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This paper presents a novel machine learning framework for reconstructing low-order
gust-encounter flow field and lift coefficients from sparse, noisy surface pressure
measurements. Our study thoroughly investigates the time-varying response of sensors to
gust–airfoil interactions, uncovering valuable insights into optimal sensor placement. To
address uncertainties in deep learning predictions, we implement probabilistic regression
strategies to model both epistemic and aleatoric uncertainties. Epistemic uncertainty,
reflecting the model’s confidence in its predictions, is modelled using Monte Carlo dropout
– as an approximation to the variational inference in the Bayesian framework – treating the
neural network as a stochastic entity. On the other hand, aleatoric uncertainty, arising from
noisy input measurements, is captured via learned statistical parameters, and propagate
measurement noise through the network into the final predictions. Our results showcase
the efficacy of this dual uncertainty quantification strategy in accurately predicting
aerodynamic behaviour under extreme conditions while maintaining computational
efficiency, underscoring its potential to improve online sensor-based flow estimation in
real-world applications.
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1. Introduction
Many air vehicles operate in highly unsteady aerodynamic environments, such as
gust encounters (Jones, Cetiner & Smith 2022). Estimating transient flow fields and
aerodynamic loads from sparse measurements in such scenarios is a complex inverse
problem due to disturbed flow fields. Accurate flow and aerodynamic load prediction
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is critical for aerodynamic control, as it enables the design of robust control systems
and adaptive mechanisms for dynamic flow conditions. By accurately reconstructing flow
fields and quantifying uncertainties, these estimations enhance sensor-based predictions in
gust-encounter scenarios, improving the overall reliability of aerodynamic performance.
Traditional Bayesian approaches, such as the ensemble Kalman filter and its variants,
have been widely used to incorporate uncertainty into predictions (Le Provost & Eldredge
2021; Le Provost et al. 2022), but their performance can be limited in high-dimensional
state spaces due to sampling errors and the need for large ensemble sizes. This highlights
the need for more robust, data-driven techniques for modelling input–output relationships
that can be utilised offline for efficient predictions. Deep learning (DL), known for its
ability to learn complex and nonlinear mappings, offers a promising alternative. For
instance, Dubois et al. (2022) utilised both linear and nonlinear neural networks (NNs) to
reconstruct velocity fields, while Zhong et al. (2023) developed a model using long–short
term memory and transfer learning for aerodynamic force and wake reconstruction. Chen
et al. (2024) applied a multi-layer perceptron (MLP) to estimate aerodynamic loads from
surface pressure measurements. Despite these advances, challenges remain in managing
numerous parameters and mitigating computational costs for high-dimensional data.

Modern DL constitutes an incredibly powerful tool for regression and classification
tasks, as well as for reinforcement learning, where an agent interacts with the environment
and learns to take actions that maximise rewards. Deep learning has garnered tremendous
attention from researchers across various fields, including physics, biology, medicine and
engineering (Ching et al. 2018; Akay & Hess 2019; Tanaka, Tomiya & Hashimoto 2021;
Che et al. 2023). Despite their broad applicability, DL models are prone to overfitting
(Brunton & Kutz 2022). Moreover, they tend to be overconfident in their predictions,
which is particularly problematic in decision-making applications such as safety-critical
systems (Le et al. 2018), medical diagnosis (Laves et al. 2019) and autonomous driving
(Shafaei et al. 2018). Overconfident predictions can lead to poor decision making and
potentially catastrophic consequences if the model’s predictions are trusted without
question. Therefore, it is crucial to train uncertainty-aware NNs to mitigate these risks
and ensure reliable predictions.

There are generally two main sources of uncertainty in DL, i.e. aleatoric and epistemic
uncertainties (Hüllermeier & Waegeman 2021). Aleatoric uncertainty – also known as
data uncertainty – refers to the irreducible uncertainty in data that gives rise to uncertainty
in predictions. This type of uncertainty is due to the randomness and noise inherent in
the measurements or observations. Aleatoric uncertainty is intrinsic to the process being
studied and cannot be eliminated. In contrast, epistemic uncertainty – also known as model
uncertainty – arises from the lack of knowledge about the best model to describe the
underlying data-generating process. To better illustrate epistemic uncertainty, we consider
two common cases of poorly fitted models in DL: underfitting and overfitting. In both
scenarios, the model exhibits high epistemic uncertainty when making predictions on
unseen data. Unlike aleatoric uncertainty, this type of uncertainty can be reduced by
gathering more data or improving the model. Various approaches exist to propagate
data uncertainty through artificial neural networks. One prevalent method is moment
matching (Frey & Hinton 1999; Petersen et al. 2024), which involves propagating the
first two moments of a distribution through the network. However, this method increases
the number of learned parameters in the network and adds computational cost, especially
for large networks. Researchers have also utilised variational autoencoders to extract a
stochastic latent space from noisy data (Gundersen et al. 2021; Liu, Grana & de 2022).

