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The Continuous Dependence on the
Nonlinearities of Solutions of Fast
Diffusion Equations

Jiaqing Pan

Abstract. In this paper, we consider the Cauchy problem

{

ut = ∆(um), x ∈ R
N , t > 0,N ≥ 3,

u(x, 0) = u0(x), x ∈ R
N .

We will prove that

(i) for mc < m,m0 < 1, |u(x, t,m)− u(x, t,m0)| → 0 as m → m0 uniformly on every compact subset

of R
N × R

+, where mc =
(N−2)+

N
;

(ii) there is a C∗ that explicitly depends on m such that

‖u( · , · ,m) − u( · , · , 1)‖L2(RN
×R+) ≤ C∗|m − 1|.

1 Introduction

We consider the Cauchy problem

(1.1)

{
ut = ∆(um), in Q,

u(x, 0) = u0(x), x ∈ R
N .

with

(1.2) 0 ≤ u0 ≤ M, 0 <

∫

RN

u0(x)dx < +∞,

where Q = R
N × R

+, N ≥ 3, and

(1.3) mc < m ≤ 1

with mc =
(N−2)+

N
. Since N ≥ 3, mc = 1 − 2

N
.
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In recent years there has been considerable interest in equation (1.1). The equa-

tion encompasses for different ranges of m a variety of qualitative properties with

a wide scope of applications. For example, the equation is degenerate parabolic as

m > 1 because the thermal diffusivity D(u) = um−1 vanishes as u → 0. So the prob-

lem only has weak solutions (see [6]) in this case. If m = 1, the equation is uniformly

parabolic, and therefore (1.1) has a unique, global, smooth solution

u(x, t, 1) =
1

(2
√
πt)N

∫

RN

u0(ξ)e−
|x−ξ|2

4t dξ.

But the situation is completely different for m < 1, where um−1 blows up as u → 0.

It is usually referred to as a singular diffusion equation. It has been proposed in

plasma physics and in heat conduction in solid hydrogen (see [5]). Furthermore, the

problems (1.1) and (1.2) also have a unique global smooth solution u(x, t,m) for any

given 0 < m < 1 (see [1]) such that

u(x, t,m) ∈ C∞(Q) ∩C
(

[0,+∞); L1(R
N )
)
.

As mentioned as above, we can see that the different values of m makes different

features of the solutions of (1.1). So we think it is reasonable to divide equation (1.1)

into three types:

• if m > 1, equation (1.1) is degenerate parabolic;
• if m = 1, equation (1.1) is uniformly parabolic;
• if m < 1, equation (1.1) is singular parabolic.

Although many authors have studied equation (1.1) (e.g., [4,8,10–12]) for the case

of m > 1 and m < 1, there are only a few results concerning the continuous depen-

dence on the nonlinearities of the equations. In 1981, P. Benilan and M. G. Crandall

(see [2]) discussed the continuous dependence on φ of solutions of the Cauchy prob-

lem of equation

(1.4)

{
ut −∆φ(u) = 0, in Q,

u(x, 0) = u0(x), x ∈ R
N ,

with u0 ∈ L1(R
N ) ∩ L∞(R

N ). If φn : R → R is continuous and nondecreasing for all

n = 1, 2, 3, . . . , φn(0) = 0, then they obtained the main result (see [2, p. 162]):

(1.5) ‖un( · , t) − u∞( · , t)‖L1(RN ) −→ 0, as φn −→ φ∞,

where un are the solutions of the Cauchy problem (1.4). However, as pointed out

by [3], the results of [2] are not written in terms of explicit estimates. To study the

problem more precisely, B. Cockburn and G. Gripenberg (see [3]), in 1999, extended

the result of [2] for the Cauchy problem of degenerate parabolic equations

{
ut = ∆(φ(u)) + ∇ · (Φ(u)),

u0(x) = h(x)
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with the conditions

Φ j ∈ C1(R,R
N ), Φ j(0) = 0, φ j(0) = 0, and φ ′

j(t) > 0, t ∈ R

for j = 1, 2. The explicit estimate obtained is

‖u1( · , t) − u2( · , t)‖L1(RN ) ≤ ‖h1 − h2‖L1(RN ) + ‖h1‖TV (RN )

×
(

t · sup
s∈I(h1)

‖Φ ′
1(s) − Φ

′
2(s)‖L∞(RN ) + 4

√
tN sup

s∈I(h1)

|
√
φ ′

1(s) −
√
φ ′

2(s)|
)

for any t > 0, where

I(h) = (−‖h−‖∞, ‖h+‖∞), h+
= max{h, 0}, h−

= −min{h, 0}.

To the author’s knowledge, there are not many other results on continuous depen-

dence on the nonlinearities of singular parabolic equation up to the date of writing.

