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Abstract

We give a sufficient condition under which a semigroup is nonfinitely based. As an application, we show
that a certain variety is nonfinitely based, and we indicate the additional analysis (to be presented in a
forthcoming paper), which shows that this example is a new limit variety of aperiodic monoids.
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1. Introduction

A variety of algebras is finitely based if all of its identities can be derived from a
finite subset of identities; otherwise, the variety is said to be nonfinitely based. An
algebra is finitely based if it generates a finitely based variety; otherwise, the algebra
is said to be nonfinitely based. There are many finitely based and many nonfinitely
based finite semigroups, and the finite basis property for finite semigroups and for
finite algebras has been studied extensively. We refer to the survey of Volkov [18] for
further information on the finite basis problem for semigroups.

A variety is hereditarily finitely based if all of its subvarieties are finitely based. A
variety that is minimal with respect to being nonfinitely based is commonly known
as a limit variety. It follows from Zorn’s lemma that each nonfinitely based variety
contains some limit subvariety; and so a variety is hereditarily finitely based if and
only if it contains no limit subvarieties. Therefore classifying hereditarily finitely based
varieties, in a certain sense, reduces to classifying limit varieties. However, classifying
limit varieties appears to be quite intricate, and even finding any concrete limit variety
is nontrivial. For example, no concrete limit variety of groups is known, even though
there are an infinite number of them [4, 6, 13]. In contrast, for semigroup varieties, the
first concrete example of a limit variety was found by Volkov in 1982 [17]. Pollák
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found a limit variety consisting of left nilsemigroups [14] and, a short time later,
Sapir [15] constructed a countably infinite series of limit varieties. Lee and Volkov
constructed an infinite series of limit varieties, each of which is generated by a finite
0-simple semigroup with Abelian subgroups [11]. No further explicit examples of limit
semigroup varieties have been published.

A monoid is aperiodic if all of its subgroups are trivial. The class of aperiodic
monoids is denoted by A. A result of Kozhevnikov implies that there are continuum
many limit varieties of monoids consisting of groups [6]. This makes classification
of limit varieties of monoids infeasible unless restrictions are placed on the groups
lying in the variety. The class A is arguably the most obvious natural candidate for
attention. In [5, Proposition 5.1], Jackson proved that the variety var{J1} generated by
the monoid

J1 = 〈a, b, s, t | xy = 0 if xy is not a factor of asabtb〉 ∪ {1}

of order 21 and the variety var{J2} generated by the monoid

J2 = 〈a, b, s, t | xy = 0 if xy is not a factor of either absatb or asbtab〉 ∪ {1}

of order 35 are limit subvarieties of A. Jackson commented that no other similar
examples could be found and posed the following questions [5, Question 1].

Question 1.1.

(1) Are var{J1} and var{J2} the only limit varieties generated by finite aperiodic
monoids with central idempotents?

(2) Are there any finitely generated, nonfinitely based aperiodic monoid varieties
that contain neither var{J1} nor var{J2}?

In [7], Lee proved that the only finitely generated limit subvarieties of A with
central idempotents are var{J1} and var{J2}, which gives an affirmative answer to
Question 1.1(1). Later, in [8], he generalised this result and showed that var{J1} and
var{J2} are the only limit subvarieties of A with central idempotents. In [19], Zhang
showed that a certain aperiodic monoid of order seven is nonfinitely based, and thus
there exists a limit subvariety of aperiodic monoids that is different from var{J1} and
var{J2}, which gives an affirmative answer to Question 1.1(2).

The main goal of this paper and its sequel is to give an explicit example of a limit
variety of A. Let A1 denote the monoid obtained by adjoining an identity element to
the semigroup A = {0, a, b, c, d, e} given by the multiplication table

A 0 a b c d e
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 0 0 0 b
c 0 0 a 0 c 0
d 0 0 b 0 d 0
e 0 a a c c e
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This semigroup was first investigated by Lee and Zhang [12, Section 19], where it was
shown to be finitely based. Let B1 be the semigroup that is dual to A1. In this paper,
we will present a sufficient condition under which a semigroup is nonfinitely based.
By using this condition, we will show that the semigroup A1 × B1 is nonfinitely based.
In the second paper [20], we show that all proper monoid subvarieties of the variety
generated by A1 × B1 are finitely based, so the variety generated by A1 × B1 is a limit
variety.

Throughout, n ≥ 2 is a fixed integer. The following theorem is our main result,
giving a sufficient condition for the nonfinite basis property of a semigroup. (For more
information on sufficient conditions under which a semigroup is nonfinitely based,
refer to Sapir [16], Lee and Li [10] and Lee and Zhang [12]. However, none of the
previous sufficient conditions can be applied to the semigroup A1 × B1.)