Bayesian probability theory offers a robust framework for addressing model
uncertainty. In particular, Bayesian neural networks (BNNs), thoroughly reviewed in
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Jospin et al. (2022), are stochastic NNs trained using Bayesian inference. The BNNs can
model both aleatoric and epistemic uncertainties. Aleatoric uncertainty is addressed by
learning the parameters of a probability distribution at the last layer that approximates the
true distribution (Jospin et al. 2022). Epistemic uncertainty, on the other hand, is modelled
by introducing stochastic weights or activations in the DL models. By specifying a prior
distribution over these stochastic parameters and defining a likelihood function, the exact
posterior distribution can be learned through Bayes’ rule using Markov chain Monte Carlo
(MCMC) (Salakhutdinov & Mnih 2008) or approximated with a family of distributions
using variational inference (VI) (Swiatkowski et al. 2020).

In spite of their clear advantages for modelling uncertainty, BNNs often come with
prohibitive computational costs and are challenging to converge for large models.
However, we can draw upon key aspects of BNN structure, e.g. learning parameters of
a model distribution, to capture aleatoric uncertainty in an efficient manner. Moreover,
Gal & Ghahramani (2016a,b) have proved that we can interpret dropout in a NN –
which is traditionally used to prevent overfitting (Srivastava et al. 2014) – as a Bayesian
approximation of a Gaussian process (Williams & Rasmussen 2006), without modifying
the models themselves. Monte Carlo dropout, known as MC dropout, can be used to
estimate the uncertainty of the model (Gal & Ghahramani 2016b). In another study,
Kendall & Gal (2017) successfully integrated both aleatoric and epistemic uncertainties
into a single computer vision model.

This paper aims to estimate aerodynamic flow fields and load from sensor measurements
while incorporating uncertainty quantification within DL models. In particular, we use
machine learning tools to reconstruct the flow field and the lift coefficient under extreme
aerodynamic conditions from sparse surface pressure measurements. Our approach
leverages a nonlinear lift-augmented autoencoder, as proposed by Fukami & Taira (2023),
which captures low-dimensional representations of the complex flow dynamics, for
improved sensor-based estimation. In this framework, we rigorously analyse the sensor
response to gust–airfoil interactions, providing insight into optimal sensor placement.
To further enhance prediction robustness, we introduce novel approaches for modelling
uncertainties in DL predictions, distinguishing between epistemic (model) and aleatoric
(data) uncertainties. Following the methodology of Gal & Ghahramani (2016a,b), we
apply MC dropout to treat the network stochastically and capture model uncertainty.
To capture data uncertainty, our network is trained to estimate the statistical parameters
(moments) of a model distribution in a reduced-order latent space, accounting for the
inherent noise in the surface pressure data. Our results demonstrate the efficacy of
these methods in quantifying two types of uncertainty in a challenging aerodynamic
environment.

The paper is structured as follows: § 2 outlines the problem and details the mathematical
approach employed for data compression and uncertainty quantification. Section 3 presents
the findings of the study. Finally, § 4 summarises the key outcomes and implications of the
research.

2. Problem statement and methodology
The present study proposes a framework designed to model the intricate and uncertain
relationship between input surface pressure measurements and the resulting aerodynamic
forces and vortical structure. Our approach leverages advanced data compression
techniques and uncertainty quantification to enhance prediction accuracy and reliability.
Specifically, we employ DL models to map input surface measurements to a low-
dimensional latent space, facilitating efficient reconstruction of flow fields. The framework
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Figure 1. Configuration of the problem, illustrating the relative position of the gust centre with respect to the
airfoil tip, the size of the disturbance and the indices of sensors mounted on the airfoil.

leverages MC dropout to model epistemic uncertainty in the NN, while incorporating
learned loss attenuation to address how measurement noise affects predictions. This
combined approach enables robust quantification of confidence intervals, providing a
comprehensive assessment of uncertainty in the predictions.

This section outlines the mathematical framework of our approach, covering the
problem formulation, NN architecture and model training and validation using high-
fidelity simulation data. Additionally, we discuss the construction of the latent space and
the integration of uncertainty quantification techniques into the predictive model, ensuring
accurate and reliable performance.

