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Oscillation criteria for
second order nonlinear
delay inequalities

S. Nababan and E.S. Noussair

Oscillation criteria are obtained for the nonlinear delay
differential inequality u(u"+f(¢, u(t), u(g(¢)))) =0 . The
main theorems give sufficient conditions (and in some cases
sufficient and necessary conditions) for all solutions u(t) to
have arbitrary large zeros. Generalizations to more general

cases are discussed.

1. Introduction
Oscillation criteria for the nonlinear delay differential equation
(1) Lu = u" + f(t, u(t), ulg(t)}) = o
and more generally for the inequality ulu =< 0 , will be derived. Suitable
assumptions on f(t, u, v) will be listed in Section 2.

Hereafter, "solution" means "solution on a half-axis". A solution of
uLu = 0 is called oscillatory if it has no largest zero. For a general
discussion of existence and uniqueness properties of equations with delays,

the reader is referred to El'sgol'ts [3].

Oscillation theory for equation (1) has been developed by many
authors. We mention in particular the papers by Erbe [4], Gollwitzer [5],
Ladas [6], Lillo [7], Norkin [8], Statkos [9], Waltman [10], Wong [11], and

the references therein.
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Our main results in §2 will extend known oscillation criteria to
differential inequalities and sharpen the conclusion in certain cases. Our
basic method will depend on the fact that, under appropriate conditions on
f , nonoscillatory solutions of the inequality ulu < 0 are positive
solutions of a related differential inequality. We then use suitable
Ricatti's transformations to derive sufficient conditions for the related
inequality to have no solution which eventually becomes positive at = .

As is customary in this area, we give some strictly nonlinear results
(Theorems 2 and 6) and some results which can be specialized to the linear
case (Theorems 4 and 7). It will be clear that this technique extends to
more general inequalities in which the function f involves several

retardations.

2.

In this section we obtain oscillation criteria for the delay

differential inequality

(2) w(t)Lu(t) =0, ¢t

v

o,

with L as given in (1). The following assumptions omn the function f

and g will be retained in the sequel.

(3) ASSUMPTIONS. (a) f(t, u, v) € ([0, ®) xR XR) , u and
v >0 imply f(t, u, v) is positive and nondecreasing in u
and v for all ¢t =0 .

(v) flt, u, v) < ~f(t, -u, -v) , u and v >0 and all
tZ0;

(¢} g(t) €clo, ») with 0<g(¢t)=t, t>0,

lim g(t) = = .
00

LEMMA 1. Inequality (2) ie oscillatory in [0, ®) <if the delay
differential inequality

(k) u'(t) + F(t, ulg(e)), ulg(®))) =o
has no solution u which is positive in [to, ®}  for to > 0 under the
assumptions (3).

Proof. Suppose to the contrary there exists a number tl > 0 such
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that u(t) is a positive solution of (2) in [tl, °°) . Choosing tl

sufficiently lé.rge if necessary, we can assume that u(g(t)) >0 for

t=t . Since t ¢, implies that u"(t) = 0 , a standard argument
shows that wu'(t) > 0 for sufficiently large t , say t = t, . Using

Assumption (3) (&) on f , it is easy to see that wu(t) is a positive
solution of (4) in [to, °°) contradicting the hypothesis. Likewise, there

cannot exist to > 0 such that u is a negative solution of (2) in
[ta, °°) or else Assumptions (3) (a) and (b) would imply that -u is a
positive solution of (4).

Let ¢(u#) be a continuously differentiable function of u for
u € [0, ») satisfying ¢(u) >0 if u >0, ¢"(u) 20 forall u=0,

du
E‘b(u) <

We will say that f(f, u, v) satisfies condition (A) provided there

and

exists a ¢ > 0 such that

(5) lim inf ﬂ%z—;—;—“—) > Kf(t, e, e)

U
for some positive constant X and all ¢t =T .

THEOREM 2. Assume that Assumptions (3) and condition (A) hold.
Furthermore, assume g'(t) = 0. Then inequality (2) is oscillatory if

(6) rg(t)f(t, a, a)dt = 4w
1

for all a >0 . In addition, if

(1) 1iminf9-§flza>o for some a >0 ,

Ere0
then (6) is also necessary.

Proof. That (6) is a sufficient condition will follow from Lemma 1 if

we show that inequality (L) has no positive solution u{¢t) in [to, )

for any to > 0 . Suppose to the contrary that a solution u(t) > 0 of
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(4) exists and to > 0 can be chosen such that u(t) and u(g(t)] >0 on
[to, ®) . since t = to implies that u"(£) < 0 , a standard argument
shows that u'(%) > 0 for sufficiently large ¢t , say t = tl zty . We

can assume that lim u(Z) = © since otherwise multiplication of (4) by ¢
£

and integration by parts over [t . t] would lead to

t
tu'(t) - tlu'(tl] = - ft sf(s, ulg(s)), ulg(s)))ds + u(t) - u[tl)
1

for all t = tl » and consequently u'(f) < 0 for sufficiently large ¢t

on account of hypothesis (6).

