COLOURED GRAPHS: A CORRECTION AND EXTENSION

R. C. READ AND E. M. WRIGHT

Let $M_n = M_n(k)$ be the number of graphs on n labelled nodes, each node being coloured with one of k colours. Every pair of nodes of different colour can be joined or not joined by an edge; no pair of nodes of the same colour can be so joined. We write $F_n = F_n(k)$ for the number of these graphs in which all k colours are used and $f_n = f_n(k)$ for the number of these latter graphs which are connected.

If r_n is the number of those connected graphs on n labelled nodes which have some property P and if R_n is the number of graphs on n labelled nodes each of whose connected components has property P, we have

(1)
$$1 + \sum_{n=1}^{\infty} \frac{R_n X^n}{n!} = \exp\left(\sum_{n=1}^{\infty} \frac{r_n X^n}{n!}\right)$$

by [1]. Hence, if we write m_n for the number of connected graphs on n labelled nodes, each node being coloured with one of k colours, we have

(2)
$$1 + \sum_{n=1}^{\infty} \frac{M_n X^n}{n!} = \exp\left(\sum_{n=1}^{\infty} \frac{m_n X^n}{n!}\right).$$

But (1) is not true with $r_n = f_n$, $R_n = F_n$, that is, we cannot equate the two expressions

$$1 + \sum_{n=1}^{\infty} \frac{F_n X^n}{n!}, \qquad \exp\left(\sum_{n=1}^{\infty} \frac{f_n X^n}{n!}\right),$$

as we erroneously assumed in [3; 4]. For a graph may use all k colours although some of its connected components use fewer than k (consider, for example, a graph with k nodes, each coloured differently, and no edges). Hence [3, (8) and (9)] do not hold, nor does [4, (1.3)].

We can however easily find a method of calculating f_n . We have, obviously,

$$m_n(k) = \sum_{s=1}^k \binom{k}{s} f_n(s),$$

since we may choose s colours out of k in $\binom{k}{s}$ ways and $m_n(k)$ enumerates connected graphs using all of every possible set of s colours for all s such that $1 \le s \le k$. From this we can deduce that

$$\sum_{s=1}^{k} (-1)^{k-s} {k \choose s} m_n(s) = \sum_{s=1}^{k} (-1)^{k-s} {k \choose s} \sum_{t=1}^{s} {s \choose t} f_n(t)$$
$$= \sum_{t=1}^{k} A_{kt} f_n(t),$$

Received March 26, 1969. The research of the second author was sponsored by the United States Government.

where

$$A_{kt} = \sum_{s=t}^{k} (-1)^{k-s} {k \choose s} {s \choose t} = {k \choose t} \sum_{s=t}^{k} (-1)^{k-s} {k-t \choose s-t},$$

so that $A_{kk} = 1$ and

$$A_{kt} = \binom{k}{t} (1-1)^{k-t} = 0$$
 if $t < k$.

We then have

(3)
$$f_n(k) = \sum_{s=1}^k (-1)^{k-s} \binom{k}{s} m_n(s).$$

This could also be found by the Exclusion Theorem [2, Theorem 260]. From (2) we can deduce that

(4)
$$M_n = m_n + \sum_{s=1}^{n-1} \binom{n-1}{s-1} m_s M_{n-s}.$$

From this we can calculate $m_n(k)$ from $M_s(k)$ $(1 \le s \le n)$ and then, by (3), $f_n(k)$ from $m_n(s)$ $(1 \le s \le k)$.

We have thus corrected [3, § 4], the only section of that paper in error, and have shown how to calculate $f_n(k)$ and, incidentally, the newly introduced $m_n(k)$.

We now turn to correct [4]. The proof in that paper, that

(5)
$$F_n = M_n \{1 - O(e^{-An^2})\}$$

as $n \to \infty$ is still valid, since it does not involve [4, (1.3)]. Again, from (4) of the present paper, we can deduce that

(6)
$$m_n = M_n \{1 - O(e^{-An})\},\,$$

just as we deduced a similar result for f_n , F_n from the erroneous equation [4, (1.3)].

Next we remark that $M_n - m_n$ is the number of disconnected coloured graphs on n labelled nodes and $F_n - f_n$ is the number of these graphs which use all k colours. Hence

$$0 \le F_n - f_n \le M_n - m_n$$

and so

$$0 \le M_n - f_n = M_n - F_n + F_n - f_n$$

$$\le (M_n - F_n) + (M_n - m_n) = M_n O(e^{-An})$$

by (5) and (6). From all this and the results of [4] we can deduce the following theorem.

Theorem. M_n , m_n , F_n , and f_n each have the same asymptotic expansion, viz.

(7)
$$\left(\frac{k}{n \log 2}\right)^{(k-1)/2} k^n T(Kn^2) \left\{ \sum_{h=0}^{H-1} C_h n^{-h} + O(n^{-H}) \right\},$$

where $T(\theta) = 2^{\theta}$ and $C_h = C_h(k, a)$ depends on k, h, and the residue a of $n \pmod{k}$, but not otherwise on n.

We have thus restored (and indeed added to) the results of [4]. If we allow any two nodes of different colours to be "joined" in j different ways as in [5], i.e. we may not join them, we may join them by a red edge, by a blue edge, and so on, then M_n , m_n , F_n , and f_n still have the same asymptotic expansion, viz. that given in [5, Theorem 2], that is (7) above with $\log j$ replacing $\log 2$ and $T(\theta) = j^{\theta}$.

We add tables of $m_n(k)$ and $f_n(k)$.

Values	of	m_n	(R)	
	_			

7	6	5	4	3	2	1	n
							k
0	0	0	0	0	0	1	1
134526	6062	390	38	6	2	2	2
43558242	668526	15990	618	42	6	3	3
1199364852	10015092	136980	3156	132	12	4	4
11878194300	65814020	616 260	9980	300	20	5	5
67774951650	277164210	1956810	24330	570	30	6	6
274844567886	885312162	499905 0	50358	966	42	7	7
884716732812	2343695816	11008200	93128	1512	56	8	8
2411955530712	5417215272	21761640	158616	2232	72	9	9

Values	of	fal	(k)	١

7	6	5	4	3	2	1	n k
0	0	0	0	0	0	1	1
134526	6062	390	38	6	2	0	2
43154664	650340	14820	504	24	0	0	3
1025939040	7377360	75360	912	0	0	0	4
6315607200	22363200	87360	0	0	0	0	5
13627111680	19226880	0	0	0	0	0	6
9405930240	0	0	0	0	0	0	7

REFERENCES

- 1. E. N. Gilbert, Enumeration of labelled graphs, Can. J. Math. 8 (1956), 405-411.
- 2. G. H. Hardy and E. M. Wright, *Introduction to the theory of numbers*, 4th ed. (Oxford Univ. Press, Oxford, 1960).
- R. C. Read, The number of k-coloured graphs on labelled nodes, Can. J. Math. 12 (1960), 410-414.
- 4. E. M. Wright, Counting coloured graphs, Can. J. Math. 13 (1961), 683-693.
- 5. —— Counting coloured graphs. II, Can. J. Math. 16 (1964), 128-135.

Computing Centre, University of the West Indies, Kingston, Jamaica; University of Aberdeen, Aberdeen, Scotland