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SUBLATTICES AND INITIAL SEGMENTS OF THE 
DEGREES OF UNSOLVABILITY 

S. K. THOMASON 

In this paper we shall prove that every finite lattice is isomorphic to a 
sublattice of the degrees of unsolvability, and that every one of a certain class 
of finite lattices is isomorphic to an initial segment of degrees. 

Acknowledgment. I am grateful to Ralph McKenzie for his assistance in 
matters of lattice theory. 

1. Representation of lattices. The equivalence lattice <o(S) of the set S 
consists of all equivalence relations on 5, ordered by setting 6 ^ 0' if for all 
a and b in S, a 9 b => a 6f b. The least upper bound and greatest lower bound 
in S (S) are given by the U and f| operations: 

a(d[\6')b^a6b A ad'b, 

a(d[) 6f)b ^adaxd' a2d . . .dan6
fb 

for some fli, . . . , a» 6 5. 

By Whitman's theorem [7], every finite lattice is isomorphic to a sublattice 
of S (Ni) f where N± is either N or {0, . . . , m — 1} for some m £ N, depending 
on the lattice. For the purposes of this paper, a refinement of Whitman's 
theorem is more convenient. 

The usual notation for sequence numbers will be used. In particular, if 
or = (ao, • • • , am-i)i then lh(a) = m is the length of a, and (cr)z = ax if 
0 S oc < m. If also r = (b0, . . . , bk-i), then 

a * T = (a0j . . . , am_i, b0t . . . , 6fc—i)-

A finite lattice L will be said to be in normal form if there is a number m 
such that: the elements of L are subsets of {0, . . . , m — 1} ; the zero of L is 0; 
the unit of L is {0, . . . , m — 1} ; the order relation of L is set inclusion; and 
the meet operation of L is set intersection. Then the meet and join of the 
elements a and fi of L may be written a P\ /3 and a V 13, respectively. It is 
easily seen that every finite lattice is isomorphic to a lattice in normal form. 

If 5 is a set of sequences all of length m and a Ç1 {0, . . . , m — 1}, then =a 

is the equivalence relation defined on 5 by 

o- =« T <=> [(a-)x = (r)z for all x G a]. 
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T H E O R E M 1. If L is a finite lattice in normal form, then there is a recursive 

set S of sequences, all of length m (where {0, . . . , m — 1} is the unit of L), such 

that the correspondence a —> =a is a dual isomorphism of L onto a sublattice 

of&{S). 

Proof. (A simple direct proof is to appear in [6].) By W h i t m a n ' s theorem, 
applied to the dual of L, L is dually isomorphic to a sublat t ice of (f(Ni), 
where Ni is either N or {0, . . . , k — 1}. Let a —> Ba be the dual isomorphism. 
I t m a y be assumed t h a t 60 is the uni t in <f (Ni)y i.e. t h a t x B0 y for all x and y 
in Ni. For if this is not the case, let N2 be the Cartesian product of the 
^-classes in Nlf choose f0 € N2, and let iVi* = {/ \f £ N2 A / ( C ) = / 0 ( C ) 
for all b u t finitely many ^-classes C}. Set fOa*g <=*/(C) Ba g(C) for all C. 
Then it may be verified t h a t a —» 0a* is a dual isomorphism of L onto a sub-
lat t ice of S (Ni*) and t h a t d0* is the uni t in <f(Ni*). (This proof is due to 
McKenzie.) 

Let there be fixed for each a f L a (finite or infinite) enumerat ion Coa, Cia, . . . 
of the equivalence classes into which Ba par t i t ions iVi. For each x G Ni let 
a(x) = (xo, . . . , xm-i), where xt = j if x G C / and y is the least element of L 
such t h a t i Ç 7. Le t 5 = {o-(x)|x f iVi}. Jonsson 's proof [1] of W h i t m a n ' s 
theorem is so effective t h a t one may assume t h a t £ is recursive. T o show t h a t 
a —> = « is a dual isomorphism of L onto a sublat t ice of $ (S), it is sufficient 
to prove t h a t 

(1.1) x da y <^> <r(x) =a <r(y). 

Now 

x Bay=$ (x By y for all y (Z a) =ï [(cr(x)) t = (<r(y))i for all i £ a]=*a(x) ^ « ^ ( y ) . 

