is given for the fact that for m a non-negative integer, a function f ∈

C(m)(R), and an arbitrary positive continuous function є, there is an entire function g such that
∣g(i)(x) − f (i)(x)∣ < є(x), for all x ∈ R and for each i = 0, 1 . . . ,m. We also consider the situation
where R is replaced by an open interval.

1 Introduction

For an open interval I = (a, b),−∞ ≤ a < b ≤ +∞, and m = 0, 1, . . . , let us denote
by C(m)(I) the space of functions f ∶ I → C whose derivatives f (0) , f (1) , . . . , f (m)

exist and are continuous on I. For a closed interval I, let C(m)(I) be the space of
functions f ∈ C(m)(I) such that f (0) , f (1) , . . . , f (m) extend continuously to I. By
abuse of notation, we continue to denote these extensions by f ( j), respectively. _e
following generalization of theWeierstrass approximation theorem is well known.

_eorem 1.1 For −∞ < a < b < +∞ and m a non-negative integer, let

f ∈ C(m)([a, b]) and є > 0.

_en there is a polynomial p such that ∣p(i)(x) − f (i)(x)∣ < є for all x ∈ [a, b] and
i = 0, 1, . . . ,m.

To prove this theorem,wemerely approximate f (m) by a polynomial and integrate
m times.
Another extension of theWeierstrass theorem, not as well known as it should be,

is the following theorem of Carleman [1], in which a bounded interval is replaced by
the entire real line. Denote by C+(X) the positive continuous functions on a set X .

_eorem 1.2 (Carleman) Let f ∈ C(R) and є ∈ C+(R). _en there exixts an entire
function g such that ∣ f (x) − g(x)∣ < є(x), x ∈ R.

Note that f can be approximatedmuch better than uniformly, since є(x) may de-
crease to zero with arbitrary speed, as x → ∞. Of course, since every continuous
function on a bounded closed interval extends continuously to R and since entire
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functions are represented by their Maclaurin series, theWeierstrass theorem is con-
tained in the Carleman theorem. _ere are many proofs of theWeierstrass theorem
in various textbooks on approximation, but the original proof ofWeierstrass actually
used a preliminary version of theCarleman theorem. _at is,Weierstrass began by ap-
proximating a continuous function on a bounded closed interval by entire functions
and then approximating the entire function by partial sums of its Maclaurin series.

Let I = (a, b) be an interval, −∞ ≤ a ≤ b ≤ +∞. Denote by Ic = R/I the comple-
ment of I inR. For an open subsetU ⊂ C,we denote byH(U) the family of functions
holomorphic on U .

_eorem 1.3 Letm be anon-negative integer, I = (a, b), f ∈ C(m)(I), and є ∈ C+(I).
_en, there exists a function g ∈ H(C/Ic) such that ∣ f (i)(x) − g(i)(x)∣ < є(x), x ∈ I,
i = 0, 1, . . . ,m.

In particular, we have the following generalization of_eorem 1.1 due to Hoischen
[6, Satz 3].

Corollary 1.4 Let m be a non-negative integer, f ∈ C(m)(R), and є ∈ C+(R).
_en there exists an entire function g such that ∣ f (i)(x) − g(i)(x)∣ < є(x), x ∈ R,
i = 0, 1, . . . ,m.

_e results of Carleman and Hoischen have been extended in various directions.
For example, Carleman’s theorem was extended by Scheinberg to approximation by
entire functions of several complex variables, and Frih and Gauthier [3, Corollary]
showed the corresponding extension of the theoremofHoischen on the simultaneous
approximation of derivatives. In [3, 9] the functions to be approximated are deûned
on the real part RN of CN = RN + iRN and are approximated by functions holomor-
phic in all of CN . Very recently, Johanis [7] considered the more general problem of
approximating a function f given on only a portion Ω of RN . Whitney’s famous the-
orem [10] allows one to approximate such functions f by functions analytic on Ω. Of
course, every function analytic on Ω naturally extends holomorphically to a neigh-
borhood of Ω in CN , but this neighborhood will depend on the analytic function.
_e beautiful result of Johanis shows that there is a domain Ω̃ ⊂ CN , depending only
on Ω and not on f such that f can be approximated by functions holomorphic on Ω̃.
When applied to our situation, where N = 1 and Ω is an interval I, the domain Ĩ is
smaller than the domain C ∖ Ic which we obtain in _eorem 1.3.
For a closed set E ⊂ C, let A(E) ≡ C(E)∩H(Eo). In the Carleman theorem, if we

replace the real line R by a a closed subset E ⊂ C, then the function f to be approx-
imated must be, not only continuous on E , but also holomorphic on the interior of
E . _at is, f must lie in A(E). A condition on sets E , necessary for the possibility of
such approximations, was introduced in [5], and in [8] this condition was shown to
be also suõcient.

