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AN ISOPERIMETRIC INEQUALITY FOR THE THREAD PROBLEM

FRANK MORGAN

Given a fixed curve Co in R" of length Lo and a variable curve C of fixed
length L ^ Lo, the thread problem seeks a least-area surface bounded by Co + C.
We show that an extreme case is a circular arc and its chord. We provide some
counterexamples and generalisations to higher dimensions.

1. INTRODUCTION

Given a fixed curve Co in Rn of length LQ and a variable curve C of fixed length
L ^ Lo, the classical thread problem seeks a least-area surface bounded by Co + C.
The desired isoperimetric inequality for the least area A should take the scale-invariant
form

(1) A < L2
of(L/Lo)

for a continuous function / which vanishes when L = LQ The classical isoperimetric
inequality says only that A ^ (Lo + L) /4TT = L%(1 + L/LQ) /4TT, which fails to vanish
when L = LQ. Theorem 2.3 provides a sharp isoperimetric inequality by proving the
extreme case to be a circular arc of arc length LQ and chordal distance L.

If the curve Co is allowed several components, no isoperimetric inequality of form
(1) holds (see Section 2.4).

The analogous question in higher dimensions (see Ecker [5]) replaces curves and
discs by the rectifiable currents (generalised A;-dimensional oriented surfaces) of geomet-
ric measure theory (see [6]). Theorem 3.1 shows that if the fixed boundary surface Co
is closed, the extreme case is two concentric spheres. Without the closure hypothesis,
no general isoperimetric inequality holds (see Section 3.2).

For more information on the thread problem see Dierkes, Hildebrandt, Kiister, and
Wohlrab [4, Chapter 10] and Nitsche [7].
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490 F. Morgan [2]

2. AN ISOPERIMETRIC INEQUALITY FOR THE THREAD PROBLEM

FOR CURVES IN R "

Theorem 2.3 provides our main isoperimetric inequality for the thread problem for

curves in R n . It depends on an extremal property of circular arcs, Proposition 2.2, a

special case of Schur's Lemma (see [3, p.36]), which follows easily from Lemma 2.1.

LEMMA 2 . 1 . For 0 < a < n, consider a map

mapping 0 to the south pole, of Lipschitz constant 1. Then \J "y\ is uniquely minimised
when 7 is an arc of a great circle.

P R O O F : Let fy = (ai, . . . , a n ) . Then an < 0, and an is maximised by an arc of
a great circle, for which a\ — ... — a n _ i = 0. Conversely if an is maximised, 7 must
consist of two arcs of great circles; if further a,\ — ... = an_i = 0, together they form
an arc of a single great circle. D

PROPOSITION 2 . 2 . A circular arc in R" uniquely minimises the distance be-

tween its endpoints among all curves with the same length and no greater curvature.

(A differentiable curve 7 parametrised by arc length has curvature less than or

equal to K if \i{t2) —V(*i)| < «l*2 - * i | - )

P R O O F : Apply Lemma 2.1 to 7 . D

THEOREM 2 . 3 . Let Co • [0, Lo] —¥ R" be a rectidable curve parametrised by arc

length. Choose another such C of prescribed length L,

\Co(Lo) - C0(0)| ^ L < Lo,

to minimise the area A of an area-minimising disc D bounded by Co + C. Then A is
less than or equal to the area Ao bounded by a circular arc of length Lo and its chord
of length L:

A ^ Ao

The final inequality is asymptotically sharp as L/Lo —> 1 •

The square root expresses the fact that varying a straight line sweeps out area to
first order but changes length only to second order.

R E M A R K . A variational argument shows that C is a C1 '1 curve, with constant curva-

ture away from Co and no greater curvature along Co, unless it is completely contained

in Co.

PROOF: We shall actually show that given Co of length Lo and

\Co(Lo) - C0(0)| ^ Lx ^ Lo,
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for all L\ ^ L ^ LQ , A is less than or equal to the area bounded by circular arcs of
lengths Lo, L with common chord of length L\. The special case L = L\ proves the
theorem.