T h e reverse implication is proved by induction on the number of elements 
of a. If a — 0, then the proof is easy. If a ^ 0, then either a is the least element 
of L such t h a t i 6 a, for some i, or else a = j8 V 7 for some /3 and 7 in L both 
strictly contained in a. In the first case, 

[a(x) ==aa(y)] => [(o-(x)h = faCy))*] =*xBay, 

by definition of <r. In the second case, 

(a(x) E=aa(y)) =» (<r(x) =^a(y) A er(tf) = 7 <r(y)) 

=> (# 0/s 3> A x 07 3;) => x 0a 3>. 

For the initial segment problem it is necessary to consider even more 
special representat ions. 

Definition 1. A finite lat t ice L is well-representable if there is a finite set 
T = {t0, . . . , 4 - i} and dual isomorphism a —> Ba of Z, on to a sublat t ice of 
<o (T) such t h a t for every ufv £ T and i i , "̂2 = 0, . . . , k — 1, if 

(a)a£L(ta 0« tu =ïuBa v), 
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then there are to', . . . , t'k-i G T such tha t ttl' = & and ^-2' = v and for every 
i, j = 0, . . . , k — 1 and a £ L, 

tf Ba tj => ti 6a tj . 

Given a well-representation T of a latt ice in normal form, McKenzie 's 
construction (proof of Theorem 1) produces a well-representation T* such 
t ha t 0 / is the uni t in S(T*); then the final step of the proof yields a well-
representation by a set of sequences in the manner of Theorem 1. 

T H E O R E M 2. Either of the following conditions is sufficient for the finite lattice L 
to be well-representable: 

(a) L is distributive, 
(b) L = PG(F, m — 1) = (the subspace lattice of an m-dimensional vector 

space over the finite field F). 

Proof, (a) L may be assumed to be a sublatt ice of ^ ( { 0 , . . . , m — 1}). 
Let S be the set of all sequences of 0s and Is of length m and let 6a be = a . T h e 
computa t ions which verify well-representation are straightforward. (Indeed 
this representat ion satisfies the condition: if ti, . . . , tp £ 5 and ti ==ain<xj tj 
for all i, j , then there is a t £ 5 such t ha t / =ai tt for all i ; this is even stronger 
than the well-representability condition. T h e stronger condition was used in 
[5] to prove t ha t every finite distr ibutive latt ice is isomorphic to an initial 
segment of hyperdegrees ; t ha t proof could probably be modified for the 
weaker condition, to prove t ha t every well-representable latt ice is isomorphic 
to an initial segment of hyperdegrees.) 

(b) Let S be the set of all linear transformations of V into itself, where V is 
an m-dimensional vector space over the finite field F. For each 
a Ç PG(7 ? , m — 1), set <ï> 9a \l> <=> (x) (x £ a => $x = ^x). Direct computa­
tion shows t ha t the correspondence a —> 6a is a dual isomorphism. For example, 
if $ 6ar]0 ty, there are sets B0, Bh B2, B% which are bases of a C\ /3, a, /3, and V, 
respectively, and such tha t B0 C Bt C B% (i = 1, 2) . Then 

Ub if b Ç £ i , 
$'6 = / * & if J £ B2 - Bu 

[o \îb e B z - (B1^JB2)1 

defines a member <£' of 5 such t ha t 

$ 6a $ ' Bfi ^ . 

If 5 = { $o, • • • , $*-i} and if ^ and X are members of S such t h a t Ŝ x = Xx 
whenever ^Hx = $i2x, then the null space of ^ — X contains t h a t of 
<£u — <i\2 so t ha t there is an £2 G 5 such tha t ^ ( ^ ^ — $ i 2 ) = SI> — X. Let 
$ / = &($* — 3>i2) + X. Then a simple series of computat ions shows t h a t 
<£*/ = ^ , $i2

f = X, and <£* Ba $j => <£/ 0a <£/. T h u s the well-representability 
condition is satisfied. 
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Lachlan [2] has shown that every countable distributive lattice is isomorphic 
to an initial segment of degrees. In [3] Lerman proved that if n — 1 is a prime 
power, then the lattice Ln having n incomparable elements together with least 
and greatest elements is isomorphic to an initial segment of degrees. The key 
Lemma 2.3 in Lerman's proof expresses what is here called the well-represent-
ability of Ln. These lattices are exactly the lattices PG(F, 1). McKenzie has 
observed that every well-representable lattice is modular, but not conversely. 
Lerman also proved that the five-element non-modular lattice is isomorphic 
to an initial segment of degrees, using a weaker form of well-representability. 
We first became aware of Lerman's methods during the final stages of prepar­
ing this paper; we have not chosen to make the revisions necessary to include 
the weaker form of well-representability, largely because we cannot prove 
any very general theorems about it. 