Theorem 1.2. Suppose that S is any semigroup that satisfies the identities

x2n ≈ xn, xn+1yxn+1 ≈ xyx, (1.1a)
xyn

1yn
2 · · · y

n
k x ≈ xyn

1xnyn
2xn · · · xnyn

k x, k ∈ {2, 3, . . .}, (1.1b)

but violates all of the identities

(xnyn)n+1 ≈ xnyn, (1.2a)
xn(yxn)n+1 ≈ xnyxn, (1.2b)

hn(xnyn)2hnzhnxnhn ≈ hnxnynhnzhnxnhn, (1.2c)
hnxnhnzhn(ynxn)2hn ≈ hnxnhnzhnynxnhn. (1.2d)

Then S is nonfinitely based.

Let S be any semigroup that satisfies the identities (1.1) but violates the
identities (1.2). In Section 3, we show that S has a basis that consists of identities with
certain special properties. In Section 4, some restrictions on identities satisfied by S
are established and the proof of Theorem 1.2 is given in Section 5. The application of
Theorem 1.2 to show that the semigroup A1 × B1 is nonfinitely based is in Section 6.

2. Preliminaries

Throughout, X is a countably infinite alphabet. For any subset Y of X, let Y+ and
Y∗ denote the free semigroup and free monoid over Y, respectively. Elements of X
are called letters and elements of X∗ are called words. For any word w:

• the head of w, denoted by h(w), is the first letter occurring in w;
• the tail of w, denoted by t(w), is the last letter occurring in w;
• the content of w, denoted by con(w), is the set of letters occurring in w;
• the number of occurrences of a letter x in w is denoted by occ(x,w);
• a letter x is simple in w if occ(x,w) = 1;
• the set of simple letters of w is denoted by sim(w); and
• the set of nonsimple letters of w is denoted by non(w).
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Note that con(w) = sim(w) ∪ non(w) and sim(w) ∩ non(w) = ∅. Two words w and w′
are disjoint if con(w) ∩ con(w′) = ∅.

An identity is written as w ≈ w′, where w,w′ ∈ X+. An identity w ≈ w′ is nontrivial
if w , w′. A semigroup S satisfies an identity w ≈ w′ if, for any substitution ϕ : X→ S ,
the elements wϕ and w′ϕ of S are equal. An identity w ≈ w′ such that |con(ww′)| ≤ k
is said to be k-limited. For any semigroup S , idS is the set of all identities satisfied
by S and idkS is the set of all k-limited identities satisfied by S .

An identity w ≈ w′ is directly provable from an identity u ≈ u′ if there exist words
e, f ∈ X∗ and a substitution ϕ : X → X+ such that w = e(uϕ)f and w′ = e(u′ϕ)f. By
Birkhoff’s completeness theorem of equational logic [2], an identity w ≈ w′ is provable
from some set Σ of identities if there exists a sequence

w = w0,w1, . . . ,wm = w′

of words such that each identity wi ≈ wi+1 is directly provable from some identity
in Σ. A subset Σ ⊆ idS is a basis for S if every identity in idS is provable from Σ.
A semigroup is finitely based if it has a finite basis. The variety generated by a
semigroup S , denoted by var{S }, is the class of all semigroups that satisfy all identities
from idS . We refer to the survey by Volkov [18] for more information on the finite basis
problem for finite semigroups, and to the monograph of Burris and Sankappanavar [2]
for more information on universal algebra in general.

Lemma 2.1. Let Σ be any basis for a finitely based semigroup S . Then a finite basis for
S can be chosen from the identities in Σ.

Proof. This is a well known (and immediate) consequence of Birkhoff’s completeness
theorem for equational logic (see [1, Corollary 1.4.7] or [2, Exercise 10 of
Section 14]). �

Lemma 2.2. Let S be any semigroup that satisfies the identities (1.1a) but violates the
identity (1.2b). Suppose that the identity w ≈ w′ is any identity satisfied by S . Then
sim(w) = sim(w′) and non(w) = non(w′).

Proof. By Lee and Zhang [12, Lemma 2.9], the variety var{S } contains the monoid
N1

2 = {0, a, 1}, where a2 = 0. It is well known that N1
2 satisfies an identity w ≈ w′ if and

only if sim(w) = sim(w′) and non(w) = non(w′) (see [1, Lemma 6.1.4]). �

3. Connected identities

A singleton is a simple word that consists of only one letter. A nonsimple word
is connected if it cannot be written as a product of two disjoint nonempty words. An
identity w ≈ w′ is connected if the words w and w′ are connected. Any word w can be
written in natural form, that is,

w = w1w2 · · ·wr,

where w1,w2, . . . ,wr ∈ X
+ are pairwise disjoint words, each of which is either a

singleton or connected.
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Lemma 3.1. Let S be any semigroup that satisfies the identities (1.1a) but violates the
identity (1.2a). Suppose that S satisfies an identity w ≈ w′, where w = w1w2 · · ·wr
and w′ = w′1w′2 · · ·w

′
r′ are words written in natural form. Then r = r′ and con(wi) =

con(w′i) for all i.