_e techniques employed in previous papers are quite technical. _e aim of this
note is to show that _eorem 1.3, extending _eorem 1.1 to open intervals and є de-
creasing to zerowith arbitrary speed, can be proved in the sameway as the elementary
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proof of_eorem 1.1, that is, by approximating the derivative of highest order and in-
tegrating.

2 Preliminaries

A fundamental lemma, known as theWalsh Lemma, asserts that, for a compact set
K ⊂ C, if every function f ∈ A(K) can be uniformly approximated by rational func-
tions having no poles on K , then, not only are there rational functions that uniformly
approximate f , there are even rational functions that, in addition to approximating
f , also simultaneously interpolate f at ûnitely many given points of K . _is Walsh
Lemma has been extended to the context of functional analysis. For a topological
vector space X, we denote by X∗ the (continuous) dual. If X and Y are topological
vector spaces, where X is a subspace of Y , then of course Y∗ ⊂ X∗. _e following re-
sult on simultaneous approximation and interpolation is a generalization of theWalsh
Lemma due to Deutsch [2].

Lemma 2.1 Let X be a dense subspace of a normed vector space Y . Let y ∈ Y , є be a
positive number and L1 , . . . , Ln ∈ Y∗ . _en there exists x ∈ X such that ∥y− x∥ < є and
L i(y) = L i(x), i = 1, . . . , n.

A compact set K ⊂ C is said to be a set of polynomial approximation if for each
f ∈ A(K) and є > 0, there exists a polynomial p such that ∣ f − p∣ < є on K . _e cele-
brated theorem ofMergelyan (see [4]) states that a compact set is a set of polynomial
approximation if and only if its complement is connected. A particular case of the
Walsh lemma follows.

Lemma 2.2 Let K ⊂ C be a compact set of polynomial approximation. _en for all
ϕ ∈ A(K), L i ∈ A(K)∗, i = 1, . . . , n and for all є > 0, there exists a polynomial p such
that ∣ϕ − p∣ < є and L i(ϕ) = L i(ψ), i = 1, . . . , n.

For ϕ ∈ C([ j, j − 1]), j ∈ Z, set

T1
j(ϕ) = ∫

j

j−1
∫

x1

0
∫

x2

0
⋅ ⋅ ⋅∫

xm−1

0
ϕ(t)dtdxm−1 ⋅ ⋅ ⋅ dx1 ,

T2
j(ϕ) = ∫

j

j−1
∫

x1

0
∫

x2

0
⋅ ⋅ ⋅∫

xm−2

0
ϕ(t)dtdxm−2 ⋅ ⋅ ⋅ dx1 ,

⋮

Tm
j(ϕ) = ∫

j

j−1
ϕ(t)dt.

Lemma 2.3 For all f ∈ C(R) and for all є ∈ C+(R), there exists an entire func-
tion g such that g(0) = f (0), Ti

j(g) = Ti
j( f ) for i = 1, 2, . . . ,m and j ∈ Z, and

∣ f (t) − g(t)∣ < є(t), for all t ∈ R.

Proof First, we can see that Lemma 2.3 is true for a ûnite number of j, by applying
Lemma 2.2 to a closed interval E containing the intervals [ j − 1, j] in question.
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Let f ∈ C(R) and є ∈ C+(R). We can assume that є(t) = є(∣t∣) and є(∣t∣) is
decreasing as ∣t∣ grows. Let {єk} be a sequence of positivenumbers such that єk < є(k)
and∑∞

k=ℓ єk < є(t)/2 for ℓ ≥ ∣t∣, t ∈ R. We can choose єk = є(k)/2k+2. Indeed,
∞

∑
k=ℓ

єk =
∞

∑
k=ℓ

є(k)/2k+2 ≤ є(ℓ)
∞

∑
k=ℓ

1/2k+2 = є(ℓ)/2ℓ+1 ≤ є(t)/2.

Now, for each k ∈ N, set Ek = Dk−1⋃[−k,−(k − 1)]⋃[k − 1, k], where Dr is the disc
of center 0 and radius r.
By Lemma 2.2 and theWeierstrass approximation theorem, there exists a polyno-

mial g1 such that ∣ f − g1∣ < є1 on [−1, 1], f ( j) = g1( j), for j = −1, 0, 1 and

T j
i ( f ) = T j

i (g1), i = 1, . . . ,m, j = 0, 1.

