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Abstract

We investigate rare or small probability events in the context of large deviations
of the stochastic Camassa–Holm equation. By the weak convergence approach and
regularization, we get large deviations of the regularized equation. Then, by stochastic
equations exponentially equivalent to the corresponding laws, we get large deviations of
the stochastic Camassa–Holm equation.
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1. Introduction

We analyse the stochastic Camassa–Holm (CH) equationduε +
[
uεuεx + (1 − ∂2

x)−1∂x
(
uε2 + 1

2 uε2x
)]

dt =
√
ε dW

uε(x, 0) = ϕ(x),
(1.1)

where 0 < ε < 1 is sufficiently small, W is a Wiener process in the Hilbert space H
with convolution operator Q and (1 − ∂2

x)−1 f = p ∗ f , p = (1/2)e−|x| for all f ∈ L2(R).
The CH equation was derived by Camassa and Holm [4, 12] as a model of water

waves. The well-posedness of (1.1) in Hs(R) for s > 3/2 was established by Chen et
al. [5]. In this paper, we consider the rare events as described by a large deviation
principle (LDP) for the stochastic CH equation (1.1). The LDP is an active and
important topic in probability and statistics. Recently, it was found that the weak
convergence approach [10] along with stochastic control can be employed to obtain
the LDP.

For the special nonlinear terms of (1.1), the LDP for the solution of (1.1) cannot be
directly obtained by a weak convergence approach. However, by this method, we can
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get the LDP for uεη of the regularized equationsduεη +
[
uεηu

ε
ηx + (1 − ∂2

x)−1∂x
(
uε2η + 1

2 uε2ηx
)]

dt =
√
ε dWη

uεη(x, 0) = ϕη(x),
(1.2)

where 0 < η < 1, ϕη = ϕ ∗ ρη, Qη = Q ∗ ρη and ρη is the Friedrichs mollifier [11]. Then
we prove that the solution of uεη is exponentially equivalent to the solution of uε : that
is, for any λ > 0,

lim
ε→0

ε ln P
(

sup
t∈[0,T ]

‖uεη − uε‖2Hs > λ
)

= −∞, (1.3)

from which it follows that {uε} satisfies the LDP [8, Theorem 4.2.13].
This paper is organized as follows. In Section 2, some standard definitions and

results of the LDP are recalled and then, in Section 3, the main theorems and their
proofs are given. The paper concludes with a brief discussion in Section 4.

2. Large deviation principle

Let us first recall some standard definitions and results from the large deviation
theory. Let Xε be a family of random variables defined on a probability space (Ω,F ,P)
and taking values in some Polish space E [9].

Definition 2.1. A function I : E → [0, +∞] is called a rate function if I is lower
semicontinuous. A rate function I is called a good rate function if the level set
{x ∈ E : I(x) ≤ K} is compact for each K <∞.

Definition 2.2. The family {Xε} is said to satisfy the LDP with rate function I if, for
each Borel subset A of E,

− inf
x∈Ao

I(x) ≤ lim inf
ε→0

ε ln P{Xε ∈ A} ≤ lim sup
ε→0

ε ln P{Xε ∈ A} ≤ − sup
x∈Ā

I(x),

where Ao and Ā denote the interior and closure of A in E, respectively.

Definition 2.3. The sequence {Xε} is said to satisfy the Laplace principle with rate
function I if, for each bounded continuous real-valued function h defined on E

lim
ε→0

ε lnE
[

exp
(
−

1
ε

h(Xε)
)]

= − inf
x∈E
{h(x) + I(x)}.

Suppose that Gε : C([0, T ]; H) → E is a measurable map and Xε = Gε(W(·)).
Let A denote the class of H-valued Ft-predictable processes v which satisfy∫ T

0 ‖v(r)‖2H dr <∞ almost surely (a.s.). Let S M = {v ∈ L2(0,T ; H) |
∫ T

0 ‖v(r)‖2H dr ≤ M}.
The set S M endowed with the weak topology is a Polish space. DefineAM = {v ∈ A |
v(ω) ∈ S M , P-a.s.}.

Now we formulate the following sufficient condition for the Laplace principle
(equivalently, LDP if E is a Polish space) of Xε as ε → 0.
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Assumption 2.4. There exists a measurable map G0 : C([0, T ]; H)→ E such that the
following two conditions hold.