Proof. The variety var{S } contains the semigroup A0 = 〈a, b | a2 = a, b2 = b, ba = 0〉
([12, Lemma 2.8]). It follows from Edmunds [3, proof of part 4 of the first proposition]
that if A0 satisfies the identity w ≈ w′, then r = r′ and con(wi) = con(w′i) for all i. �

Lemma 3.2. Let S be any semigroup that satisfies the identities (1.1a) but violates the
identities (1.2a) and (1.2b). Then S has a basis that contains only connected identities.

Proof. Let w ≈ w′ be any nontrivial identity satisfied by the semigroup S and write

w = w1w2 · · ·wr and w′ = w′1w′2 · · ·w
′
r′ ,

in natural form, where, by Lemma 3.1, r = r′ and con(wi) = con(w′i) for all i. It suffices
to show that S satisfies wi ≈ w′i for all i. If either wi or w′i is a singleton, then it follows
from Lemma 2.2 that wi = w′i , and hence S clearly satisfies wi ≈ w′i . If wi and w′i are
connected, then S satisfies wi ≈ w′i , by the arguments in [9, Proof of Lemma 12]. �

For any letters x and y of a word w, x ≺w y indicates that within w, each occurrence
of x precedes every occurrence of y. In other words, if x ≺w y with p = occ(x,w) and
q = occ(y,w), then retaining only the letters x and y in w results in the word xpyq.

For any word w, let FSS(w) denote the set of factors of w of length two that are
formed by simple letters, that is,

FSS(w) = {xy | x, y ∈ sim(w),w ∈ X∗xyX∗}.

For example, if w = x3abcyxdy2e f x, then FSS(w) = {ab, bc, e f }.

Lemma 3.3. Let S be any semigroup that satisfies the identities (1.1) but violates the
identities (1.2c) and (1.2d). Suppose that S satisfies the identity w ≈ w′. Then

(i) for any x, y ∈ con(w) = con(w′), x ≺w y and x ≺w′ y are equivalent; and
(ii) FSS(w) = FSS(w′).

Proof. (i) Suppose that x ≺w y and x ⊀w′ y for some x, y ∈ con(w) = con(w′). Then
some y occurs before some x in w′. Let ϕ : X→ X+ be the substitution given by

t 7→


xn if t = x,
yn if t = y,
hn otherwise.

Then hnxn(wϕ)ynhn (1.1)
≈ hnxnynhn and hnxn(w′ϕ)ynhn (1.1)

≈ hn(xnyn)2hn, so S satisfies the
identity hn(xnyn)2hn ≈ hnxnynhn. But then S also satisfies the identity (1.2c).

(ii) Suppose that xy ∈ FSS(w)\FSS(w′). Let ϕ : X→ X+ be the substitution

t 7→


hnx if t = x,
yhn if t = y,
hn otherwise.
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Then the deduction hn(wϕ)hn (1.1a)
≈ hnxyhn holds. Since x, y ∈ sim(w) = sim(w′), by

Lemma 2.2, and x ≺w′ y, by part (i), the deduction hn(w′ϕ)hn (1.1a)
≈ hnxhnyhn holds.

Therefore S satisfies the identity σ : hnxhnyhn ≈ hnxyhn. Since

hnxnynhnzhnxnhn (1.1a)
≈ hn(xnynynhnzhnxn)hn σ

≈ hnxnynxnynhnzhnxnhn,

the semigroup S satisfies the identity (1.2c), which is a contradiction. �

Lemma 3.4. Let S be any semigroup that satisfies the identities (1.1) but violates all of
the identities in (1.2). Suppose that S satisfies the identity w ≈ w′, where

w = aw1w2 · · ·wrb

for some a,b ∈ X∗ and w1,w2, . . . ,wr ∈ X
+ are such that

(i) each wi is either a singleton or connected;
(ii) at least one of w1,w2, . . . ,wr is a singleton;
(iii) a,w1,w2, . . . ,wr are pairwise disjoint; and
(iv) w1,w2, . . . ,wr,b are pairwise disjoint.