2. Factorization of partial recursive f u n c t i o n a l . If S0, S i , . . . are 
sets of sequences, then S0 * . . . * Sw is the set of all <r0 * . . . * an such that 
(Tt € S* for i = 0, . . . , n, and S0 * Si * . . . is the union of the S0 * . . . * Sw 

over all n Ç N, together with the null sequence. I f S = S 0 * S i * . . . , then S 
will be called regular if {(a, n)\ a € 2n\ is recursive and 

(n)(<r)(r)(*,T G 2„->ZftOO = » W > 0). 

If in addition each 2n is finite, and the cardinality of 2n is a recursive function 
of n, then S will be called compact. 

Let f(x) = (/(0), . . . ,f(x — 1)). Associated with a regular set S is the 
class .F(S) = {f\f(x) G S for infinitely many x\. If S is compact, then 
F (2) is compact as a subspace of NN (topologized as a product of discrete 
spaces). In any case the classes [a] = { / | / G F(2) A f(lh(<r)) = a] for 
o- G S form a basis for F(S) . A class F Ç NN will be called regular if F = F'(S) 
for some regular S. Several useful properties of regular S are evident. If 
<r, r, and a * p are all members of S, then so is r * p. If a Ç S, define 

S n o - = { T | T £ S A T extends a} ; 

then S r\ a is again regular. Finally, if / Ç F(2), a € S, and 

(<T)X if x < lh(a), 
^ ( X ) \j(x) iix^lh(a), 

then g e F(2). 
Let efbe the partial function which results when the partial recursive (p.r.) 

functional writh index e is applied to the function / , and let eJ{x) be that part 
of ef which is computed using a knowledge of f(z) for z < x only; formally, 
e7{x)(y) is defined exactly when (Ew)1B^xTi1(f(w), e,y), in which case e7ix)(y) 
is U(WQ), where w0 is the least such w. 

The theory of factorization of p.r. functionals is naturally complicated by 
the partial nature of the functionals, so that many theorems require suitable 
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hypotheses restricting this partialness. One such restriction will be accom­
plished by a notational convention. The symbol TT (often with a subscript) 
will be used only to denote a p.r. functional having either the form wf(x) = 0 
or the form irf(x) = f(h(x)), where h is recursive, h~l(y) is finite for each y, 
and k(y) — max{x| h(x) = y] is recursive. In the former case, ircr is the 
partial function 

. _ (0 if x < lh(<r), 
(undefined otherwise, 

and in the latter case, 

Tarx\ = /(*)«*) if H*) < *M<0» 
(undefined otherwise. 

If 0 and 0' are partial functions, then 0 extends 0' if 0(x) is defined and 
equal to 0'(x) whenever the latter is defined, and 0 = 0' if each of 0, 0' extends 
the other. Also, 6(x) = 0'(x) if both 0(x) and 9'(x) are defined and the values 
are equal, 6(x) A df (x) if 0(x) and 6f (x) are both defined but 0(x) ^ 0'(x), 
and 0 A 0' if (Ex)(6(x) A 0r(x)). 

Definition 2. The p.r. functional with index e factors through the functional 
7T on the regular class F if there is a <2 such that d r / extends ^ / for all f £ F. 

Theorem 3 is a partial analogue for p.r. functionals of the well-known 
theorems which state that the commutative diagram 

L-+ 

\ I 
can be completed provided / does not identify more things than g does. 

THEOREM 3. If 2 is regular, then e factors through w on F(2) if and only if 
whenever f and g are in F'(S) and ef A e9, then irf 7^ irg. 

Proof. The "only if" part is trivial, and has nothing to do with recursiveness. 
On the other hand, if the condition is satisfied, then d!rf extends ef for all 
/ 6 F(2), where d is an index of the p.r. functional defined by the following 
instructions. 

Given irf (for an unknown/ Ç F(2)) and given x, search for a a £ S such 
that irf extends -KG and such that ea(x) is defined. (The special form of T 
makes wa a finite partial function such that one may determine, effectively 
relative to irf, whether irf extends ircr.) If and when such a a is found, give 
ea(x) as output. 

If / 6 ^ ( 2 ) is such that ef(x) is defined, then such a exist (e.g. f(y) for 
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sufficiently large y) and one eventual ly will be found. If ef(x) A. e'(x), then 
let 

W \f(y) i f y è / A W . 

Then h Ç ^ ( 2 ) by regulari ty of 2 , and wh = wf because of the special form 
of 7T and the choice of a so t h a t irf extends ira; bu t ef A # \ cont ra ry to hypothe­
sis. 

