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PERMUTATION POLYNOMIALS WITH EXPONENTS
IN AN ARITHMETIC PROGRESSION

YouNG Ho PARK AND JUNE BOK LEE

We examine the permutation properties of the polynomials of the type hx . (z) =
z" (1 +z'+-.-+ z”‘) over the finite field IF, of characteristic p. We give sufficient
and necessary conditions in terms of k and r for hi,1(z) to be a permutation
polynomial over Fy for ¢ = p or p?. We also prove that if ki, ,(z) is a permutation
polynomial over Fg, then (k+ 1)° = £1.

1. INTRODUCTION

Let Fy be the finite field of ¢ = p™ elements of characteristic p. A polynomial
h(z) € Fqlz] is called a permutation polynomial (abbreviated to PP) over F, if it
induces a bijection on F,. In this article, we shall examine permutation properties of
the polynomials

hi,r,s(z) = :1:'(1 +zf 4+ a:’k)

over F,, where k,r, s are positive integers. These are the generalisations of the polyno-
mials of the type hi(z) = 14+z+---+z*, whose permutation properties were completely
characterised by Matthews when ¢ is odd [3]:

THEOREM A. For ¢ =p" odd, 1+z+--+z* is a permutation polynomial over
Fq ifand only if k=1 (mod p(q — 1)).

Let
9=
(saq - 1),

There are two permuting classes as given in [3]. The proof of the following theorem is

d= and S ={z € F, | z° = 1}.

essentially the same as that given in [3], with a minor correction. We include it for the
reader’s convenience.

THEOREM B. hyi, () is a permutation polynomial over F, if one of the following
conditions holds:
(1) ¥k+1=1 (modd),k+1€S and (r,g—1)=1;
(2) k+1=-1(modd), —(k+1)e S and (r—s8,g—1)=1.
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PROOF: Suppose (1). For any a € F,, we have

., 1- aa(k+1) . ¢

- = e 8

(1.1) hera(@)={ & 1o~ Ha#L
(k+1)a” ifa® =1

Since k+1 € S and (r,q — 1) = 1, we see that (k + 1)z maps S onto S and " maps
F, — S onto inself.
Now suppose (2). Then

r 1 — g*t+1) T8  ifaf#£1
(1.2) hre.rs(a) = { T e T ifa® #1,
(k+1)a" ifa®*=1

Since ~(k+1) € S and (r — s,g— 1) =1, we see that (k + 1)z maps S onto (—1)°§,
and —z"~¢ maps F, — S onto F, — (-1)°S. 0

In his Ph.D dissertation Matthews has conjectured that the converse of Theorem
B holds. We shall prove this conjecture for ¢ = p or p? (Theorem 4.6) and also prove
that £(k+1) € S if Agrqo(z) is a PP (Theorem 4.7). It is worth noting that, under
the assumption that hg,s(z) is a permutation polynomial over F,, the conditions
k+1=1 (modd), k+1 € S force (r,¢g—1) = 1 and the conditions £+ 1 = -1
(mod d), —(k+1) € S imply (r —s,g—1) = 1. As a consequence of Theorem 4.7, it
remains to show that £+ 1 = 1 (mod d) to prove this conjecture.

The Hermite criterion will be used in the sequel [2];

THE HERMITE CRITERION. f(r) € Fy[z] is a permutation polynomial over
Fg if and only if the following conditions hoid:
(1) f has exactly one root in Fy;
(2) for each integer t with 1 < t < ¢—2 and t # 0 (mod p), the reduction
of f(z)* (mod (z9 — z)) has degree < g — 2.

2. PRELIMINARY RESULTS.

Clearly, ki, s(z) and hy s s(z) are equal as functions on Fy if r = 7/ (mod ¢ — 1).
For k, we have the following:

PROPOSITION 2.1. Ifk =1 (mod p{qg —1)/(s,q— 1)), then hy ; s(a) = hyr s(a)
forall a € F,.
ProoF: If a®* =1, then hg,s(a) =a"™(k+1)=a"(l+1) = by q(a). If a® #1,

then ,
ask+1) _ 1 B ras( +1) 1

hi,r,s (a) =a” as—1 a a’— 1 = hirs (a)
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since k =1 (mod (¢ —1)/(s,q ~ 1)) if and only if sk = sl (mod ¢ — 1). 0
This Proposition justifies the following notational convention. For negative integers
k7, higrs(z) will mean hy . ,(x), where k',r’ are positive integers with &' = &
(mod p(qg — 1)/(s,g—1)) and ' =r (mod g ~ 1).
PROPOSITION 2.2. If hi,s(z) is a PP over F,, then