Set

h2 =
⎧⎪⎪⎨⎪⎪⎩

g1 on D1

f on [−2, 2] / [−1, 1].
Since h2 ∈ A(E2), it follows from Lemma 2.2 and theMergelyan theorem that there
is a polynomial g2 such that ∣h2 − g2∣ < є2 on E2, h2( j) = g2( j) for j = −2,−1, . . . , 2
and such that

T j
i (h2) = T j

i (g2), i = 1, . . . ,m, j = −1, 0, . . . , 2.
_us, we have

T j
i ( f ) = T j

i (g2), i = 1, . . . ,m, j = −1, 0, . . . , 2,
f ( j) = g2( j) for j = −2,−1, . . . , 2,

and

∣ f − g2∣ <
⎧⎪⎪⎨⎪⎪⎩

є2 on [−2, 2] / [−1, 1]
є1 + є2 on [−1, 1].

Indeed,

∣ f − g2∣ ≤ ∣ f − h2∣ + ∣h2 − g2∣ =
⎧⎪⎪⎨⎪⎪⎩

0 + ∣h2 − g2∣ < є2 on [−2, 2] / [−1, 1]
∣ f − g1∣ + ∣h2 − g2∣ < є1 + є2 on [−1, 1].

We also have that ∣g2 − g1∣ < є2 on D1 . Indeed,

∣g2 − g1∣ ≤ ∣g2 − h2∣ + ∣h2 − g1∣ < є2 + 0 on D1 .

Setting go = g1 , we will show by induction that for k = 1, 2, . . . , there exist polyno-
mials gk such that

T j
i ( f ) = T j

i (gk), i = 1, . . . ,m, j = −(k − 1), . . . , k,(2.1)
f ( j) = gk( j) for j = −k, . . . , k,

∣ f − gk ∣ <

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

єk on [−k, k] / [−(k − 1), k − 1],
єk−1 + єk on [−(k − 1), k − 1] / [−(k − 2), k − 2],
⋮
є1 + є2 + ⋅ ⋅ ⋅ + єk on [−1, 1],
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and

∣gk − gk−1∣ < єk on Dk−1 .

As shown before,we already veriûed the cases k = 1 and 2. We suppose the validity
of the cases k = 1, . . . , n. Set

hn+1 =
⎧⎪⎪⎨⎪⎪⎩

gn on Dn ,
f on [−(n + 1), n + 1] / [−n, n].

_ere exists apolynomial gn+1 such that ∣hn+1−gn+1∣ < єn+1 on En+1, hn+1( j) = gn+1( j)
for j = −(n + 1), . . . , n + 1 and such that

T j
i (hn+1) = T j

i (gn+1), i = 1, . . . ,m, j = −n, . . . , n + 1.

_us, we have

T j
i ( f ) = T j

i (gn+1), i = 1, . . . ,m, j = −n, . . . , n + 1,
f ( j) = gn+1( j) for j = −(n + 1), . . . , n + 1.

and

∣ f − gn+1∣ <

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

єn+1 on [−(n + 1), n + 1] / [−n, n],
єn + єn+1 on [−n, n] / [−(n − 1), n − 1],
⋮
є1 + є2 + ⋅ ⋅ ⋅ + єn+1 on [−1, 1],

since

∣ f − gn+1∣ ≤ ∣ f − hn+1∣ + ∣hn+1 − gn+1∣ =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 + ∣hn+1 − gn+1∣ < єn+1 on [−(n + 1), n + 1] / [−n, n],
∣ f − gn ∣ + ∣hn+1 − gn+1∣ < єn + єn+1 on [−n, n] / [−(n − 1), n − 1],
⋮
∣ f − gn ∣ + ∣hn+1 − gn+1∣ < є1 + є2 + ⋅ ⋅ ⋅ + єn+1 on [−1, 1].

We also have that ∣gn+1 − gn ∣ < єn+1 on Dn , since

∣gn+1 − gn ∣ ≤ ∣gn+1 − hn+1∣ + ∣hn+1 − gn ∣ < єn+1 on Dn .

Let us show that the sequence {gk} converges uniformly on compacta. It is suõ-
cient to show that {gk}, is uniformlyCauchy on compact subsets. For each k,we have
that ∣gk − gk−1∣ < єk on Dk−1. Let K ⊂ C be an arbitrary compact set. For δ > 0, we
choose Nδ so large that K ⊂ DNδ and k > ℓ > Nδ implies ∑k

j=ℓ є j < δ. _en for such
k and ℓ,

∣gk − gℓ ∣ ≤
k−1

∑
j=ℓ

∣g j+1 − g j ∣ ≤
k−1

∑
j=ℓ

є j+1 < δ on K .

_us, the sequence gk converges uniformly on compacta. _e limit g is therefore an
entire function.
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Let us show that ∣ f − g∣ < є. Denote by [s] the integer part of s. Fix t ∈ R and
choose ℓ = [∣t∣] + 1. _en for all k ≥ ℓ + 1,

∣ f (t) − gk(t)∣ ≤ ∣ f (t) − gℓ(t)∣ +
k

∑
j=ℓ+1

∣g j(t) − g j−1(t)∣ <
k

∑
j=ℓ

є j < є(t)/2.