Wr i te <J =*T if lh(<r) = lh(r) and ira = 7rr, and / = *•£ if 7r/ = 7rg. T h e 
equivalence relation = T is more or less the kernel of 7r and will tu rn ou t to 
have more or less the propert ies expected of kernels. W e shall write ker T 
instead of =T sometimes, especially when we have in mind the propert ies of 
the relation as a member of <^(2) or <f(F(2)). T h e lat t ice propert ies of the 
kernels of p.r. functionals are of considerable importance, as witnessed by the 
two corollaries of Theorem 3 which follow. Let d e â ( g ) be the degree of g. 

COROLLARY 1. If 2 is regular and ker -K = (ker m) Ç] (ker TT2) in <^ (2) , 

then deg(Trf) = d e g ( ? n / ) U deg(7r 2 / ) for all f G F ( 2 ) . 

Proof. If either of 7n, 7r2 is the zero functional, then the result is easy; thus 
assume t h a t Ttf(x) = f(hi(x)) for i = 1, 2. Set t ing 

|Ai(#/2) if x is even, 
* 8 ^ {h2((x - l ) / 2 ) if x is odd, 

and irzf(x) = f(hz(x)) yields deg(7r/) = deg(7r3 /) by two applicat ions of 
Theorem 3. Bu t plainly d e g ^ s / ) = d e g O n / ) U degfaf). 

T h e following corollary has much the effect of a dual of Corollary 1. 
Corollaries 1 and 2, since they make f| in <^(2) correspond to U in the 
degrees and dually, explain why dual representat ions were discussed in § 1 
instead of representat ions. 

Le t us say t h a t e is densely defined on 2 if for each a £ 2 and z Ç N there 
is a r (E 2 extending cr such t h a t er{z) is defined. I t is easily seen t h a t e is 
densely defined on 2 if and only if for each a £ 2 there is an / £ M such 
t h a t e r is total . 

COROLLARY 2. 7f 2 is regular, ker ir = (ker 7n) U (ker 7r2) in <^(2) , and 

e is densely defined on 2 , then e factors through w on F(Z) if and only if e factors 
through both in and ir2 on F'(2). 

Proof. If e factors through 7r, then 

i n / = Trig =» 7Ti/(0y)) = in ( 1 6 0 ) f o r a 1 1 y 

=* w(/Cy)) = w(eCy)) f o r a11 y 
=» *"/ = IT g 

and similarly for 7r2. 
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Conversely, if e factors through both TI and 7r2, suppose (for reductio ad 
absurdum via Theorem 3) t h a t / , g Ç F (32), wf = irg, and ef Aeg. Let 2, 
o" = f(y) ê 2 and r = | ( y ) Ç 2 be such t h a t e*(z) A eT(z). Then a = TT, 
and hence by definition of U in <^(2) there are 0-1, . . . , o*n £ S such t h a t 

0" = 0"1 = = i r i C72 = T T 2 • • • = i r i 0 " w - l = TT2 CTn = T . 

If eai(z) were defined for each i, then the way would be clear; instead, one 
accomplishes the same effect as follows. Set a^ = <r*. Given 0-/ for some 
j < n and all i, choose o-J+1 extending o-'+i so t h a t ew(s) is defined (w = o-J+î) 
and set oV'+1 = ex;1 * p (where <r*+î = 0^+1 * p) for all i ^ 7 + 1. If j is even, 
then eœ(z) = ew '(s) (co = o*/+1, a/ = o-'+î) for the al ternat ive would violate 
the factorability of e through 7r2, and similarly if j is odd, using wi in place 
of 7T2. Then after a while one has eff(z) = cr*1'(z) = . . . = eCn' (z) — er(z) 
(where <r/ = o-/*4"1) contrary to the choice of 0-, r, z. 

I t follows immediately from Theorem 3 t ha t 

ker Tri = ker 7T2 => d e g O n / ) = deg(7r2/) for a l l / G F(2). 

For the initial segment problem one needs to approximate this result with an 
arb i t ra ry p.r. functional in place of one of the given functionals. 

Definition 3. (The p.r. functional with index) e factors exactly through 
7T on F if 

U)(gM g e F=> Or/ * n ^ e'Ae')]. 

By Theorem 3, if e factors exactly through T on F, then e factors through 
7T on F. 

T H E O R E M 4. Jf 2 w compact and e factors exactly through IT on F ( 2 ) , then 
TT/ EE r ^ / t f r a / / / 6 ^ ( 2 ) s^c& / t o ef is total. 