Then
w′ = a′w′1w′2 · · ·w

′
rb
′ (3.1)

for some a′,b′ ∈ X∗ and w′1,w
′
2, . . . ,w

′
r ∈ X

+ such that the following hold:

(i′) con(a) = con(a′) and con(b) = con(b′);
(ii′) con(wi) = con(w′i) for all i;
(iii′) if wi is a singleton, then w′i is a singleton with wi = w′i; and
(iv′) if wi is connected, then w′i is connected.

Proof. It is convenient to write E = con(a) ∩ con(b), so that

con(a) = (con(a)\con(b)) ∪ E and con(b) = (con(b)\con(a)) ∪ E.

By (iii), (iv) and Lemma 2.2,

(A.1) sim(w) = sim(w′) and non(w) = non(w′); and
(A.2) con(w) = con(w′) is the disjoint union of the sets

con(a)\con(b), con(w1), con(w2), . . . , con(wr), con(b)\con(a),E.

Now, for any a ∈ con(a)\con(b), xi ∈ con(wi) and b ∈ con(b)\con(a), since

a ≺w x1 ≺w x2 ≺w · · · ≺w xr ≺w b

by (iii) and (iv), it follows from Lemma 3.3 that

a ≺w′ x1 ≺w′ x2 ≺w′ · · · ≺w′ xr ≺w′ b.

Therefore, in view of (A.2), the word w′ can be written in the form

w′ = a′w′1e1w′2e2 · · ·w′r−1er−1w′rb
′,

where a′,w′1,w
′
2, . . . ,w

′
r,b′ ∈ X+ and e1, e2, . . . , er−1 ∈ X

∗ are such that
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(A.3) con(a′) is all letters from con(a)\con(b) and possibly some letters from E;
(A.4) con(b′) is all letters from con(b)\con(a) and possibly some letters from E;
(A.5) con(w′i) is formed by all letters from con(wi) and possibly some letters from E,

with h(w′i), t(w
′
i) ∈ con(wi); and

(A.6) con(ei) ⊆ E.

It then follows from (A.1) and (A.5) that (iii′) holds. In particular, by (ii), there exists
some j such that w j = t is a singleton, so that w′j = w j = t ∈ sim(w′).

Suppose that some letter x ∈ E belongs to w′1e1w′2e2 · · ·w′r−1er−1w′r. Since con(w j)∩
E = ∅ by (A.2) with w j = t, the letters x and t are different. Therefore x occurs either
before or after t = w′j. By symmetry, it suffices to assume that

(A.7) x ∈ con(w′1e1w′2e2 · · ·w′j−1e j−1).

Let ϕ : X→ X+ denote the substitution given by

z 7→


yn if z ∈ con(w1w2 · · ·w j−1),
ynt if z = t = w j,
xn otherwise.

Then the deduction xn(wϕ)xn (1.1a)
≈ xnyntxn holds by (iii) and (iv). For any letter

z ∈ con(w1w2 · · ·w j−1), since z ≺w t = w j, it follows from Lemma 3.3 that z ≺w′ t = w′j.
Therefore

(A.8) if z is any letter in w′ occurring after t = w′j, then z < con(w1w2 · · ·w j−1).

Hence by (A.5), (A.7), and (A.8),

xn(w′ϕ)xn = xn(· · · h(w′1)ϕ · · · xϕ · · · tϕ · · · )xn

∈ xn{xn, yn}∗yn{xn, yn}∗xn{xn, yn}∗ynt{xn}∗xn (1.1)
≈ xnynxnyntxn.

The semigroup S thus satisfies the identity xnyntxn ≈ (xnyn)2txn and so also the identity
(1.2c), which contradicts the assumption. Therefore no letter x ∈ E can belong to
w′1e1w′2e2 · · ·w′r−1er−1w′r, and hence e1 = e2 = · · · = er−1 = ∅ by (A.6) and

(A.9) con(wi) = con(w′i) for all i

by (A.5). Thus w′ is a word of the form (3.1) that satisfies (ii′) and (iii′).
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Suppose that for some i, the word wi is connected but w′i is not connected, say
w′i = cd for some disjoint c,d ∈ X+. Let χ : X→ X+ denote the substitution given by

z 7→


xn if z ∈ con(c),
yn if z ∈ con(d),
hn otherwise.

Since con(w′i) ∩ con(a′w′1 · · ·w
′
i−1w′i+1 · · ·w

′
rb′) = ∅ by (iii), (iv), (A.3), (A.4) and

(A.9), the deduction hnxn(w′χ)ynhn (1.1a)
≈ hnxnynhn holds. On the other hand, note

that con(wiχ) = {x, y} because con(wi) = con(w′i). However, since wi is connected,
wiχ < {xn}+{yn}+. Therefore wiχ ∈ {xn, yn}∗ynxn{xn, yn}∗, so that

hnxn(wχ)ynhn = hnxn(· · · ynxn · · · )ynhn (1.1)
≈ hn(xnyn)2hn.