(+1.2020) o,

s,q—1

PROOF: Suppose hg rs(z) is a PP over Fy. First, hgrs(1) = k+1 5 hg r s(0) =0
(mod p), that is, (k+ 1,p) = 1. Since hgr4(a) = 0 ifand only if a” = 0 or 1+a’+-- -+
a** = 0, there is no @ such that @® # 1 and 14+a®+---+a*f = (a®*+1) —1)/(a® ~ 1) =
0. Thus if we let Ny = {a | a® = 1}, N = {a | a®*+1) = 1}, then N; = N,.
But |Ni| = (s,g—1) = (s(k+1),g—1) = |[Na|. Let s = (s,g—1)sg, g~ 1 =
(s,¢ — 1)go with (so,q0) = 1. Then (s(k+1),q — 1) = (s,q~1)((k + 1)so0,q0)
(s,g—1)(k+1,g0). Hence (k+1,g0) = 1. Thus we have 1 = (k+1,pgo) = (k +
1,p(g - 1)/(s,0 - 1)). o

PROPOSITION 2.3. hg,s(z) isa PP ifand only if h_y_2 ,_,s(z) is a PP.

PROOF: We show that Ay, s(a) = ~h_k_2,s-rs(a972) for all a € Fy. If a® =1,
then by () = (k-4 1)a” = ~(k ~ 2+ 1)(a) " (@) = ~h_k-a,_rras(a™). I
a® #£0,1, then

1 s(~k—1)
1 1 (=r+3) (E) -1 at(k+1) 1
p— f— = - —_ —_—— T - 7'____ —1 .
h—-k—2,—-r+s,s (a) <a> 1\° ) a 1—a? hk’r’s(a)
a
0
PROPOSITION 2.4. hi,,(z) isa PP over Fy if and only if hy _r_iss(z) isa
PP over F,.

PROOF: We have A rs(a972) = hx,_r—ks,s(a) for all a € Fy. i

Let (s,¢ — 1) = s'. We can choose an integer ¢ relatively prime to ¢ — 1 such that
st = s' (mod q —1). Since z* is a PP, h . ,(z) is a PP if and only if the composition
b r,s(zt) = bk rist(z) is a PP. Now

hirest(Z) = :L'”(l +z¥ et z"k) = hgre,or(z)  (mod (27 — z))

with s’ | (g — 1). Thus it suffices to consider the polynomials hy , ,(z) with s | (¢ —1).
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Now let (r,s) = e. If (e,g—1) # 1, then the equation z® = 1 has (e,q—1)
solutions and hg rs(z) sends all solutions of ¢ =1 to k + 1, so that hi,s(z) is not
a PP.If (e,g— 1) = 1, then z° is a PP and h s(2) = A (r/e),(s/¢)(2°) is a PP if and
only if hk,(r/e),(s/e) (:c) is a PP.

In conclusion, it is enough to consider the cases that (r,s) =1 and s | (g —1).
From now on, we shall always assume that

(r,s) =1and s|(g-1),

so that

3. CIRCULANT MATRICES.
We review elementary facts about circulant matrices. A circulant matrix of order
n is an n X n matrix of the form

co C1 ... Cp_—1
. Ch—1 C0 ... Cp_2
circ(co, €1y ..., Cn-1) = . )
(4] Ca ... Co
For a polynomial f(z) = co+ c1z +caz? + -+ cam12™ Y, Cf = cire(co, €1, - -5 Cne1)

is called the circulant matrix of f. It is well known that if a field F' has a primitive
nth root of unity ¢ and f(z) =co+c1z+ -+ ca_12"" ! € Flz], then Cy can be put
into a diagonalised form as follows [1, 4];

f(1)
f(©)
(3.1) Cy ~ £(¢?)
f(¢™ 1)

Suppose f(z) = a1z +---+aq-129! € Fy is a PP over Fy. The Hermite criterion
implies aq—1 = 0. Considering the circulant matrix M; = circ(0,a1,a2,...,a4-2) of
order g — 1, we then have
(3.2) det My = [] fla)= JJ a=-1.