To study the approximating character on the nonlinearities of parabolic equations

and to give more precise estimates, especially, to give an estimate of solutions between

linear and nonlinear equations, this paper discusses the Cauchy problem (1.1) for the

parameter m ∈ (mc, 1]. Owing to the fact that the case of m ≤ 1 is different from

the m > 1 case, so it is reasonable for us to expect (1.1) to have classical solutions. In

fact, Aronson and Bénilan ([1]) proved that problem (1.1) with condition (1.2) has a

unique solution u(x, t,m) ∈ C∞(Q)
⋂

C([0,+∞); L1(R
N )) for any given 0 < m < 1

and N ≥ 1. Moreover, u satisfies the following estimates

∆v ≥ −k

t
, (x, t) ∈ Q,(1.6)

−ku

t
≤ ut ≤

u

(1 − m)t
, (x, t) ∈ Q,(1.7)

where v =
m

m−1
um−1 and k = (m − mc)

−1. However, the total mass is not always a

constant. In fact, the mass conservation is true only for mc < m < 1, where mc is

defined by (1.3). Clearly, mc > 0 for N ≥ 3. This shows that some of the mass is lost

when m ∈ (0,mc) (see [12, pp. 90–94]).

Therefore, we only discuss our problem for mc < m ≤ 1 for N ≥ 3 in this paper.

As to the other case, for example, if N = 1, the result is different (see [9]).

Set

Ã =
{

u(x, t,m); m ∈ (mc, 1]
}
.

Then Ã is bounded uniformly for all m ∈ (mc, 1] in L∞(Q). In fact, [7] and the

first step of Theorem 1 in [5] proved that 0 < u(x, t,m) ≤ M for mc < m < 1.

Certainly, for the classical case of m = 1 we also have 0 < u(x, t, 1) ≤ M for all

t > 0. Therefore,

(1.8) 0 < u(x, t,m) ≤ M, u ∈ Ã.

Thus, our main result reads as follows.
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Theorem 1.1 Assume that u0 satisfies (1.2) and m, m0 ∈ (mc, 1). Then for any

compact subset Q ′ of Q,

(1.9) lim
m−→m0

|u(x, t,m) − u(x, t,m0)| = 0, uniformly on Q ′.

If m0 = 1, then there is a C∗ > 0 such that

(1.10)
∥∥u( · , · ,m) − u( · , · , 1)

∥∥
L2(Q)

≤ C∗|m − 1|, m ∈ (m∗, 1),

where

(1.11) m∗
= max

{ 2 + N

2N
,mc

}
.

Remark 1.2 First, if N < 3 (for example, N = 1 or 2), then (1.11) says that

m∗
=

3
2

or 1, so the interval (m∗, 1) is empty, and then (1.10) is not available. Thus

we only consider the case of N ≥ 3 in this paper. Second, the result (1.9) is true

for m0 ∈ (mc, 1), so it seems that (1.10) may be true for all m0 ∈ (mc, 1] also.

However, (1.10) is made possible by u(x, t, 1) ≤ (2
√
π)−N‖u0‖L1(RN ) · t−

N
2 . From

this inequality, we get the explicit decay rate of the function u(x, t, 1) on t as t is

large. In fact, if we have a similar inequality u(x, t,m) ≤ Ct−α for m0 ∈ (mc, 1)

with a sufficiently large α, we will get (1.10) for all m0 ∈ (mc, 1) employing the same

procedure. Certainly, under the present circumstances, we may also get a similar

estimate ∥∥u( · , · ,m) − u( · , · , 1)
∥∥

L2(QT )
≤ C∗|m − 1|

for m0 ∈ (mc, 1). However, this constant C∗ depends on T. This is the point.

2 Preliminary Lemmas

Lemma 2.1 Suppose u(x, t,m) ∈ Ã and m < 1. Then

(2.1)
∣∣∇(u

m−1
2 (x, t,m))

∣∣ ≤
√

1 − m

2Nm(m − mc)t
.

Proof Let v =
m

m−1
um−1(x, t,m), by (1.6) we have

vt = (m − 1)v∆v + |∇v|2 ≥ −(m − 1)k

t
v + |∇v|2.

Employing the right-hand side of (1.7), we have

|∇v|2 ≤ um−1 2m

N(1 − m)(m − mc)

1

t
.

This yields (2.1) immediately.

Lemma 2.2 For any u ∈ Ã, we have
∫

RN udx = u0 for t > 0, where u0 =
∫

RN u0dx.

Since N ≥ 3, as mentioned in the introduction, some of the mass is lost as time

grows for m ≤ mc, and neighborhoods of infinity is where the mass is lost (see [12],

p.90-92). Therefore the result of Lemma 2.2 is true only for all m > mc. We can find

the details in the proof of the lemma in [11].
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3 The Proofs

We are now in a position to prove our theorem. To do this, we will employ two steps

to show the details.