It follows that the semigroup S satisfies the identity hnxnynhn ≈ hn(xnyn)2hn and so also
the identity (1.2c), which contradicts the assumption. Hence (iv′) is satisfied.

It remains to verify that (i′) is satisfied by w′. By (A.3),

(A.10) con(a)\con(b) ⊆ con(a′) ⊆ (con(a)\con(b)) ∪ E = con(a).

Suppose that x ∈ E. Then x ⊀w y ⊀w x for all y ∈ con(w1w2 · · ·wr). Hence (iii), (iv),
(A.9) and Lemma 3.3 imply that x ⊀w′ y ⊀w′ x for all y ∈ con(w′1w′2 · · ·w

′
r). It follows

that x ∈ con(a′) ∩ con(b′). Therefore E ⊆ con(a′) ∩ con(b′), so that

con(a) = (con(a)\con(b)) ∪ E

⊆ con(a′) ∪ (con(a′) ∩ con(b′)) by (A.10)

= con(a′) ⊆ con(a) by (A.10).

Hence con(a) = con(a′). By a symmetrical argument, con(b) = con(b′). �

4. Some restrictions on identities

For each k ≥ 2, define the sets of words

Pk = {xr1 ys1
1 ys2

2 · · · y
sk
k xr2 | r1, r2 ≥ 1, s1, s2, . . . , sk ≥ 2},

and

Qk =

w ∈ {x, y1}
∗{x, y2}

∗ · · · {x, yk}
∗

∣∣∣∣∣∣∣∣∣
non(w) = {x, y1, y2, . . . , yk},

x ⊀w yi ⊀w x for all i,
w ∈ X∗y1X

∗xX∗ykX
∗

 .
Lemma 4.1. Let S be any semigroup that satisfies the identities (1.1) but violates all
of the identities in (1.2). Suppose that w ≈ w′ is any identity satisfied by S such that
w ∈ Pk. Then w′ ∈ Pk ∪ Qk.
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Proof. Since w ∈ Pk implies that sim(w) = ∅, non(w) = {x, y1, y2, . . . , yk} and
y1 ≺w y2 ≺w · · · ≺w yk, it follows from Lemmas 2.2 and 3.3(i) that sim(w′) = ∅,
non(w′) = {x, y1, y2, . . . , yk} and y1 ≺w′ y2 ≺w′ · · · ≺w′ yk. Consequently, we have
w′ ∈ {x, y1}

∗{x, y2}
∗ · · · {x, yk}

∗. Further, since x ⊀w yi ⊀w x for all i, it follows from
Lemma 3.3(i) that x ⊀w′ yi ⊀w′ x for all i. Now if w′ ∈ X∗y1X

∗xX∗ykX
∗, then w′ ∈ Qk.

If w′ < X∗y1X
∗xX∗ykX

∗, then w′ ∈ Pk. �

Lemma 4.2. Let S be any semigroup that satisfies the identities (1.1) but violates all
of the identities in (1.2). Suppose that an identity x ≈ y is directly provable from some
connected identity in idkS with x ∈ Pk. Then y ∈ Pk.

Proof. Let w ≈ w′ be a connected identity in idkS from which the identity x ≈ y is
directly provable. Then there exist words e, f ∈ X∗ and a substitution ϕ : X→ X+ such
that x = e(wϕ)f and y = e(w′ϕ)f. By assumption,

x = xr1 ys1
1 ys2

2 · · · y
sk
k xr2 ∈ Pk

for some r1, r2 ≥ 1 and s1, s2, . . . , sk ≥ 2. Since the word w is connected, the image wϕ
is a connected factor of x. The connected factors of x are exhausted by the following:

(†) nonsimple factors of xr1 , ys1
1 , y

s2
2 , . . . , y

sk
k , x

r2 ; and
(‡) xq1 ys1

1 ys2
2 · · · y

sk
k xq2 , where 1 ≤ q1 ≤ r1 and 1 ≤ q2 ≤ r2.

Case 1. wϕ belongs to (†). It suffices to assume that wϕ is a nonsimple factor of
some ysi

i , say wϕ = yp
i with 2 ≤ p ≤ si, since the argument is very similar when wϕ is

a nonsimple factor of either xr1 or xr2 . Hence

x = xr1 ys1
1 ys2

2 · · · y
si−1
i−1 yp′

i︸                 ︷︷                 ︸
e

· yp
i︸︷︷︸

wϕ

· yp′′

i ysi+1
i+1 · · · y

sk
k xr2︸              ︷︷              ︸

f

for some p′, p′′ ≥ 0 such that p′ + p + p′′ = si. The assumption w ≈ w′ ∈ idkS and
Lemma 2.2 imply that sim(w) = sim(w′) and non(w) = non(w′). It follows that
w′ϕ = y`i for some ` ≥ 2, and hence

y = e(w′ϕ)f = xr1 ys1
1 ys2

2 · · · y
si−1
i−1 yp′

i · y
`
i · y

p′′

i ysi+1
i+1 · · · y

sk
k xr2 ∈ Pk.