a€Fy a€clFy
For a € Fy and positive integer m, we denote by a(n,) the row vector (a,a, - ,a)

with m a’s.
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Let C = circ(a(m), bn—m)) be an n x n circulant matrix with m a’s and (n — m)
b’s, where a # b. Then, using (3.1), it is not difficult to show

(3:3) serc o J (me+ (-mp) @bt i (mm) =1
| otherwise.
It is also clear that
(3.4) det circ(ag, ay,a2,...,a0p-1) = (—1)"-1 det circ(ay, az, - . -, Gn-1,01).
4. MAIN REsULTS

Returing to PP’s, we first consider the case s =1 and write hi () for hg,1(z).
Assume hg .(z) is a PP, and write

r+k=1lg—1)+m, where 0 < m < qg-—1.
Let f(z) = hir(z) (mod (z? — z)) with deg(f) < ¢. Then

e+ +zr )+ (+1)(z +--+2™)

i) H(z™ 1+ 4 2971, ifm>r
(=)= Uz +--+z™)+ (-1 (=" +- +2"71)
+H(z" + -+ 2971, ifm<r.

By the Hermite criterion, ! = 0 (mod p), and hence

"+ -4 z™, fmzr
flx) =

m+l ... —z™l ifm<r

First consider the case m 2 r, and let
M; = circ(0(r), 1m—r+1), 0(g-2-m))

be the circulant matrix of f(z) of order (¢ —1) x (g —1). Since
(4.1) m—r+1=k+1 (modp(q-1)),
we have (m —r +1,¢— 1) = 1 by Propostion 2.2. Hence, by (3.3) and (3.4),

det M; = (—1)""2) det cire(Lpm—r+1)s O(g—2—m+r)) = (-1 D(m —r +1).
By (3.2) and (4.1) we thus have
(42) k+l=m—-r+1=(-1)"Ddet M; = (-1)" D71 = (—1)"""  (mod p).

Similar argument shows that (4.2) holds also when m < r. Thus we have proved:
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THEOREM 4.1. Ifz"(1+x+- -+ z*) is a PP over F,, then
E+1=(-1)""" (mod p).

Now we prove that the conjecture is true for s =1 and ¢ = p.

THEOREM 4.2. hg,(z) = z"(1+z+---+2*) is a PP over F, if and only if
one of the following conditions holds:
(1) k+1=1 (mod p(p—1)) and (r,p—1)=1;
(2) k+1=-1 (modp(p—1)) and (r—1,p—-1)=1.

PROOF: The claim is easy for p =2, so we assume that p is odd. By Proposition
2.1, we may assume that 1 < k < p(p—1). We may also assume that 1 < r <p-—1.
As above, write
r+k=Il(p—1)+m, with0g< mp-2.
We know that | =0 (mod p) and m—r+1 = +1 (mod p). Since —(p —2) < m—r+1 <
p, we must have m—r+1=1,—-1or p— 1.
Casel. m —r +1 = 1: Then k¥ = l(p—1) = pp—1) and hkg,(a) =
a"(14+a+---+aPP~1) = g” for all a € F,. In this case, hy,(z) is
a PP over F, if and only if (r,g—1) =1.
Case 2. m-r+1=—1: Thenk=Il(p—1)-2 =p(p— 1)—2, and hi ,(a) = —a""?
for all a € Fp. So hi () is a PP if and only if (r—1,¢—1) =1.
Case3. m—r+1=p—1: Thenk=Il(p—1)+p—2=p—2 and, for a#0,1, we
have hg (a) =a"(1+a+---+aP"2) =a"(a?"! —1)/(a — 1) = 0. Thus
hi,r(z) is not a PP over F,. 1

Before we proceed to the case ¢ = p?, we need several observations.

LEMMA 4.3. Supposer <qandk<p(g—1). Ifbhy,(z) =" (1+z+ - +zF)
isa PPover Fg, thenr+k<qg—1orplg—1)<r+k<(p+1)(g—1).

PRrOOF: The coefficient of z9=! of hy,(z) (mod z9—2z) is [(r +k)/(qg —1)].
Hence, by the Hermite criterion, [(r+k)/(g—1)] = 0 (mod p). Since r + k <
g—1+p(g—1), we have [(r +k)/(g—1)] =0 or p. 0

LEMMA 4.4. Let r<q,qodd,and k<p(g-1). If (g-1)/2<r+k<q—1,
and if hi,(z) is a PP over Fy, then =0 (mod p) or r + k+1 =0 (mod p).