Proof. I t is clear t h a t ef ^ Tnf for all t h e / in question, and if w is the zero 
functional, then irf ^Tef trivially. Suppose then tha t irf(x) = f(h(x)) for 
all / and x. Then given the total function ef for some (unknown) / G ^ ( 2 ) 
one can effectively calculate (wf)(x) for an arbi t rary number x as follows. 
Let n be the least number such tha t whenever a G 2 0 * . . . * 2 n , then 
lh(a) ^ max{A(3/)| 3/ < x}. Make a list of all a G 2 0 * . . . * 2„. For each 
o- in the list search for {pi, . . . , pm} C 2 such tha t ePl' A ^ for i = 1, . . . , m 
and such t ha t [or] = [pi] \J . . . VJ [pm] (working on all the 0- in the list simul­
taneously) . If and when such pi, . . . , pm is found, erase a from the list. Con­
t inue until (Wâ) (x) = (TTT) (X) for all cr, r remaining in the list. 

(Note. (¥â)(x) = (7TO-(0), . . . , ira(x — 1)) is defined for all a in the list 
because of the choice of lh(a).) Then (we claim) (irf) (x) is the common value 
of (Wâ) (x) for o- still remaining in the list. 

There can be no doubt t h a t the procedure jus t outlined is effective (relative 
to the given total function ef), bu t it must be shown tha t the procedure 

https://doi.org/10.4153/CJM-1970-064-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-064-7


576 S. K. THOMASON 

te rminates and t h a t the last remaining (jrâ)(x) is in fact (irf)(x). I.e., it 
mus t be shown t h a t if a is in the original list and (¥a) (x) ^ ( T T / ) ( # ) , then 
a is eventual ly erased. 

If (jrâ)(x) 9e Or/)(x) , then wg 9e irf, and hence by exactness e° A ef, for 
every g £ [a-]. Th i s means t h a t the set of [p] such t h a t p £ 2, p extends a, 
and ep A ef const i tutes an open covering of the compact set [a]. A finite 
subcovering yields the desired pi, . . . , pm. 

L E M M A 5. If 2 is regular, e does not factor through T on [a] for any a Ç 2 , 
and e is densely defined on J F ( 2 ) , then for every ai =T a2 in 2 there are n = v r2 

in 2 extending <j\ and a2, respectively, such that eT1 A eT2. 

Proof. Choose z Ç N and en1 = x0"i2 in 2 extending <j\ such t h a t 
e'^Os) A ^ l 2 ( s ) , by Theorem 3. Let a2

l = <T2 * p, where ^ i 1 = O*I * p. Le t 
r2 Ç 2 extending 0-21 be such t h a t e r2(z) is defined. Then for i = 1 or i = 2, 
eT2(z) A eai%(z). For such i, let n = (7iz* * p, where r2 = C21 * p. T h e n n = , T 2 

and eT1 A er2. 

3. T h e s u b l a t t i c e t h e o r e m . By a sublat t ice of the degrees is mean t a 
set D of degrees such t h a t the greatest lower bound of any two degrees in D 
exists, and both it and the least upper bound are again in D. 

T H E O R E M 6. If L is any finite lattice, then there is a sublattice of degrees 
isomorphic to L. 

I t may be assumed t h a t L is in normal form, with uni t {0, . . . , m — 1}. 
Apply Theorem 1 to obtain a set 5 of sequences, all of length m, such t h a t 
a —-> =a is a dual isomorphism of L onto a sublat t ice of <o (S). Consider the 
regular set 2 = 5 * 5 * . . . . 

Extend the relations =a to all of 2 by set t ing a = a r if and only if 

lh(a) = lh(j) A (k)(i)((km + i < lh(a) A i 6 a) =» (a)km+i = (r)km+i). 

T h u s if (To, . . . , (Tko, T0, . . . , r*0 Ç 2 , t h e n <r0 * . . . * ako = a T0 * . . . * rkQ if 
and only if <rk =a rk for 0 S k S feo- Also for a 9^ $ define (7^ / ) (x) = f(h(x)), 
where h{x) = the x th member of {km + i\ k Ç N, i £ « } , so t h a t 
7ra<7 = 7Tar <=> (7 = a T. For a = 0 let (7ra/) (x) = 0, so t h a t the last equivalence 
will still hold. 

L E M M A 7. The map a —> = a is a dual isomorphism of L onto a sublattice 
of #(S). 