(i) If {vε ∈ AM | ε > 0} as a random variable in S M converges to v ∈ AM in
distribution as ε → 0 for some 0 < M <∞, then

Gε
(
W(·) +

1
ε

∫ ·

0
vε(r) dr

)
→G0

( ∫ ·

0
v(r) dr

)
in distribution, as ε → 0.

(ii) For M <∞, the set KM = {G0(
∫ ·

0 v(r) dr) | v ∈ S M} is a compact subset of E.

For each g ∈ E, define

I(g) = inf
v∈
{
L2([0,T ];H)|g=G0

( ∫ ·
0 v(τ) dτ

)} {1
2

∫ T

0
‖v(r)‖2H dr

}
, (2.1)

where the infimum over an empty set is taken as∞.
The following theorem was proven by Budhiraja and Dupuis [3].

Theorem 2.5. Let Xε = Gε(W(·)). If {Gε} satisfies Assumption 2.4, then the family
{Xε | ε > 0} satisfies the Laplace principle in E with the rate function I given by (2.1).

3. The main results
In this section, we give the LDP for uεη and uε . Denote by Ls the space of

Hilbert–Schmidt operators from H into Hs(R) with the norm ‖Q‖2
Ls = tr(Q∗Q) =∑

k∈N ‖Q1/2ek‖
2
s , where (ek)k∈N is an orthogonal basis of L2. Let C be a constant in

the rest of the paper, which may alter in different places.
Let XT = C([0, T ]; Hs), s > 3/2. It follows that (see [3]) there exists a Borel-

measurable function Gε : XT → XT such that uεη = Gε(Wη). Set ũεv(·) = Gε(Wη(·) +

(1/
√
ε)

∫ ·
0 vη(s) ds). Then, by Girsanov’s theorem [13], ũεv(·) is the unique mild solution

on [0,T ] of the equationsdũεv +
[
ũεvũεvx + (1 − ∂2

x)−1∂x
(
ũε2v + 1

2 ũε2vx
)

+ vη
]
dt =

√
ε dWη

ũεv(x, 0) = ϕη(x).

Let us introduce the skeleton equation [10] associated with (1.2), that is,dũv +
[
ũvũvx + (1 − ∂2

x)−1∂x
(
ũ2

v + 1
2 ũ2

vx
)

+ vη
]
dt = 0

ũv(x, 0) = ϕη(x).
(3.1)

The existence and uniqueness of the solution ũv to (3.1) in C([0, T ]; H∞) can be
obtained (see, for example, [5, Theorem 3.1]).

Define G0 : XT → XT by

G0(h) =

ũv if h =

∫ ·

0
vη(r) dr for some v ∈ L2([0,T ]; Hs)

0 otherwise.

The following lemmas are needed.
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Lemma 3.1 [2, 5]. Under the Assumptions 2.4, the following estimates hold for any η
satisfying 0 < η < 1 and s > 0.

(i) ‖u0η‖
2
Hq +

∫ t
0 ‖vη‖

2
Hq dτ + ‖Qη‖

2
Lq
≤ cη(s−q)/2 for any q > 0.

(ii) If q , s, then E[‖u0η − u0‖
2
Hq +

∫ t
0 ‖vη − v‖2Hq dτ] + ‖Qη − Q‖2

Lq
≤ cη(s−q)/2.

(iii) If q = s, then E[‖u0η − u0‖Hq ] + ‖Qη − Q‖2
Lq

= o(1).

Here c is a constant, independent of η.