Case 2. wϕ belongs to (‡). Then

x = xr1−q1︸︷︷︸
e

· xq1 ys1
1 ys2

2 · · · y
sk
k xq2︸                ︷︷                ︸

wϕ

· xr2−q2︸︷︷︸
f

.

Write w = aub, where a,b ∈ X∗ and u ∈ X+ satisfy the following:

(B.1) a is the longest prefix of w such that aϕ is a prefix of xq1 , say aϕ = xp1 for some
p1 ∈ {0, 1, . . . , q1}; and

(B.2) b is the longest suffix of w such that bϕ is a suffix of xq2 , say bϕ = xp2 for some
p2 ∈ {0, 1, . . . , q2}.
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It follows that h(u)ϕ contains the first occurrence of y1 in x, and t(u)ϕ contains the last
occurrence of yk in x, that is,

(B.3) h(u)ϕ = xq1−p1 y1 · · · and t(u)ϕ = · · · yk xq2−p2 .

Suppose that u = w1w2 · · ·wr is in natural form, so that

w = aw1w2 · · ·wrb,

where w1,w2, . . . ,wr ∈ X
+ are pairwise disjoint words, each of which is either a

singleton or connected.
We are going to show that the word w satisfies the conditions of Lemma 3.4. First,

it is clear that the word w satisfies condition (i) of Lemma 3.4.

Lemma 4.3. The word w satisfies condition (ii) of Lemma 3.4.

Proof. The assumption w ≈ w′ ∈ idkS implies that |con(w)| < k + 1 = |con(wϕ)|.
Hence there exists z ∈ con(w) such that the factor zϕ of wϕ contains at least two
distinct letters. Therefore the word zϕ contains at least one of the following as factor:
xy1, y1y2, . . . , yk−1yk, yk x. Since each of these factors occurs precisely once in wϕ, the
letter z is simple in w. Further, since |con(zϕ)| ≥ 2 and con((ab)ϕ) = {x} by (B.1) and
(B.2), it follows that z < con(ab). Hence z ∈ con(wi) for some i. The proof is complete
if z = wi. Therefore assume that z , wi. Then, since wi is connected, the letter z is
sandwiched between two occurrences of some letter, say wi = · · · t · · · z · · · t · · · for
some t ∈ X. Hence

xq1 ys1
1 ys2

2 · · · y
sk
k xq2 = wϕ = aϕ · w1ϕ · · · (· · · tϕ · · · zϕ · · · tϕ · · · )︸                      ︷︷                      ︸

wiϕ

· · ·wrϕ · bϕ,

but it is easily seen from (B.3) that this is impossible. �

Lemma 4.4. The word w satisfies conditions (iii) and (iv) of Lemma 3.4.

Proof. By symmetry, it suffices to show that con(a) ∩ con(u) = ∅. The result holds
vacuously if con(a) = ∅, so assume that con(a) , ∅. Let z ∈ con(a) ∩ con(u). Since
z ∈ con(a), it follows from (B.1) that zϕ ∈ con(aϕ) = {x}, say zϕ = x` for some ` ≥ 1.
Further, h(u) , z , t(u) by (B.3). Then

xq1 ys1
1 ys2

2 · · · y
sk
k xq2 = wϕ = aϕ · h(u)ϕ · · · zϕ · · · t(u)ϕ︸                    ︷︷                    ︸

uϕ

·bϕ

= xp1 · xq1−p1 y1 · · · x` · · · yk xq2−p2 · xp2

by (B.1)–(B.3), but this is impossible by simple inspection. �

Therefore, since w satisfies conditions (i)–(iv) of Lemma 3.4, it follows that w′ is a
word of the form (3.1) that satisfies (i′)–(iv′). By (i′), (B.1) and (B.2),

(B.4) con(a′ϕ) = con(aϕ) ⊆ {x} and con(b′ϕ) = con(bϕ) ⊆ {x}.