If L = Lo, then the conclusion holds trivially with C = Co and D — 0. Com-
pactness arguments shows that the set of L for which the conclusion holds is closed.
Therefore it suffices to show that if the conclusion holds for any L > L\, it holds for
slightly smaller L.

If C is not a circular arc, then its curvature is not weakly bounded by that of
a circular arc of length L and chordal length L\ by Proposition 2.2, because L\ sj
\CQ(L0) — Co(0)|. Consequently, whether or not C is a circular arc, there are small
smooth variations of C reducing length by e and sweeping out a piece of surface Se of
area no greater than the area between circular arcs of lengths L and L — e.

To verify the final inequality, note that in terms of the radian measure 9 and radius
of curvature r of the arc, its arc length Lo = r6, its chord length L = 2r sin (0/2), and
its area Ao = {0 - s in0)r 2 /2 . (Since A0/Ll ~ 9/12 and 1 - L/Lo ~ 62/24, therefore
the inequality is asymptotically sharp.) After squaring both sides, the desired inequality
becomes

/(<?) = 6*+ 30 sin0 - (3/2)02 - (3/2) sin2 0 - 203 sin {9/2) > 0.

The estimates

(1)
(2)
(3) sin {9/2) < 9/2 - 03/233\ + 05/255!

imply that

f(0) > (04/245!) (-04 + 806>2 - 960) > 0

if 92 ̂  40 - 8\/lO ~ 14.7. The estimates

(2') sin2 9 ^ 92 - 23(94/4! + 2506/6! - 2708/8! + 2901O/1O!

and (3) imply that
f{O)>0a(a-b02) >0,

with

a = (3/2)(27/8!) - 3/7! - 2/255! « .00365,

b = (3/2)(29/10!) w .000212,

if 92^ a/b w 17.2. D
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2.4 SEVERAL COMPONENTS: If Co and C are allowed several components, the
least area need not even approach 0 as L —y Lo. Let Co be the top and bottom of a
rectangle of length 1 and height 1 — e and take L = 2. Then C must be the two sides
and the enclosed area equals 1 — e, which does not go to 0 as £ - + 0 .

One can, however, allow Co and C to have additional closed curves and allow
surfaces of higher genus. The same proof applies.

3. AN ISOPERIMETRIC INEQUALITY FOR THE THREAD PROBLEM

FOR CLOSED SURFACES IN GENERAL DIMENSIONS

Theorem 3.1 provides an isoperimetric inequality for the thread problem for closed
A:-dimensional surfaces in R n . As surfaces we use the oriented rectifiable currents of
geometric measure theory (see [6]), for which length or area (counting multiplicity) is
called mass M.

THEOREM 3 . 1 . Let Co be a k-dimensional rectifiable current without boundary

in R n . Choose another such C of prescribed mass

0 sj M(C) ^ M(C0)

to minimise the mass of a (k + l)-dimensional mass-minimising rectifiable current S

bounded by Co + C. Then

(1) M(5) < 7*+i (M(C0)(fe+1)/fc - M(C)(fc+1)/fe),

where 7fc+1 is the optimal isoperimetric constant

vol

(areaS*(l))(k+1)/k'

REMARK. The existence of such C and S comes from compactness arguments of ge-
ometric measure theory [6, 5.5]. (First, for given C, there is a minimiser S. Second,
choose C with mass less than or equal to the prescribed mass Mo to minimise M(5).
Third argue that unless M(C) = Mo, M(5) could be further reduced.)

A variational argument shows that C has weakly bounded mean curvature (unless
it is contained in Co) and hence is a C1 embedded manifold on an open dense set [1,
Section 8]. If k = n— 1, away from Co, C is a C°° embedded constant-mean-curvature
manifold (possibly with multiplicity) except for a singular set of dimension at most n—8
[6, 8.6].

PROOF: If the prescribed mass M = M(Co), then (1) holds trivially with C = Co
and 5 = 0. Compactness arguments show that the set of M_ for which (1) holds is
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closed. Therefore it suffices to show that if (1) holds for any M, it holds for slightly
smaller M.