_ %?t!u'(t% -
vie) = o (ulg(2) s t= tl .
Then

ey <« ge)f(E,ulg(2)]) ,ulg(£)])) "(£)u'(t)
(&) vi(e) = - +(ulg(£)]) - LGt
_gledu!(t)u'(g(£))g' (£)¢" (u(g(£)})

(6 (u(g(2)))?

Condition (A), Assumptions (3), and inequality (8) imply that there exists a

Define

T >0 and a ¢ >0 such that

V'(t) s -Kg(t)f(t, e, ) + 9%[%%&

for t = T . Integration over [T, t] yields

t u(g(¢))
G W0 v =k [ g@ste e om0y
ulg

It follows from (9) that V(£) < 0 for sufficiently large ¢ on account
of (6), and consequently u'(%t) is eventually negative. This

contradiction proves the sufficiency part of Theorem 2.

Conversely, if (7) holds and (6) does not hold for some o > O , then

the equation

(10) w"(t) + f(t, ult), u(g(e))) =0
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has a bounded nonoscillatory solution by Theorem 3.2 of [4]. But a

nonoscillatory solution of (10) is obviously a solution of the inequality

(2).

REMARK. The requirement that g'(£) = O in Theorem 2 can be replaced
by the less restrictive requirement that there exists a function

h(t) € C'[0, ®») , 0 <h(t) =g(t) , h'(t) 20, and 1lim k(t) = o . 1In

£
this case, Theorem 2 is valid with h(t) replacing g(#) in hypothesis
(6).

As a simple corollary of Theorem 2, we obtain oscillation criteria for

the inequality uLlu = 0 , where Ll is defined by:

(11) Lyu = u"(¢) + p(8) (ulg(£)))Y ,

where p(t) 20, g'(¢) 20 on [T, ) , and Y > 1 is the quotient of

odd integers.

COROLLARY 3. ALl solutions of ul,u = 0 are oscillatory if

(12) Jm g(t)p(t)dt = = .
1

The converse is true if condition (T) holds.

REMARK. Corollary 3 improves and extends previous results by
Gollwitzer [5] and Erbe [4] for the equation Lyu = 0 in case g'(t) 20,

as the following example shows.

EXAMPLE. Let p(%) = £3/2 ana g(t) = £/2 | Condition (12) holds

and the inequality wul.u = 0 1is oscillatory by Corollary 3. For this

1
example condition (3.13) of [4] does not hold since

Jm 1 p(¢) (g(2)) Ydt = Jw R () y>1.

The next theorem is an analogue of Theorem 2 when condition (A) is not

satisfied. Condition (A) is replaced by the following condition:

f(t, u, v) is said to satisfy condition (B) if there exists a

¢ >0 and a number Y =2 1 such that
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(13) lim inf ﬁ—t-%ﬁl > Kf(t, ¢, e)
Uu

U
for some constant K > 0 and for all ¢t =T .

This holds, for example, if

£t uy w) = u¥ (Loe(ul+1))®, y=21, 820,

as well as in the linear (y =1, B = 0) and superlinear (y =1, B = 0)

cases.

THEOREM 4. Assume that Assumptions (3) and condition (B) hold.
Furthermore, assume g'(t) = 0 . Then inequality (2) is oscillatory in
[0, =) if

(14) r (g(t)))\f(t, a, a)dt =
1
for all o >0 and for some 0= A <1.

Proof. Proceeding exactly as in the proof of Theorem 2 we find that
u'(t) >0, u"(t) =0 for t= t; » and

we) Pl )l .
u'(t) u'(tlI B Itl (u'(t))2 wEron

Hence there exists a number t2 > tl such that

u' t 2
w(g(£) 5971;—) for all tztg.

Choose Y =1 and e > 0 such that (13) is satisfied for £t =27 = ¢

(15)

2 L]
and let 0 £ A <1 . Define

Ay
V(t)z_(ﬂﬁllﬁ_ﬂ, t=T7T .

u (g(£))
Then
A
(16) V'(t) = - t tL,u t)),u t .
u (g(2))

RN IO i T 15 £16) R
u' (g(¢))
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However, according to (13) and (15) we have

2A[g(£)) 20" (8)
A (g(®))

v(t) s -K(g(£)) f(ts ey e) +

for some constant K >0 and 811 t =27 .
Using (16) and the positivity of u' we then obtain

v'(8) = K(g(8) F(E, e, e) + Kig'(8) (g(e) P,

where Kl = 2Au(g(T))l_Y . Integrating over (T, t) we obtain

g(t) A2
s

t A
Wt) - VD) = -k fT (60 s, e, ) + 1, | oy *
g

As in the proof of Theorem 2, we arrive at the contradiction wu'(t) <0

for sufficiently large ¢ .

The above result generalizes a result by Wong [71] where the special
case u" + a(t)ulg(t)) =0, a(t) 20, and ct < g(t) =t for some

constant ¢ > 0 was considered.