It is clear that, by (iii′),

(B.5) if wi is singleton, then con(w′iϕ) = con(wiϕ).
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Suppose that wi is connected, so that the factor wiϕ of wϕ is also connected. Then,
since wϕ = xq1 ys1

1 ys2
2 · · · y

sk
k xq2 , the word wiϕ can be any of the following:

(a) xm1 ys1
1 ys2

2 · · · y
sk
k xm2 , where 1 ≤ m1 ≤ q1 and 1 ≤ m2 ≤ q2;

(b) nonsimple factors of xq1 and of xq2 ; or
(c) nonsimple factors of ys2

1 , y
s2
2 , . . . , y

sk
k .

Now by (ii), some w j is a singleton, so r ≥ 2. If wiϕ is from (a) and i > 1, then ϕ maps
the prefix aw1w2 · · ·wi−1 of w to a prefix of xq1 , and hence the maximality of a in (B.1)
is violated. By symmetry, if wiϕ is from (a) and i < r, then the maximality of b in (B.2)
is violated. Similarly, if wiϕ is from (b), then either (aw1w2 · · ·wi)ϕ is a prefix of xq1

or (wiwi+1 · · ·wrb)ϕ is a suffix of xq2 , and hence (B.1) or (B.2) is violated. Therefore
the only possibility is for wiϕ to be from (c). By (ii′),

(B.6) if wi is connected, then con(w′iϕ) = con(wiϕ) ⊆ {y1, y2, . . . , yk}.

It is then easily shown by (B.4)–(B.6) that

y = e(w′ϕ)f = e(a′ϕ)(w′1ϕ)(w′2ϕ) · · · (w′rϕ)(b′ϕ)f < X∗y1X
∗xX∗ykX

∗,

so that y < Qk. Since the identity x ≈ y is satisfied by the semigroup S with x ∈ Pk, it
follows from Lemma 4.1 that y ∈ Pk ∪ Qk. Consequently, y ∈ Pk. �

5. Proof of Theorem 1.2

Let S be any semigroup that satisfies the identities (1.1) but violates all of the
identities from (1.2). By Lemma 3.2, there exists a basis Σ of connected identities
for S . Working toward a contradiction, suppose that the semigroup S is finitely based.
Then, by Lemma 2.1, a finite basis Σfin for S can be chosen from the identities
in Σ. Hence there exists some fixed integer k ≥ 2 such that Σfin ⊆ Σ ∩ idkS . Since the
semigroup S satisfies the identity p ≈ q from (1.1b), where

p = xyn
1yn

2 · · · y
n
k x ∈ Pk and q = xyn

1xnyn
2xn · · · xnyn

k x ∈ Qk,

there exists some sequence

p = w0,w1, . . . ,wm = q

of words where each identity wi ≈ wi+1 is directly provable from some identity in
Σfin. Clearly, w0 = p ∈ Pk. If wi ∈ Pk for some i ≥ 0, then wi+1 ∈ Pk, by Lemma 4.2.
Therefore, by induction, wi ∈ Pk for all i. But this implies the contradiction q = wm ∈

Pk. Consequently, the finite basis Σfin for the semigroup S does not exist.

6. A1 × B1 is nonfinitely based

We use Theorem 1.2 to show that the semigroup A1 × B1 is nonfinitely based.

Lemma 6.1.

(i) The semigroup A1 satisfies the identities (1.1) but violates the identities (1.2a),
(1.2b) and (1.2c).
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(ii) The semigroup B1 satisfies the identities (1.1) but violates the identities (1.2a),
(1.2b), and (1.2d).

Proof. By symmetry, it suffices to establish part (i). It is routinely verified that the
semigroup A1 satisfies the identities (1.1a) and

xhynx ≈ xhxynx. (6.1)

For any k ≥ 2,

xyn
1yn

2 · · · y
n
k−1yn

k x
(6.1)
≈ xyn

1yn
2 · · · y

n
k−1xnyn

k x
(6.1)
≈ xyn

1yn
2 · · · x

nyn
k−1xnyn

k x
(6.1)
≈ · · ·

(6.1)
≈ xyn

1yn
2xn · · · xnyn

k−1xnyn
k x

(6.1)
≈ xyn

1xnyn
2xn · · · xnyn

k−1xnyn
k x.

Therefore A1 also satisfies the identities (1.1b). Since

(endn)n+1 = 0 , c = endn,

en(aen)n+1 = 0 , a = enaen,

1n(endn)21nb1nen1n = 0 , a = 1nendn1nb1nen1n,

the semigroup A1 violates the identities (1.2a), (1.2b) and (1.2c). �

Theorem 6.2. The semigroup A1 × B1 is non-finitely based.

Proof. By Lemma 6.1, the semigroup A1 × B1 satisfies the identities (1.1) but violates
all identities from (1.2). The result thus follows from Theorem 1.2. �

Corollary 6.3. Let T be any semigroup that satisfies the identities (1.1). Suppose that
the semigroups A1, B1 belong to the variety generated by T . Then T is nonfinitely
based.