If C is not a round sphere, then its mean curvature is not weakly bounded by the
mean curvature of a round sphere of area M [2, (3), p.452]. Consequently, whether or
not C is a round sphere, there are small smooth variations of C reducing mass by e
and sweeping out a piece of (fc + l)-dimensional surface Se of no greater mass than the
difference of the volumes of round spheres of area M and M — e:

M ( 5 . ) ^ 7 fc+1(M(fc+1)/fc - (M - £)<fc+1>/fc).

Therefore S + Se satisfies (1). D

3.2. NONCLOSED SURFACES. If the hypothesis that C be closed is omitted from The-
orem 3.1, no isoperimetric inequality holds. For example, let Co be a portion of a
catenoid of area A between two parallel congruent circles which bound discs of to-
tal area A — e. As e approaches 0, the volume enclosed does not approach 0. The
boundary circles may be connected by a thin bridge.

4. A SINGULAR EXAMPLE

Example 4.1 (Case b, L = Lo/2 ^ 4TT) shows that the thread need not be C1'1,
even at a point on the support of the area-minimising surface. (The thread is contained
in the fixed boundary curve.) We are allowing general oriented threads and surfaces of
any number of componments (rectifiable currents).

EXAMPLE 4.1. Let Co be a C1 "Figure 8" in R2, consisting of two crossing line
segments and two unit circular arcs, of total length LQ , as in Figure 1. For 0 ^ L ^ LQ ,
consider a thread (1-dimensional rectifiable current) C of length L which minimises
the area bounded by Co + C. Then C falls into one of the four cases a — d of Figure 2,
consisting of circular arcs of the same curvature and portions of Co. Each case occurs
for some Co, L, as indicated in Figure 2.

PROOF: CO and C are boundaries of oriented regions (rectifiable currents) RQ ,
R. The multiplicity of Ro is always ±1 . We claim that the multiplicity of R is always
±1 . Otherwise, changing every positive multiplicity of R to +1 and every negative
multiplicity to —1 would reduce the length M(C) and the area M(.Ro + /?); but C
minimises M(/?o + R) among curves with length at most L. Therefore R = Ri — R-\,
where R\ is the region of multiplicity 1 and R-i is the region of multiplicity —1.

Now we note that R\ is contained in the top half of the Figure 8. Otherwise,
replacing i?j by its restriction to the top half would reduce M(Ro + R) without in-
creasing the length of C, a contradiction. Similarly, i2_i is contained in the bottom
half of the Figure 8.
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Co

Figure 1 The fixed boundary curve Co is a "Figure 8."

By a variational argument, away from the vertex, dR is a C 1 ' l curve consisting of
circular arcs, all of the same curvature, and pieces of CQ , of no greater curvature. If it
contained two circles, expanding one and shrinking the other could maintain area and
reduce length (unless neither could be expanded as in degenerate Case c. Therefore, all
possibilities are represented by Cases a-d.

It remains to be shown that each case occurs as claimed. Case a must occur
if L ^ 2TT, because the Cases b-d have L > 2n. Similarly Cases c, d must occur
as claimed. We now show that Case b occurs if 2TT < L ^ min{L0/2, 4n} for the
equivalent problem of minimising L for fixed area A < Ao, where AQ is the area of half
the Figure 8. We must rule out Case c. Consider generalisations of Case c, in which
the circular arc has radius of curvature ri and the circle has radius r?, so that the
upper area is of the form Bor\ and the lower area equals Ao — irr%. For a minimiser,
r i = r2 = r 0 ; since B0TQ + AQ — "KTQ ^ AQ, therefore Bo < w. If we decrease ri and
r2 keeping area fixed, r\ ~£ r-i • Hence the rate of increase of length dR\ is less than
the rate of decrease of length dR~\ and total length decreases as we approach Case b,
which must therefore provide the minimiser. D
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Case Caseb

Case Cased

Figure 2 The solution to the thread problem falls into four
cases, all of which occur.
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