Proor: We have
heo(z)? =22 (1+ 22 + 322 + -+ (k+ 1)z* + kr* T + (K — 1)zF+% + .- 4 2%F)

Hence, the coefficient of z9~! in hk’,.(:l:)2 is given by (2k+1)— (¢g—1-2r) = 2k +
2r+2—qif2r+k<qg—1,orgivenby (q—1-2r)+1=q—-2r if2r+k>q—1.
By the Hermite criterion, the result follows. 0
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PROPOSITION 4.5. Suppose q isodd and 1 < k < p(g—1). If hg () isa
PP over Iy, then
k+1=tp(p—1) %1

for some integer t such that 1 <t < (g -p)/(p(p—1)) or (¢/p) <t < (g~1)/(p—1).

PROOF: We may assume that 1 < 7 < ¢ — 1. By Lemma 4.3, we then have
1<k<g-lor(p—-1)g—-1) <k <p(q— 1) Since k =tp(p—1) or k= tp(p — 1)-2
for some t by Theorem 4.2, we have 1 < t < (¢—1)/{(p(p—1)) + (6/p(p— 1)) or
(¢/p)—(1/p)+(6/p(p—1)) <t < (g - 1)/(p —1)+(8/p(p— 1)), where § = 0,2. Note
that (¢ — 1)/(p(p — 1))+ (6/p(p — 1)) = (a/p - 1)/(p— 1) +(p— 1+8)/(p(p — 1)), and
(¢/p —1)/(p—1) is an integer. When ¢ is odd, we have (p —1+9)/{(p(p—1)) < 1,
—(1/p) + (6/p(p~1)) > ~1 and (6/p(p—1)) < 1 for § = 0,2, and thus the claim
follows. 0

THEOREM 4.6. Let q=p or g=p®. Then by, (z)=3"(1+z+---+zF) isa
PP over F, if and only if one of the following conditions holds:
(1) k+1=1 (mod p(g—1)) and (r,q—1)=1;
(2) k+1=-1 (modp(g—1)) and (r—1,¢—-1)=1.

PROOF: Suppose hi,(z) is a PP over F,. We may assume that r < ¢ and
k<p(g—1). Let ¢ =p.

First we consider the case ¢ = 4. By Theorem 4.1, k = 2,4 or 6. Fy = {0,1,,
l1+a} where a’?=a+1. £ k=2, h,(a) =a"(1+a+a?) =0, and so hi,(z) is
not a PP over Fy. If k = 4, then hg(a) = —a"~! for a # 1 by (1.2) and thus h .(z)
is a PP over F, if and only if (r —1,¢g—1) =1 (Case (1)). If ¥ = 6, then hg,(a) =a”
for a # 0 by (1.1) and then hy .(z) is a PP over Fy if and only if (r,¢g — 1) = 1 (Case
(2))-

Now consider for odd ¢ = p?. By Proposition 4.5, k + 1 = tp(p — 1) £ 1 for some
t suchthat 1 <f<1or p<t<p+1. So the possible values of ¢t are 1, p or p+ 1.
We shall show that ¢t #1,p

First, assume t =1 sothat k=p(p—1) or k=p(p—1)—2. If r <p -1, then

q—l

g~1>r+k>k>2p*~-p-2>1— 5

Lemma 4.4 implies that 7 = 0 (mod p) or r £1 = 0 (mod p). This is impossible
since r<p—1. Thusr2p—-1. fk=plp—-1)—2andr=p—1, theng—1>
r+k=qg—-3> (¢g—1)/2. Again Lemma 4.4 implies r = p—1 = 0 (mod p) or
r+k+1=¢g—2=0 (mod p), which is absurd. If kK =p(p—1) — 2 and r = p, then
(r-1,p—1)=p—-14#1, and thus hx,(z) is not a PP by Theorem 4.2. Finally, if
p-1<r<qg—-1withk=pp-1)orp+1<r<g—1withk=pp-1)-2,

https://doi.org/10.1017/50004972700031622 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700031622

250 Y.H. Park and J.B. Lee 8]

then ¢ —1 <7+ k <2(¢g—1). So the coefficient of 9! in h ,(z) (mod (z9 — 1)) is
nonzero. By the Hermite criterion, hx,(z) is not a PP over F,.