Lemma 3.2. Let s > 3/2, ϕ(x) ∈ Hs, k = 0, 1 and Q ∈ Ls. Then

lim
R→+∞

ln P
(

sup
0≤t≤T

‖ũεv‖
2
s > R

)
= −∞, (3.2)

sup
t∈[0,T ]

‖ũv‖
2
Hs+k ≤ Cη−k/2. (3.3)

Proof. Let Φ(x) = ln(1 + x), x > 0. Then Φ′(x) = 1/(1 + x) and Φ′′(x) = −1/(1 + x)2.
Define τR = inf{t > 0, ‖ũεv‖

2
Hs ≥ R}, R > 0. Applying Itô’s formula [6] to Φ(‖ũεv(t ∧

τR)‖2Hs ),

Φ(‖ũεv(t ∧ τR)‖2Hs ) = Φ(‖ϕη‖2Hs ) + 2
∫ t∧τR

0
Φ′(‖ũεv‖

2
Hs )(Λsũεv,Λ

sh(ũεv, ũ
ε
vx)) dτ

+ 2
∫ t∧τR

0
Φ′(‖ũεv‖

2
Hs )(Λsũεv,Λ

svη) dτ

+ ε

∫ t∧τR

0
Φ′′(‖ũεv‖

2
Hs )‖Qη‖

2
Ls dτ

+ 2
√
ε

∫ t∧τR

0
Φ′(‖ũεv‖

2
Hs )(Λsũεv,Λ

s dWη), (3.4)

where
h(u, ux) = uux + (1 − ∂2

x)−1∂x
(
u2 + 1

2 u2
x
)
. (3.5)

Since ‖ũεv‖L∞ , ‖ũ
ε
vx‖L∞ ≤ C‖ũεv‖Hs with s > 3/2,∫

R

(Λsũεv)(Λsh(ũεv, ũ
ε
vx)) dx ≤C(‖ũεvx‖L∞‖ũ

ε
v‖

2
Hs + ‖ũεv‖Hs‖ũε2v ‖Hs−1 )

≤C(‖ũεv‖L∞ + ‖ũεvx‖L∞)‖ũεv‖
2
Hs ≤ C‖ũεv‖

3
Hs . (3.6)

Hence, Young’s inequality [15] yields

2Φ′(‖ũεv‖
2
Hs )(Λsũεv,Λ

sh(ũεv, ũ
ε
vx)) ≤ C‖ũεv‖Hs ≤ C(1 + ‖ũεv‖

2
Hs ). (3.7)

By Hölder’s and Young’s inequalities,

Φ′(‖ũεv‖
2
Hs )

∫
R

ΛsũεvΛ
svη dx ≤ C(‖vη‖2Hs + ‖ũεv‖

2
Hs ). (3.8)
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It follows from (3.4)–(3.8) and Lemma 3.1 that

EΦ(‖ũεv(T ∧ τR)‖2Hs ) ≤ C + C
∫ T∧τR

0
EΦ(‖ũεv‖

2
Hs ) dt,

where EΦ is the mathematical expectation of random variable Φ. Applying Gronwall’s
inequality [14] yields

EΦ(‖ũεv(T ∧ τR)‖2Hs ) ≤ C.

Since P(sup0≤t≤T ‖ũ
ε
v‖

2
s > R)Φ(R) ≤ EΦ(‖ũεv(T ∧ τR)‖2Hs ) ≤ C,

ln P
(

sup
0≤t≤T

‖ũεv‖
2
s > R

)
≤ ln C − ln(Φ(R)), (3.9)

and making R tend to +∞ in (3.9) proves (3.2).
By multiplying both sides of regularized (3.1) by ΛsũvΛ

s, then by integration and
estimation similar to the above,

‖ũv‖
2
Hs ≤ ‖ϕη‖

2
Hs +

∫ t

0
‖vη‖2Hs dr + C

∫ t

0
‖ũv‖

3
Hs dr = y(t).

Then dy/dt ≤ Cy3/2, which yields y(t) ≤ C, and hence proves (3.3) with k = 0.
Multiplying both sides of regularized (3.1) by Λs+1ũvΛ

s+1 and integrating, and then
using (3.3) with k = 0, gives

‖ũv‖
2
Hs+1 ≤ ‖ϕη‖

2
Hs+1 +

∫ t

0
‖vη‖2Hs+1 dr + C

∫ t

0
‖ũv‖Hs‖ũv‖

2
Hs+1 dr

≤Cη−1/2 + C
∫ t

0
‖ũv‖

2
Hs dr,

which, with Gronwall’s inequality, implies (3.3). �

Remark 3.3. We cannot get the secondary moment bound of ũεv. Fortunately, it is
sufficient to prove Theorem 3.4 by the probability bound in (3.2) and the stopping
time.