Proof. T h e only possible problem is to show t h a t = a n ^ = ( = «) U ( = /s) 
in ^ ( 2 ) . If a-, r G 2 and o- =«n^ r, then //z(o-) = lh{r) = kQm say (even if 
a Pi j8 = 0) . Say also t h a t cr = cr0 * . . . * o>0-i and r = ro * . . . * Tko-iy 

where each oVand rk is a member of S. Then for each k there is a chain 

(3.1) 0-* = 0*° = a S"*1 = / 5 • • • = <3 0 * " W = 7> 
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in S. Set pk = a0 * • . . * <rk0-.(k+i) * rk0-k * . . . * rkQ-i. Then p0 = a and 
pkQ-i — T and (3.1) states how to build a chain 

Pk = P*° = « P*1 =/3 . . . =/3 p / ( A ° = P*+l 

in 2, for & = 0, . . . , k0 — 2. Taken together, these latter chains constitute 
a chain 

a = a o-1 =£ o-2 = a . . . = a <rn ==p T, 

which is exactly what is required to show that =anp = ( = a) U (=p) in 
<f(2). 

If 2 is regarded as a relational system with relations =a for a G L, then there 
is an obvious isomorphism of 2 onto 2 P\ p for any p G 2. Hence Lemma 7 
applies to 2 P\ p as well. 

Now in order that {da| a G L) be a sublattice of the degrees isomorphic 
to L via the correspondence a —* da, it is necessary and sufficient that: 

(3.2) a £ p =* da S dp, 

(3.3) a $ p => da $ d^ 

(3.4) daV/3 = da U d^, 

(3.5) danp = da 0 d£ 

Implicit in (3.5) is the assertion that da Ç] dp exists. 
The strategy is to define o-0, ci, . . . G 2 such that crw+i extends an for each w 

and such that limnlh(an) = oo. Then D{ [<rn]\ n G N) consists of a single point, 
say h, and da is defined to be deg(irah). Then (3.2) is automatic, and (3.4) 
follows from Lemma 7 and Corollary 1 of Theorem 3, since h G F(2). To 
satisfy (3.3) and (3.5), it is necessary to define the an carefully. Consider the 
following requirements which might be met by a G 2: 

Rd,a,p: if a $ 0, then for every/ G M, if d^ / is total, then iraf j* ^ / ; 
Rd,a,e,p- for every/ G M, if d V a n d e ^ a r e total and equal, then dTa/ ^ r iranpf. 

Suppose that these requirements are enumerated Ro, Ri, . . . and that an 

is always chosen so as to meet Rn. Then (3.3) will hold (since Ra,a,fi will have 
been met for every d) and so will (3.5) (since Rd>a,e,p will have been met for 
every d and e). Thus the proof of Theorem 6 is reduced to showing that 
given any p G 2 and any one of the requirements Rd,a,& or Rd,e,a,p there is a 
a G 2 extending p which meets the given requirement. (It is easy to ensure 
that limjh(an) = co .) 

Rd,a,pm, Case l: a S 0. Trivial. 
Rd,a,$'i Case II: £ is not densely defined on [p], where £r = d'/s'. Let z £ N 

and (7^ 2 extending p be such that for no r G 2 extending a is eT(z) defined. 
Then Rd,a,p is trivially met by a. 
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Rd,a,p', Case III : otherwise. 
Since (=/s) $ (=«) in <^(2), there are pi, p2 G S extending p such that 
P l ==£ p2 but pi ^ a p2. Let s be such that (7rapi) (z) A (7rap2) (s), n 6 S extend­
ing pi such that dTPTi(z) is defined, i = 1 or 2 so that dTPTi(z) A (^aPi)(z)f 

and c = Pi * p' where ri = pi * p. Then ^o- = 7r,sTi and 

(iratr)(*) = M W A ^ W , 

so that i^d,a,̂  is met by o\ 
Rd,ate,&\ Case I: there is a a- G 2 extending p such that any of the following 

hold: 

(3.6) for n o / G [a] is d'« / total, 

(3.7) for nofe [*] is W* total, 

(3.8) d w A eTF. 

Then clearly such a a meets the requirement. 
Rd,a,e,p\ Case II: otherwise. 

Consider the p.r. functional with index c defined by: 

!

d*«?(z) if a Ç 2, o- extends p, and dT<*ff(z) is defined, 
eTfi(X(z) if 0- G S, o" extends p, and eT^(z) is defined, 
undefined otherwise. 