Now consider the case t = p. Then k = p*(p—1) or k = p*(p— 1) — 2, so that
p(g—1)—k—2is p(p—1) — 2 or p(p— 1), respectively. Recall that hy,(z) is a PP
if and only if hyg—1)—k—2,4-r () is a PP (Proposition 2.3). Thus this case reduces to
the case t = 1 and hence hy ,(z) is not a PP.

Therefore t =p+1 and £+ 1 = p(¢— 1) £ 1. The remaining assertions are now

clear by (1.1) and (1.2). 1]
The tensor product or Kronecker product A ® B of two matrices A, B is defined
by
b11A ble e bluA
ba1A b A ... by A
A®B = . . .
bu1A bupA ... b A

where B = (bi;) is a u x v matrix. It is well known that
det A® B = (det A)”(det B)*

if A isa px p matrix, and B is a ¥ X v matrix [4].
Towards the conjecture, we consider the general s | (g —1).

THEOREM 4.7. If hg, ,(z) is a PP over Fg, then
(k+1)°=(-1)""" (mod p).

Furthermore,
k+leSor —(k+1)€S.

PROOF: Let s #1. Write r+ks=1[(g—1)+m, 0 < m < g—1 as before, and let
r = los + 1o with 0 < 79 < s. Let f(z) = hgrs(z) (mod (z? — z)) with deg(f) < q.
If m > r, then

f) =1z +zo "+ + 7)) + (1 +1) (2" +2"T + -+ 2™)
(z)

+ l(xm+s + $m+2a 4ot xq—1+r0—s)’
and if m < r, then

f@y=iz™+zo" +. -+ ™)+ (-1 (™ +2™ ... +277°)
+ l(.’L‘r + zr+s 4+t z.q—l+r0—s)-
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As before, let My be the circulant matrix of order (¢ — 1) x (g — 1) with the first row
vector (0,a1,a2,...,8q-2) Where f(z) = a1z +a2z® + - - - + ag_23972.
First, consider the case m > r. We have
det My = det circ(0(rg), 4, 0(s—1)s - - -» 1, 0¢s=1), ¢ + 1,05-1), - - -, 1 + 1,0(5-1),
L,0g—1), -+ 4, 0(s—145—r))
= (=1)C@ get circ(l, 051y, - - -, [y 0a—1)s L + 1, 00511 -, L + 1,051y,

l) 0(3_1), e l’ 0(8—1))
(r—ro)/s ((m—r)/s)+1  d—((m—rp)/s)-1
ro(g—2) . ' ' y '
=(-1) det{ I, ® cire| {,L,...,[,1+1,...,14+1, l,...,1

(r—ro)/e  ((m-r)/s)+1 d—((m-ro)/s)-1 s

e — ——
=(_1)'°<"'2)[detcirc<t,z,...,l,z+1,...,z+1, 1,...,1 )]

where I, is the s x s identity matrix, and d = (g —1)/s. By (3.3) and (3.4),

(r—ro)/s  ((m-r)/s)+1 d—((m-ro}/s)-1
N e e ——
detcirc(l,l,...,l,l+1,...,l+1, i...,1

((m=-r)/8)+1 d—{((m-r)/s)—1
e ——
=(=1)r—r0)@-1)/s 4o circ(l +1,...,0+1, 1,...,1

—(—1){r=ro)a-1/s (dl+ ms— T, 1) = (—1)TE Dy,

But, for odd ¢, we have

r

ro(g — 2) + [ ;To(d—l)]szro+los(d—1)Ero—losEr+los=r (mod 2).

Consequently, (k+1)° = (-=1)""" by (3.2).
By a similar argument when m < r we obtain

det Mf — (_l)ro(q—2)+(m-ro+23)(d—1)(k + 1)8.

For odd q, a short calculation shows that ro(¢g—2)+ (m—rg+28)(d—1) = m =
r + sk = r (mod 2). Here, the last congruence follows beause if s is odd, then d is
even and then k is even by Proposition 2.2. Thus we always have (k+1)° = (—1)""".

Finally the last assertion of our Theorem is clear for even ¢. Assume ¢ is odd. If
r is odd, then (k+1)° =1 so that k+1 € S. On the other hand, if r is even then s
must be odd, because if » and s were both even, then hy , ,(z) would be a polynomial
in 72 and then hg, s(z) could not be a PP. Thus if r is even, (—(k + 1))’ = 1. 1]
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