We formulate the Freidlin–Wentzell type estimate [8] for uεη.

Theorem 3.4. The solution set {uεη} satisfies the LDP in C([0, T ]; Hs), s > 3/2 with a
good rate function

I(g) = inf{
v∈L2([0,T ];Hs)|g=G0

( ∫ ·
0 vη(r) dr

)} 1
2

∫ T

0
‖vη(r)‖2Hs dr.

Proof. Suppose that {vε} ⊂ AM and it converges to v ∈ S M in distribution. We prove
that Gε(Wη(·) + (1/

√
ε)

∫ ·
0 vεη(s) ds) converges to G0(

∫ ·
0 vη(s) ds) in distribution, as

ε → 0. Let wη = ũεvε − ũv. Then wη satisfieswηt + h(ũεvε , ũ
ε
vε x) − h(ũv, ũvx) + vεη − vη =

√
ε dWη

wη(x, 0) = 0,
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where h(u, ux) is given in (3.5). For R > 0, we define a stopping time

τR = inf{t ∈ [0,T ]; ‖ũεvε ‖
2
Hs > R}.

For 1/2 < q < min{1, s − 1}, similar to the estimates in [5, Proposition 3.1],

E
[

sup
t∈[0,T∧τR]

‖wη‖
2
Hq

]
≤ C(ε + 1)η(s−q)/2e1+

√
R. (3.10)

By using the estimates of Chen et al. [5, (4.48)–(4.50)], the inequality (3.10),
Gronwall’s inequality and Itô’s formula,

E
[

sup
t∈[0,T∧τR]

‖wη‖
2
Hs

]
≤ C

{
(ε + 1)η(s−q−1)/2 +

∫ t∧τR

0
‖vεη − vη‖2Hs dr

}
e1+

√
R,

from which it follows that

E
[

sup
t∈[0,T∧τR]

‖wη‖
2
Hs

]
→ 0 as ε → 0. (3.11)

Given an arbitrarily small constant δ > 0, by Lemma 3.2, one can choose R such
that P(τR ≤ T ) ≤ δ/2. For such R and for all λ > 0, by (3.11), there exists ε0 such that
for ε < ε0, P(supt∈[0,T ] ‖wη(t ∧ τR)‖Hs > λ) ≤ δ/2. Therefore

P
(

sup
t∈[0,T ]

‖wη(t)‖Hs > λ
)
≤ P(τR ≤ T ) + P

(
sup

t∈[0,T ]
‖wη(t ∧ τR)‖Hs > λ

)
≤ δ.

This proves that ũεvε converges to ũv in probability in C([0,T ]; Hs).
By weak compactness of S̃ M , we can select a subsequence of the set vεη ∈ S̃ M , still

denoted in the same way, which converges weakly to a limit vη ∈ S̃ M . Let wη = ũvε − ũv.
Then w satisfies wηt + h(ũvε , ũvε x) − h(ũv, ũvx) + vεη − vη = 0

wη(x, 0) = 0.

The rest of the proof can be obtained as (3.10)–(3.11) with ε = 0, details of which we
omit here. This completes the proof of Theorem 3.4. �

The following lemma shows that the probability that the solutions uεη, uε stay outside
an energy ball is exponentially small.

Lemma 3.5. Let uε and uεη be the solutions of (1.1) and (1.2), respectively, and let
k = 0, 1. Then

lim
R→∞

sup
0<ε≤1

ε ln P
(

sup
0≤t≤T

‖uε‖2Hs > R
)

= −∞, (3.12)

lim
R→∞

sup
0<ε≤1

ε ln P
(

sup
0≤t≤T

‖uεη‖
2
Hs+k > Rη−k/2

)
= −∞. (3.13)
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Proof. Define ψ(ξ) =
∫ ξ

0 1/(1 + v2 ln v) dv,Ψλ(ξ) = eλψ(ξ), ξ > 0. Then

Ψ′(ξ) =
λΨ(ξ)

1 + ξ2 ln ξ
and Ψ′′(ξ) =

(λ2 + λ)Ψ(ξ)
(1 + ξ2 ln ξ)2 (1 − ξ − 2ξ ln ξ).