Step 1: Proof of (1.9)

Let Q ′ be a compact subset of Q, say Q ′
= Ω × (t1, t2), and Ω be any bounded

domain in R
N , t1 > 0. By (1.7), (1.8), (2.1), and the Arzela–Ascoli theorem, we know

that for any 0 < η < 1−mc

2
and m0 ∈ [mc +η, 1−η], there is a subsequence u(x, t,mk)

and a function u(x, t,m0) ∈ C(Q ′) such that

(3.1) lim
mk→m0

|u(x, t,mk) − u(x, t,m0)| = 0, uniformly on Q ′.

So we next only need to prove u(x, t,m0) = u(x, t,m0). In fact, for every t ∈ (t1, t2),

(3.2) ‖u(x, t,m0) − u(x, t,m0)‖L1(Ω) ≤ ‖u(x, t,m0) − u(x, t,mk)‖L1(Ω)

+ ‖u(x, t,mk) − u(x, t,m0)‖L1(Ω).

Letting m → m0, then (3.1) implies the first term of right-hand side of (3.2) con-

verges to zero. As to the second term, by (1.5) we can know that it tends to zero

also. Because u(x, t,m0) and u(x, t,m0) are continuous, we know u(x, t,m0) =

u(x, t,m0) in Ω. And then the arbitrariness of η, Ω, and t yield u(x, t,m0) =

u(x, t,m0) in Q for η ∈ (mc, 1). Finally, by the uniqueness we know that the total

sequence u(x, t,m) converges to u(x, t,m0) as m → m0. This means that we can drop

k in (3.1). So (3.1) implies (1.9).

Step 2: Proof of (1.10)

Take a function f ∈ C∞
0 (R

N ), 0 ≤ f (x) ≤ 1 and

f (x) =

{
1, |x| ≤ 1,

0, |x| ≥ 2,

then set fn(x) = f ( x
n

) for n > 0. Clearly, there is a positive constant c such that

|∇ fn| ≤ c
n

.

Let m ∈ (m∗, 1) and let m∗ be defined by (1.11). For every T > 0, let

H = um(x, t,m) − u(x, t, 1), ψ =

∫ t

T

Hdτ 0 < t < T.

Noticing [u(x, t,m) − u(x, t, 1)]t = ∆H, multiplying the equation by ψ fn, and then
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integrating by parts on R
N × (0,T), we have

(3.3)

∫ T

0

∫

RN

[u(x, t,m) − u(x, t, 1)]ψt fndxdt =

∫ T

0

∫

RN

∇H · ∇ψ fndxdt +

∫ T

0

∫

RN

∇H · ∇ fnψdxdt.

To estimate the right-hand side of (3.3), we see that

∣∣∣∣
∫ T

0

∫

RN

∇H · ∇ fnψdxdt

∣∣∣∣

≤ c

n

∫ T

0

∫

n≤|x|≤2n

|∇H · ψ|dxdt

≤ c

n

∫ T

0

(∫

n≤|x|≤2n

|∇H|2dx

) 1
2
( ∫

n≤|x|≤2n

ψ2dx

) 1
2

dt.

It follows from (2.1) and 0 < u ≤ M that

|∇(um)|2 ≤ 2m

N(1 − m)(m − mc)t
· u1+m ≤ Mm 2m

N(1 − m)(m − mc)t
· u.

Since
∫

RN udx = u0, it is easy for us to see
∫

n≤|x|≤2n
|∇H|2dx is bounded uniformly

with respect to n and ∫

n≤|x|≤2n

|∇H|2dx = O(t−1).

Similarly,
∫

n≤|x|≤2n
ψ2dx is also bounded uniformly with respect to n when m > m∗.

Thus we know that

(3.4)

∫ T

0

∫

RN

∇H · ∇ fnψdxdt −→ 0 as n −→ ∞.

Second, we set I(T) =
∫ T

0

∫
RN ∇H · ∇ψ fndxdt. Clearly,

I(T) =

∫ T

0

∫

RN

∂

∂t
∇ψ · ∇ψ fndxdt = −1

2

∫

RN

|∇ψ(0)|2 fndx(3.5)

= −1

2
‖∇ψ(0)

√
fn‖2

L2(RN )dx ≤ 0.

Combining (3.4) and (3.5) and letting n → ∞ in (3.3), we have

(3.6)

∫ T

0

∫

RN

[u(x, t,m) − u(x, t, 1)]ψt dxdt ≤ 0.
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On the other hand,

∫ T

0

∫

RN

[
u(x, t,m) − u(x, t, 1)

]
ψt dxdt

=

∫ T

0

∫

RN

[
u(x, t,m) − u(x, t, 1)

][
um(x, t,m) − u(x, t, 1)

]
dxdt

=

∫ T

0

∫

RN

[
u(x, t,m) − u(x, t, 1)

][
um(x, t,m) − um(x, t, 1)

]
dxdt

+

∫ T

0

∫

RN

[
u(x, t,m) − u(x, t, 1)

][
um(x, t, 1) − u(x, t, 1)

]
dxdt

def
= I1 + I2.