Proof. Since the semigroups A1, B1 belong to the variety generated by T , it follows
from Lemma 6.1 that the semigroup T violates all of the identities from (1.2). The
result now follows from Theorem 1.2. �

Acknowledgements
The authors would like to express their gratitude to Dr E. W. H. Lee for bringing

the finite basis problem for the semigroup A1 × B1 to their attention and for help in
checking and revising the article, and also to the referees for their valuable remarks
and suggestions.

References
[1] J. Almeida, Finite Semigroups and Universal Algebra (World Scientific, Singapore, 1994).
[2] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra (Springer, New York, 1981).
[3] C. C. Edmunds, ‘Varieties generated by semigroups of order four’, Semigroup Forum 21 (1980),

67–81.
[4] C. K. Gupta and A. Krasilnikov, ‘The finite basis question for varieties of groups—some recent

results’, Illinois J. Math. 47 (2003), 273–283.
[5] M. Jackson, ‘Finiteness properties of varieties and the restriction to finite algebras’, Semigroup

Forum 70 (2005), 159–187.

https://doi.org/10.1017/S0004972715001343 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715001343


466 W. T. Zhang and Y. F. Luo [13]

[6] P. A. Kozhevnikov, ‘Varieties of groups of prime exponent and identities with high powers’,
Candidate of Sciences Dissertation, Moscow State University, 2000 (in Russian).

[7] E. W. H. Lee, ‘Finitely generated limit varieties of aperiodic monoids with central idempotents’,
J. Algebra Appl. 8 (2009), 779–796.

[8] E. W. H. Lee, ‘Limit varieties generated by completely 0-simple semigroups’, Internat. J. Algebra
Comput. 21 (2011), 257–294.

[9] E. W. H. Lee, ‘A sufficient condition for the nonfinite basis property of semigroups’, Monatsh.
Math. 168 (2012), 461–472.

[10] E. W. H. Lee and J. R. Li, ‘Minimal nonfinitely based monoids’, Dissertationes Math. (Rozprawy
Mat.) 475 (2011), 65.

[11] E. W. H. Lee and M. V. Volkov, ‘Limit varieties generated by completely 0-simple semigroups’,
Internat. J. Algebra Comput. 21 (2011), 257–294.

[12] E. W. H. Lee and W. T. Zhang, ‘Finite basis problem for semigroups of order six’, LMS J. Comput.
Math. 18 (2015), 1–129.

[13] M. F. Newman, ‘Just non-finitely-based varieties of groups’, Bull. Aust. Math. Soc. 4 (1971),
343–348.

[14] G. Pollák, ‘A new example of limit variety’, Semigroup Forum 38 (1989), 283–303.
[15] M. V. Sapir, ‘On cross semigroup varieties and related questions’, Semigroup Forum 42 (1991),

345–364.
[16] O. Sapir, ‘Non-finitely based monoids’, Semigroup Forum 90 (2015), 557–586.
[17] M. V. Volkov, ‘An example of a limit variety of semigroups’, Semigroup Forum 24 (1982),

319–326.
[18] M. V. Volkov, ‘The finite basis problem for finite semigroups’, Sci. Math. Jpn. 53 (2001), 171–199.
[19] W. T. Zhang, ‘Existence of a new limit variety of aperiodic monoids’, Semigroup Forum 86 (2013),

212–220.
[20] W. T. Zhang and Y. F. Luo, A new example of limit variety of aperiodic monoids. Preprint.

WEN TING ZHANG, School of Mathematics and Statistics,
Lanzhou University, Lanzhou, Gansu 730000, PR China

Key Laboratory of Applied Mathematics and Complex Systems,
Lanzhou, Gansu 730000, PR China
and
Department of Mathematics and Statistics, La Trobe University,
VIC 3086, Australia
e-mail: zhangwt@lzu.edu.cn

YAN FENG LUO, School of Mathematics and Statistics,
Lanzhou University, Lanzhou, Gansu 730000, PR China

Key Laboratory of Applied Mathematics and Complex Systems,
Lanzhou, Gansu 730000, PR China
and
Department of Mathematics and Statistics, La Trobe University,
VIC 3086, Australia
e-mail: luoyf@lzu.edu.cn

https://doi.org/10.1017/S0004972715001343 Published online by Cambridge University Press

mailto:zhangwt@lzu.edu.cn
mailto:luoyf@lzu.edu.cn
https://doi.org/10.1017/S0004972715001343

	Introduction
	Preliminaries
	Connected identities
	Some restrictions on identities
	Proof of Theorem 1.2
	A1 B1 is nonfinitely based
	References