Now, we choose k ≥ ℓ so large that ∣gk(t) − g(t)∣ < є(t)/2. _en

∣ f (t) − g(t)∣ ≤ ∣ f (t) − gk(t)∣ + ∣g(t) − gk(t)∣ < є(t).

Finally, we must show that T j
i (g) = T j

i ( f ), i = 1, . . . ,m ; j = Z. Fix j. For all
k > ∣ j∣, we have j ∈ {−(k − 1), . . . , k}. _us, by (2.1),

T j
i ( f ) = T j

i (gk), i = 1, . . . ,m,

and consequently,

T j
i (g) = lim

k→∞
T j

i (gk) = lim
k→∞

T j
i ( f ) = T j

i ( f ).

3 Proof of Theorem 1.3

Proof For simplicity,wewill prove Corollary 1.4,which is a special case of_eorem
1.3. _e proof of the general theorem is an obvious modiûcation.

We can assume that f (i)(0) = 0, i = 0, . . . ,m, and we can also assume that є(t) =
є(∣t∣) and that є(∣t∣) is decreasing, as ∣t∣ increases. Put єo = є, and for i = 1, . . . ,m,
put є i(t) = є i−1(∣t∣ + 1). _en, for i = 0, . . . ,m, we have є i(t) = є i(∣t∣), the functions
є i(t) are decreasing as ∣t∣ increases and є i > є i+1 , i = 0, . . . ,m − 1.
By Lemma 2.3 there exists an entire function gm such that gm(0) = f (m)(0),

∣ f (m)(t) − gm(t)∣ < єm(t), ∫
n

n−1
f (m)(t)dt = ∫

n

n−1
gm(t)dt,

∫
n

n−1
∫

x1

0
⋅ ⋅ ⋅∫

x i

0
f (m)(t)dtdx i ⋅ ⋅ ⋅ dx1 = ∫

n

n−1
∫

x1

0
⋅ ⋅ ⋅∫

x i

0
gm(t)dtdx i ⋅ ⋅ ⋅ dx1 ,

for i = 1, . . . ,m − 1, and n ∈ Z.
We deûne the following entire functions:

gk(z) = ∫
z

0
gk+1(ζ)dζ , k = m − 1,m − 2, . . . , 0.

_us, we have

g′k(z) =
⎧⎪⎪⎨⎪⎪⎩

gk+1(z), k = 0, . . . ,m − 1

∫
z
0 gk+2(ζ)dζ , k = 0, . . . ,m − 2.

Hence, setting g = g0 , we have

g′(z) = g1(z), g′′(z) = g2(z), ⋅ ⋅ ⋅ g(m)(z) = gm(z).
_erefore,

∣ f (m)(x) − g(m)(x)∣ = ∣ f (m)(x) − gm(x)∣ < єm(x) ≤ є(x).
We shall now show that

∣ f (m−1)(x) − g(m−1)(x)∣ < єm−1(x) ≤ є(x).
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If x ≥ 0, we have

∣ f (m−1)(x) − g(m−1)(x)∣

= ∣∫
x

0
( f (m)(t) − g(m)(t))dt∣

= ∣
[x]

∑
n=1
∫

n

n−1
( f (m)(t) − g(m)(t))dt + ∫

x

[x]
( f (m)(t) − g(m)(t))dt∣

= ∣∫
x

[x]
( f (m)(t) − g(m)(t))dt∣ ≤ єm([x])

= єm−1([x] + 1) < єm−1(x) ≤ є(x).

Similarly, if x ≤ 0,

∣ f (m−1)(x) − g(m−1)(x)∣

= ∣∫
x

0
( f (m)(t) − g(m)(t))dt∣

= ∣
[x]

∑
n=−1

∫
n

n+1
( f (m)(t) − g(m)(t))dt + ∫

x

[x]
( f (m)(t) − g(m)(t))dt∣

= ∣∫
x

[x]
( f (m)(t) − g(m)(t))dt∣ ≤ єm(x)

= єm−1(−x + 1) < єm−1(−x) = єm−1(x) ≤ є(x).

Next we show that ∣ f (m−2)(x) − g(m−2)(x)∣ < єm−2(x) ≤ є(x). As in the previous
case,

∣ f (m−2)(x) − g(m−2)(x)∣ = ∣∫
x

0
( f (m−1)(x1) − g(m−1)(x1))dx1∣

= ∣∫
x

[x]
( f (m−1)(x1) − g(m−1)(x1)dx1∣

≤ єm−1([x]) = єm−2([x] + 1) < єm−2(x) ≤ є(x).

Repeating the same argument m − 2 times, we obtain that

∣ f (i)(x) − g(i)(x)∣ < є(x)
for x ∈ R and i = 0, 1, . . . ,m.
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