The failure of (3.8) ensures the consistency of the definition of c, c is densely 
defined on [p] because (3.6) and (3.7) fail, and finally c factors through both 
TTa and 7T/3 on [p] by Theorem 3. Since (ker 7ra) U (ker TT$) — (ker iranp) in 
$ (2 H p) by the remark after Lemma 7, Corollary 2 of Theorem 3 applies 
and c factors through irar\^ on [p]. But then Rd,a,e,e is met by p already. This 
completes the proof of Theorem 6. 

4. The initial segment theorem. An initial segment of degrees is a 
set D of degrees such that c^d£D=$c£D. 

THEOREM 8. If L is a well-representable lattice, then L is isomorphic to an 
initial segment of the degrees. 

By Theorem 3 it is safe to assume that L is in normal form with unit 
{0, . . . , m — 1} and that 5 = {TO, . . . , rfc_i( is a set of sequences of length 
m which, with the relations = a , satisfies the well-representability condition 
(Definition 1). Extend the relations =a to all of 2, and define p.r. functionals 
ira, as in § 3. 

A regular set 2 = 20 * 2i * . . . is said to be admissible if each Hn can be 
enumerated {TO1, . . . , T?_I} so that for all a £ L and i, j = 0, . . . , k — 1, we 
have ri1 = a TJ1 <=> Tt =a Tj. For example, S * 5 * . . . is admissible. If 2 is 
admissible and a- G 2, then 2 O a is admissible, since 

2 H <r = So' * 2n+i * 2w+2 * . . . 
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if a G S 0 * . . . * 2w_i and So' = {<? * T\ T G S W } . If S is admissible, then the 
relations = a form a sublatt ice of <^(S) dually isomorphic to L by a proof 
similar to t ha t of L e m m a 7. Indeed, S satisfies the condition for well-repre-
sentabili ty, in the following sense. If p0, pi G S, i0, ^1 G {0, . . . , k — 1}, and 

( « ) a € i ( T i 0 = a T ^ = > p 0 ^ a P i ) , 

then there are TO', . . . , T*_I G S such t ha t T< 0 ' = p0, T* / = pi, and for every 
i, j = 0, . . . , k — 1, we have 

For the hypothesis implies t ha t lh(p0) — lh(pi), since p o = 0 p i ; writing 
Pi = Pi0 * • • • * Pi1 (i = 0, 1), where pt

l G S z , one obtains the required 
ro', . . . , r£_i by applying the well-representability condition to the " fac tors" 
Pol and pi1 for each /. 

Actually, S has an even stronger well-representation proper ty : if 
(To, . . . , Ofc-i G S are such t ha t for all a G L and i , ; 'G (0, . . . , i - 1}, 
r^ = a r;- => (jj =a o-j, and if po, pi 6 S extend crzo, o-^, respectively, and satisfy 

(«)<*€£ ( r*0 =a Til =* PO ~a P i ) , 

then the r / can be chosen so as to extend the respective a> For i0 and i\ this 
is already the case; for all other i replace the first lh(at) terms of r / by the 
terms of o> 

Let R(cr, T) be a predicate satisfying 

(4.1) (a)(r){lh(a) = lh(r) =» (E(T')(ET')[(<T'9 T' extend 

cr, r, respectively) A R(v', T) A (a)a€I /(o- =a r => a' = a T ' ) ] } 

(4.2) ( ^ ( ^ ( ^ ( ^ { [ ( ^ r ' e x t e n d e r , 

respectively) A -R(cr, r ) ] =*R(af, T ' ) } 

(where the variables c, r, cr', r ' range over 2 ) . Also let o-0, . . . , o-*-i 6 S 
satisfy at =a<rj whenever n =« r;-. Then by &2 applications of the a rgument 
of the preceding paragraph one obtains oY, . . . , o*_i G S extending 
Co, . . . , (Tk-i, respectively, satisfying R(<r/, a/), and still satisfying a/ =a <r/ 
whenever rt =a TJ. 

Now suppose t ha t one needs to define an admissible S ' ÇI 2 such t h a t 
i?((7, r ) for all a, r G S / , w G iV. I t can be done by repeated applications of 
the above construction, provided R is recursively enumerable. Namely, let 
2 ' = 2 0 ' * 2 / * . . . where the S n ' are defined by induction on n as follows. 
Let {(To, . . . , o-fc-i} be the enumeration of 2 0 by which 2 = 2 0 * 2 i * . . . is 
admissible and obtain So' — {cr0', . . . , c^_i} by the construction. T o go from 
2 / to 2^+i is similar bu t requires kn+1 applications; say 2 n ' = {po, . . . , p ^ + i - i } , 
where each pt G So * . . . * S n i . T h e first application proceeds from 
po * cro, . . . , po * o*-i (where Swl+i = {o-0, . . . , ov_i} in the right order) to 
Po * oV, . . . , po * 0*_i. T h e second application proceeds 

from pi * oV, . . . , Pi * O"A;-I to pi * <r0
2, . . . , pi * a*_i. 
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We proceed in the same way through all the pt. If q = nk+1 — 1 and 
pg * O-QQ+1, . . . , pq * <4-î is the result of the last application, then 

The above results can be summarized in the following lemma. 