Define τR = inf{t > 0, ‖uε(t)‖2Hs ≥ R}, R > e. Let ξ(t) = ‖uε(t)‖2Hs . Then, by Itô’s formula,

EΨλ(ξ(t ∧ τR))≤Ψλ(ξ(0)) + CλE
∫ t∧τR

0
Ψ′(ξ(r))‖uε‖3Hs dr

+ C(λ2 + λ)
√
ε‖Q‖2LsE

∫ t∧τR

0
Ψ′′(ξ(r)) dr

≤C + C(λ2 √ε + λ
√
ε + λ)

∫ t∧τR

0
EΨλ(ξ(t ∧ τR)) dr,

which, by Gronwall’s inequality, implies that

EΨλ(ξ(T ∧ τR)) ≤ CeC(λ2 √ε+λ
√
ε+λ).

Let λ = 1/ε. Then

P
(

sup
0≤t≤T

‖uε(t)‖2Hs > R
)
Ψ1/ε(R) ≤ EΨλ(ξ(T ∧ τR)) ≤ CeC(λ2 √ε+λ

√
ε+λ),

which yields

sup
0<ε<1

ε ln P
(

sup
0≤t≤T

‖uε(t)‖2Hs > R
)
. 1 − ψ(R). (3.14)

Note that limR→∞ ψ(R) =∞. By letting R tend to∞ in (3.14), we prove (3.12).
The proof of (3.13) with k = 0 is similar to (3.12). Now we prove (3.13) with k = 1.

Define τR = inf{t > 0, ‖uεη(t)‖
2
Hs ≥ R}, R > 0. Using Itô’s formula,

‖uεη(τ ∧ τR)‖2Hs+1 ≤ ‖ϕη‖
2
Hs+1 + ε‖Qη‖

2
Ls+1 + C

∫ t∧τR

0
‖uεη‖Hs‖uεη‖

2
Hs+1 dτ

+ 2
√
ε

∫ t∧τR

0
(Λs+1uεη,Λ

s+1 dWη),

and the martingale inequality [1, 7] yields

4ε
{
E
[

sup
0≤t≤T∧τR

∫ t

0
(Λs+1uεη,Λ

s+1 dWη)
]q}2/q

≤ Cqε
{
E
[ ∫ T

0
sup

0≤τ≤t∧τR

‖uεη(τ)‖2Hs+1‖Qη‖
2
Ls+1 dt

]q/2}2/q

≤ Cqε
{
E
[ ∫ T

0
sup

0≤τ≤t∧τR

‖uεη(τ)‖4Hs+1 + ‖Qη‖
4
Ls+1 dt

]q/2}2/q

≤ Cqε
{
η−1 +

∫ T

0

(
E
[

sup
0≤τ≤t∧τR

‖uεη(τ)‖2q
Hs

])2/q
dt

}
. (3.15)
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Hence(
E
[

sup
0<t<T∧τR

‖uεη(t)‖
2q
Hs+1

])2/q
≤C(1 + ε + qε)η−1

+ C(R + qε)
∫ T

0

(
E
[

sup
0<r<t∧τR

‖uεη(r)‖2q
Hs+1

])2/q
dt,

which implies that(
E
[

sup
0<t<T∧τR

‖uεη(t)‖
2q
Hs+1

])2/q
≤ C(1 + ε + qε)η−1eC(R+qε). (3.16)

By (3.13), for any M > 0, there exists a constant R such that, for any ε ∈ (0, 1],

P
(

sup
t∈[0,T ]

‖uεη‖
2
Hs > R

)
< e−M/ε . (3.17)

For such R, take q = 2/ε. Then, by (3.16),

sup
0<ε<1

ε ln P
(

sup
t∈[0,T∧τR]

‖uεη‖
2
Hs+1 > R1η

−1/2
)
≤ sup

0<ε<1
ln

( (E[ supt∈[0,T∧τR] ‖u
ε
η‖

2q
Hs+1

])2/q

R2
1η
−1

)
≤C(R + 2) + ln(3C) − 2 ln(R1)→ −∞,

as R1 →∞. Hence there exists R1 such that

P
(

sup
t∈[0,T∧τR]

‖uεη‖
2
Hs+1 > R1η

−1/2
)
< e−M/ε . (3.18)