Hence (3.6) yields

(3.7) I1 ≤ |I2|.

We first estimate I1. It is easy to find a s0 ∈ (0, 1) such that

um(x, t,m) − um(x, t, 1)

=

∫ 1

0

d

ds

[
su(x, t,m) + (1 − s)u(x, t, 1)

]m
ds

= m
[

u(x, t,m) − u(x, t, 1)
] ∫ 1

0

[
su(x, t,m) + (1 − s)u(x, t, 1)

]m−1
ds

= m
[

u(x, t,m) − u(x, t, 1)
][

s0u(x, t,m) + (1 − s0)u(x, t, 1)
]m−1

.

Set ζ = s0u(x, t,m) + (1 − s0)u(x, t, 1), then

um(x, t,m) − um(x, t, 1) = mζm−1
(

u(x, t,m) − u(x, t, 1)
)
.

It follows from m < 1 and 0 < u ≤ M that 0 < ζ ≤ M and therefore,

(3.8) I1 ≥ mMm−1

∫ T

0

∫

R

[
u(x, t,m) − u(x, t, 1)

] 2
dxdt.

To estimate I2, we note that there exists a µ ∈ (m, 1) such that

|I2| ≤ |m − 1|
∫ T

0

∫

RN

|u(x, t,m) − u(x, t, 1)| · |uµ(x, t, 1) ln u(x, t, 1)|dxdt.
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Thus, combining (3.7) and (3.8) yields

(3.9)

∫ T

0

∫

RN

[u(x, t,m) − u(x, t, 1)]2dxdt

≤ M1−m
∣∣∣

m − 1

m

∣∣∣

√∫ T

0

∫

RN

[u(x, t,m) − u(x, t, 1)]2dxdt

×

√∫ T

0

∫

RN

|uµ(x, t, 1) ln u(x, t, 1)|2dxdt.

To estimate the right-hand side of (3.9), we write

∫ T

0

∫

RN

|uµ(x, t, 1) ln u(x, t, 1)|2dxdt

=

∫ 1

0

∫

RN

|uµ(x, t, 1) ln u(x, t, 1)|2dxdt +

∫ T

1

∫

RN

|uµ(x, t, 1) ln u(x, t, 1)|2dxdt

def
= J1 + J2.

Since µ ∈ (m, 1), when m ∈ (m∗, 1), then so is µ. Recalling 0 < u(x, t, 1) ≤ M for

t > 0, we see that there is a k1 > 0, such that u2µ−1(x, t, 1)| ln u(x, t, 1)|2 ≤ k1. Thus,

it follows from
∫

RN u(x, t, 1)dx = u0 that

(3.10) J1 ≤
∫ 1

0

∫

RN

k1u(x, t, 1)dxdt ≤ k1u0.

To estimate J2, we recall 0 < u(x, t, 1) ≤ u0

(2
√
πt)N , and let q ∈ (0, 2µ− 1 − 2

N
). Then

there is a k2 > 0 such that (u(x, t, 1))q(ln u(x, t, 1))2 ≤ k2. Since 2µ− 1 − q > 0 and

1 − Nµ + N
2

+
qN
2
< 0, we have

J2 ≤ k2

∫ T

1

∫

RN

[
u0

(2
√
πt)N

]2µ−1−qu(x, t, 1)dxdt(3.11)

≤ k2u0[
u0

(2
√
π)N

]2µ−1−q

∫ T

1

t−
N
2

(2µ−1−q)dt

≤ k2u0

µN − N
2
− 1 − qN

2

[
u0

(2
√
π)N

]2µ−1−q.
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Finally, using (3.9), (3.10), and (3.11), we have

{∫ T

0

∫

RN

[u(x, t,m) − u(x, t, 1)]2dxdt

} 1
2

≤

M1−m|m − 1

m
| ×

{
k1u0 +

k2u0

µN − N
2
− 1 − qN

2

[ u0

(2
√
π)N

] 2µ−1−q
}
.

Set

C∗
=

M1−m

m
×
{

k1u0 +
k2u0

µN − N
2
− 1 − qN

2

[ u0

(2
√
π)N

] 2µ−1−q
}
,

then

(3.12)

[∫ T

0

∫

RN

[u(x, t,m) − u(x, t, 1)]2dxdt

] 1
2

≤ C∗|m − 1|.

Since C∗ does not depend on T, (3.12) holds for all T ∈ (0,∞).

This completes the proof of theorem.
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