LEMMA 9. If 2 is admissible and R is a recursively enumerable predicate 
satisfying (4.1) and (4.2), then there is an admissible ? Ç 2 such that 

(f)(g)U, g e f (2) =» (En)R(J(n), £(«))]. 

In order that {da| a Ç L} be an initial segment of the degrees isomorphic 
to L via the obvious correspondence, it is necessary and sufficient that (3.2) 
and (3.3) hold and in addition 

(4.3) d ^ d ^ d = d^V (Ea)(a < 0 A d ^ d«). 

(The adequacy of (4.3) is a consequence of the flniteness of L.) 
The strategy this time is to define a sequence 2° 3 2 1 2 . . . of admissible 

sets so that n { ^ ( 2 n ) | w £ TV} consists of a single point h, and to define 
da = deé(7rafe). Again (3.2) is automatic. Consider the following requirements: 

Rd,a,p: if a $ 0, then for every / G ^ ( 2 ) , if d7^' is total, then Taf ^ dTPf; 
Re,p: if ef is total for some / Ç ^ (2) , e factors through 71-/3 on F (2 ) , and for 

no a < /3 does e factor through wa on F(2 ) , then e factors exactly 
through 7T/3 on F (2 ) . 

If for each requirement there is an n such that 2W meets the requirement, then 
(3.3) will hold because of Rd,a,p, just as in § 3. Because of Re,p, (4.3) will hold: 
if g is a function such that deg(g) = d and g = dTPh = eh (where e is chosen 
so that ef = d*Pf uniformly) and 2n meets Re,p, then either e factors through 
wa on F(2W) for some a < 0 (whence d ^ da) or else e factors exactly through 
T0 on F(Hn) (whence d = d# by Theorem 5). 

Thus the proof of the theorem reduces to showing that given an admissible 
2 and one of the requirements, there is an admissible 2 ' C 2 which meets 
the requirement. Rd,a,p can be handled just as in § 3; thus consider Retp. 

It may be assumed that 

(4.4) e is densely defined on 2, 

(4.5) e factors through irp on 2, 

(4.6) for each a < fi and cr £ 2, e does not factor through ira on 2 P c, 

for otherwise Re>$ can easily be met by 2 ' = 2 or 2 ' = 2 P a for appropriate 
a £ 2. As a consequence of (4.4) and (4.6), we have: 

(4.7) for each a ^ /3 and a 6 2, e does not factor through wa on 2 P o\ 

For ker 7ran/s = (ker 7ra) U (ker 71-/3) in # ( 2 Pi 0-), and hence by Corollary 2 
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of Theorem 3, if e factored through -Ka, then e would factor through wan^; but 
a H & < p. 

Thus, by Lemma 5, given a, r Ç 2, there are v , r' £ 2 extending a, r, 
respectively, such that 

(cOaez,0 =« r =» or7 =a T') and o-' 7^ T' =» e"' A eT'. 

If R(a, T) is o- ^ r => e0" A er, then i£ is a recursively enumerable predicate 
satisfying (4.1) and (4.2). Hence by Lemma 9 there is an admissible 2 ' Ç 2 
such that for every/ , g £ F(H'), R(f(n), gin)) holds for infinitely many n. 
Then £ factors exactly through w$ on 2 ' and i ? ^ is met by 2 ' . This completes 
the proof of Theorem 8. 

5. Conclusions. We hold that the key to verifying Sacks' conjecture (that 
every finite lattice is isomorphic to an initial segment of degrees [4, p. 171]) 
is Whitman's theorem. We believe that the consideration of factorization of 
p.r. functionals reduces the notational complexity of the problem, and we 
suggest that such considerations might be appropriate elsewhere in recursion 
theory as well. Finally we recommend a new approach to Sacks' conjecture: 
instead of proving the best result for larger classes of lattices, prove better 
results for the class of all finite lattices. An initial segment which is a lattice 
is just a sublattice with some strong additional properties; perhaps our 
Theorem 6 can be improved to include some additional properties. 
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