By (3.17) and (3.18),

P
(

sup
t∈[0,T ]

‖uεη‖
2
Hs+1 > R1η

−1/2
)

≤ P
(

sup
t∈[0,T ]

‖uεη‖
2
Hs+1 > R1η

−1/2, sup
t∈[0,T ]

‖uεη‖
2
Hs ≤ R

)
+ P

(
sup

t∈[0,T ]
‖uεη‖

2
Hs > R

)
≤ P

(
sup

t∈[0,T∧τR]
‖uεη‖

2
Hs+1 > R1η

−1/2
)

+ P
(

sup
t∈[0,T ]

‖uεη‖
2
Hs > R

)
< 2e−M/ε ,

from which (3.13) is obtained. This completes the proof. �

Now we present the main result of the paper, as follows.

Theorem 3.6. The solution set {uε} satisfies the LDP in C([0, T ]; Hs), s > 3/2 with a
good rate function

I(g) = inf{
v∈L2([0,T ];Hs)|g(t)=G0

(∫ ·
0 v(τ) dτ

)} 1
2

∫ T

0
‖v‖2Hs dt.
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Proof. By Theorem 3.4 and [8, Theorem 4.2.13], we just need to prove that (1.3)
holds. For R > 0, we define the stopping time

τ1
R = inf{t | ‖uεη‖

2
Hs+1 > Rη−1/2 or ‖uεη‖

2
Hs + ‖uε‖2Hs > R}.

Then

P
(

sup
0≤t≤T

‖uεη − uε‖2Hs > λ, sup
0≤t≤T

(‖uεη‖
2
Hs + ‖uε‖2Hs ) ≤ R, sup

0≤t≤T
‖uεη‖

2
Hs+1 ≤ R

)
≤ P

(
sup

0≤t≤τ1
R

‖uεη − uε‖2Hs > λ
)
.

Let w = uεη − uε . Then w satisfies the equationswt + h(uεη, u
ε
ηx) − h(uε , uεx) =

√
ε d(Wη −W)

wη(x, 0) = wη0 = ϕη − ϕ.

For 1/2 < p < min{s − 1, 1}, by Itô’s formula, similarly to (3.15)–(3.16),(
E
[

sup
t∈[0,T∧τ1

R]
‖w‖2q

Hp

])2/q
≤ C(1 + ε + pε)η(s−p)/2eC(R+pε).

Then, similarly to the proof of (3.13),

lim
R→∞

sup
0<ε≤1

ε ln P
(

sup
0≤t≤T

‖w‖2Hp > Rη(s−p)/2
)

= −∞. (3.19)

For R > 0, we define the stopping time

τ2
R = inf{t | ‖w‖2Hp > Rη(s−p)/2}.

Let τR = τ1
R ∧ τ

2
R. Similarly to (3.15), applying Itô’s formula to ‖w(t ∧ τR)‖2Hs yields(

E
[

sup
0≤t≤T

‖w‖2q
Hs

])2/q
≤ ‖wη0‖

4
Hs + C(q + ε)ε‖Qη − Q‖4Ls + Cηs−p−1

+ C(R + qε)
∫ T

0

(
E
[

sup
0≤t≤T

‖w‖2q
Hs

])2/q
dt.

Then Gronwall’s inequality implies that(
E
[

sup
0≤τ≤T∧τR

‖w‖2Hs

]q)2/q
≤

[
‖wη0‖

4
Hs + C(q + ε)ε‖Qη − Q‖4Ls + Cηs−p−1]eC(R+qε)T .

(3.20)
By Lemma 3.5 and (3.19), for any M > 0, there exists R such that

sup
0<ε≤1

ε ln P
(

sup
0≤t≤T

‖v‖2Hs > R
)
≤ −M (3.21)

with v = uε , uεη, u
ε
η or w.
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For such R, taking q = 2/ε in (3.20),

A = ε ln P
(

sup
0≤t≤T

‖w‖2Hs > λ, sup
0≤t≤T

(‖uε‖2Hs + ‖uεη‖
2
Hs ) ≤ R, sup

0≤t≤T
‖uεη‖

2
Hs+1 ≤ Rη−1/2,

sup
0≤t≤T

‖w‖2Hp ≤ Rη(s−p)/2
)