COROLLARY 5. The differential inequality

u[u"+p(t)uY(g(t))] =0,

where p(t) € €[0, ») is nomnegative, Y =2 0 is the quotient of odd
integers, and g'(t) =2 0 , is osctllatory in [0, ») if

r (g(£)) p(8)dt = =
1

for gome O < X <1 ., Furthermore, if Y>1, XA can be taken to be 1 .

The above corollary improves previous results by Erbe [4] in case
g'(t)zo0.

We now give analogues of Theorems 2 and 4 when g(¢) is not
necessarily differentiable. Conditions (A) and (B) are replaced by the

following conditions.

Condition A;. There exists o¢(u) € Cl[O, ®) satisfying:

(a) ¢lu) >0 if u>0, ¢'(u) =20 for all u =0, and
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du
E¢(u) <

(b) there exists a ¢ >0 and 0 < a <1 such that

Aot o 222 )
lim inf ¢(|“|) -l Kf(t, c, O g-t—c

] >

for some positive constant X and all ¢t =T .

Condition B,. There existsa ¢ >0, 0 <a <1, and a number
Y 21 such that

#les1ul o L )]

lim inf “ > Kf[t, c, a Q.(tL) c]
e faf ¥

for some constant XK > 0 and for all ¢ =17 .

THEOREM 6. Assume that Assumptions (3) and condition Ay hold. Then
inequality (2) is oscillatory in [0, ©) if

(17) E tf(t, a, o gitil]dt =

for all o > 0. In addition, if (7) holds then (17) is also necessary.

Proof. To prove the if part, assume to the contrary that wu(z) is a
nonoscillatory solution of (2). Using the same argument as in Lemma 1, we

can assume that u(%) is a positive solution of the inequality
(18) W'+t ult), u(g(r))) <o

in [to, ©) for some ty = 0 . Obviously we can assume that u(g(t)) >0

for ¢t = ¢ Since t z ¢, implies u"(t) = 0 , a standard argument

o

shows that u'(t) > 0 for sufficiently large ¢t , say ¢t = ¢t t

> .
1~ 70
Since u(t) >0, u'(¢) >0, w"(¢) =0 on [t),®) , Lema 2.1 of [4]
implies that for each 0 < k < 1 there is a Tk Eed tl such that
(19) u(g(£)) = ku(t) ﬂtt—) , t2 T

From (18) and the assumptions (3) we then have that y(t) satisfies
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(20) u" + f(t, u(t), k gif—)u(t)] <o, tzz, .

We can assume that 1im u(£) = ® since otherwise multiplication of (20) by
£

t and integration by parts over ET R t] would lead to

IA

t
tu'(t) - Tku'(fk) - ] sf[s, u(e), k 2%?1 u(s)]ds + u(t) - u[Tk)

T
t
= - JTk sf(s, u(Tk), k géfl-u(Tk)]ds + u(t) - u(Tk]

for all ¢t 2 Tk , and consequently u'(t) < 0 for sufficiently large ¢
on account of hypothesis (17).

Choose 0 <a <1l and ¢ > 0 such that condition A, holds. Choose

T, sufficiently large such that (19) holds and

(21) f[t, u(t), o g_(ti)_ u(t)] > K¢(u(t))f[t, e, a 912’2 e

. Define

for some XK > 0 and for all ¢ = Ta > tl

_ tu'(s)

v(t) = t=7

o(u(2)) a

Using (19) and (21) we then obtain

e) = olt) w'(e)_ _ (w'(e)%" (w)
(22) v'{¢) = -th[t, e, o & c] o)) T L—(q>(u))2 .

Integration over [Ta' t] vields

u(t) du

v(t) -v(r) = -« f; sf[s, e a -‘ﬁsﬂc]ds + f

o

o(u)
(z,) *™

u

It follows from condition A; and the hypothesis (17) that V(t) < 0
for sufficiently large ¢ , and consequently y'(¢) is eventually

negative. This contradiction proves the sufficiency part of Theorem 6.

Conversely, if (7) holds and (17) does not hold for some o > O , then
by Assumption (3) (a) the condition
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r tf(t, o, a)dt <
1

must hold for some o > 0 . Then equation (10) has a bounded
nonoscillatory solution by Theorem 3.2 of [4] which is obviously a solution

of (3).

Theorem 6 extends results by Gollwitzer [5]1, Erbe [4], and Wong (11]

to differential inequalities.

The proof of the following analogue of Theorem 4 is similar to the

above proof and will be omitted.

THEOREM 7. Assume that assumptions (3) and condition By hold. Then
inequality (2) is oscillatory in [0, ») if

(23) r t"f[t, a, o Hi:_)]dt .
1

for all o >0 and for some 0= A <1.

REMARKS. It is a very simple matter to write analogues of Theorems

2-6 when the operator L is replaced by the more general operator

n
w'" + ¥ f (e, u(t), u(g;(e)))
i=1

Lu

with fi and g. , 1=1,2, ..., n , satisfying assumptions (3).
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