≤ ε ln P
(

sup
0≤t≤T∧τR

‖w‖2Hs > λ
)

≤ ε ln
(
λ−qE

(
sup

0≤t≤T
‖w‖2q

Hs

))
≤−2 ln λ + C(R + 2) + ln(‖wη0‖

4
Hs + C(q + ε)ε‖Qη − Q‖4Ls + Cηs−p−1). (3.22)

Taking η = ε, it follows from (3.22) that limε→0 A = −∞. Thus, there exists ε0 such
that, for any ε satisfying 0 < ε ≤ ε0,

A ≤ −M. (3.23)

From (3.21) and (3.23), it follows that there exists a constant ε0 such that, for any
ε ∈ (0, ε0], P(sup0≤t≤T ‖u

ε
η − uε‖2Hs > λ) ≤ 5e−M/ε . Since M is arbitrary, the proof is now

complete. �

4. Conclusion

Usually, the LDP of the stochastic evolution equation can be shown by a weak
convergence. However, it cannot be used to get the LDP of the stochastic CH
equation (1.1). In this paper, we first consider the corresponding regularized equation,
then we obtain the LDP for the stochastic equation, exponentially equivalent to the
corresponding laws. This opens up a new approach to getting the LDP for the
stochastic shallow water equations.

Acknowledgements

This work is partially supported by China NSF Grant Nos. 11401532, 11501511,
11671359, Zhejiang Provincial NSF of China under Grant No. LQ14A010015,
LQ15A010012.

References
[1] M. T. Barlow and M. Yor, “Semi-martingale inequalities via the Garsia–Rudemich–Rumsey

lemma, and applications to local time”, J. Funct. Anal. 49 (1982) 198–229;
doi:10.1016/0022-1236(82)90080-5.

[2] J. L. Bona and R. Smith, “The initial value problem for the Korteweg–de Vries equation”, Philos.
Trans. R. Soc. Lond. A 278 (1975) 555–601; doi:10.1098/rsta.1975.0035.

[3] A. Budhiraja and P. Dupuis, “A variation”, Probab. Math. Statist. 20 (2000) 39–61;
http://www.math.uni.wroc.pl/∼pms/files/20.1/Article/20.1.3.pdf.

[4] R. Camassa and D. Holm, “An integrable shallow water equation with peaked solitons”, Phys.
Rev. Lett. 71 (1993) 1661–1664; doi:0031-9007/93/71(11)/1661(4)06.00.

https://doi.org/10.1017/S1446181116000353 Published online by Cambridge University Press

https://doi.org/10.1016/0022-1236(82)90080-5
https://doi.org/10.1098/rsta.1975.0035
http://www.math.uni.wroc.pl/~pms/files/20.1/Article/20.1.3.pdf
https://doi.org/0031-9007/93/71(11)/1661(4)06.00
https://doi.org/10.1017/S1446181116000353


[11] Rare events in the stochastic Camassa–Holm equation 427

[5] Y. Chen, H. J. Gao and B. L. Guo, “Well posedness for stochastic Camassa–Holm equation”,
J. Differential Equations 253 (2012) 2353–2379; doi:10.1016/j.jde.2012.06.023.

[6] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions (Cambridge University
Press, Cambridge, 1992).

[7] B. Davis, “On the Lp-norm of stochastic integrals and other martingales”, Duke Math. J. 43 (1976)
696–704; doi:10.1215/S0012-7094-76-04354-4.

[8] A. Dembo and O. Zeitouni, Large deviations techniques and applications (Jones and Bartlett,
Boston, 1993).

[9] N. Dunford and J. Schwartz, Linear operators (Interscience Publishers, John Wiley and Sons,
New York, 1958).

[10] P. Dupuis and R. S. Ellis, A weak convergence approach to the theory of large deviations (Wiley,
New York, 1997).

[11] K. O. Friedrichs, “On the differentiability of the solutions of linear elliptic differential equations”,
Commun. Pure Appl. Math. 3 (1953) 299–326; doi:10.1002/cpa.3160060301.

[12] B. Fuchssteiner and A. Fokas, “Symplectic structures, their Bäcklund transformations and
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