2.1. Problem statement
Given sparse pressure measurements from surface sensors, the goal of this work is to
estimate the vorticity field and aerodynamic loads from a probabilistic perspective. For
data generation in this study, we consider unsteady two-dimensional flow over a NACA
0012 airfoil positioned at a range of angles of attack α ∈ {20◦, 30◦, 40◦, 50◦, 60◦}. The
free-stream velocity is denoted by U∞ with the chord-based Reynolds number Re =
U∞c/ν = 100, where c is the chord length and ν is the fluid kinematic viscosity. The case
at α = 20◦ corresponds to a nearly steady flow, while vortex shedding is observed at higher
angles of attack. For gust-encounter aerodynamics, the disturbance vortex is modelled as
a Taylor vortex (Taylor 1918)

uθ = uθ,max
r

R
exp

(
1
2

− r2

2R2

)
, (2.1)

where R is the radius and uθ,max is the maximum rotational velocity of the vortex. The
problem configuration, including the position of sensors and their indices, is illustrated in
figure 1. The vortex is initially placed upstream of the airfoil at (xo, yo) with xo/c = −2,
with the origin (0, 0) set at the tip of the airfoil. The vortex strength is characterised
by G ≡ uθ,max/U∞. We consider cases with randomly sampled parameters: G ∈ [−1, 1],
yo/c ∈ [−0.5, 0.5] and 2R/c ∈ [0.5, 1]. The direct numerical simulation of the Navier–
Stokes equations in vorticity–streamfunction form is carried out by using the lattice
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Green’s function/immersed layers method proposed by Eldredge (2022) over a domain size
of (−4c, 4c) × (−2c, 2c) on a Cartesian grid with uniform spacing �x/c = 0.02. (The use
of the lattice Green’s function enables a much tighter domain than other conventional flow
techniques.) We numerically calculate the surface pressure ps relative to ambient pressure
p∞, and define the pressure coefficient for discussion purposes as follows:

C p = 2(ps − p∞)

ρU 2∞
, (2.2)

where ρ represents the fluid density.
Data for the regression task are collected from a portion of the computational

domain, specifically (−0.9c, 3.9c) × (−1.2c, 1.2c). This region is chosen to balance
computational efficiency with accuracy, ensuring that the gust is fully captured throughout
its interaction with the airfoil and wake. For each angle of attack, one base (undisturbed)
case and a total of 20 gust cases are considered, generating a dataset with 5 base cases and
100 gust cases. Each case is simulated over a non-dimensional duration of 15 convective
time units, defined as t ≡ t ′U∞/c with t ′ being the dimensional time, from the instant
the disturbance is introduced to the flow. A total of 745 snapshots are uniformly sampled
over time for each case, yielding 78 225 data points across the full dataset. This temporal
resolution has been verified to be sufficient to capture the evolution of local flow dynamics
during gust encounters.

2.2. Low-order representation of flow
Training a model to map sparse, low-dimensional measurements to a high-dimensional
flow field necessitates deep architectures with numerous layers and nodes, which can lead
to computational intractability. This challenge is particularly pronounced in the context
of uncertainty quantification, as the cross-correlations within the high-dimensional output
significantly increase the data size, complicating training and computational efficiency.
Building on the findings of Fukami & Taira (2023), we utilise a nonlinear lift-augmented
autoencoder to derive a low-dimensional representation of the high-dimensional gust-
encounter flow field. Before tackling uncertainty quantification, we first focus on data-
driven flow compression to identify this low-dimensional space, which effectively captures
the key physics of vortex–gust–airfoil interactions. We adopt the network architecture
described in Fukami & Taira (2023), which integrates a MLP with a convolutional NN.
As illustrated in figure 2, (a), our data compression framework comprises an encoder Fe
that reduces the high-dimensional data into a low-dimensional latent vector ξ ∈R

l , where
l � n, with n the data dimension. In our applications in this paper, l = 3, as in Fukami
& Taira (2023); the appropriateness of this choice is further supported by empirical
observations: increasing l beyond 3 does not yield a significant reduction in reconstruction
loss. The encoder is followed by two decoders Fd : one for reconstructing the vorticity field
ω and another for estimating the lift coefficient CL .

The weights are determined by solving an optimisation problem that involves
minimising the loss function, defined as

W = argminW
(
||ω − ω̂||2 + β||CL − ĈL ||2

)
, (2.3)

where the hat over the parameters denotes the predicted field using the NN. Here, β is a
coefficient that balances the losses associated with vorticity and lift, with its value set to
0.05, as specified in Fukami & Taira (2023). The weights are optimised using the Adam
optimiser. The nonlinear activation function employed is the hyperbolic tangent function.
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Figure 2. Overview of the network architecture in the present study. The flow field data are compressed into
a three-dimensional latent vector, denoted as ξ , using the lift-augmented autoencoder. The architecture of this
autoencoder is shown in (a). In the subsequent step, a pressure-based (MLP) network is trained to estimate
the statistical parameters of a model distribution in the latent space, as illustrated on the left side of (b). This
estimated latent vector sampled from the model distribution is then input into the decoder component of the
autoencoder (a) to reconstruct both the vorticity field and the lift coefficient, as depicted on the right side
of (b). The outputs of the pressure map are the mean μμμ and covariance matrix ΣΣΣ in the latent space.

Eighty per cent of the data are allocated for training, while the remaining 20 % are used
for validation and testing. The training process utilises Early Stopping, as implemented
in the TensorFlow library, to halt training if the validation loss does not improve for 200
consecutive epochs.

2.3. Flow reconstruction from sparse sensors
The reduced-order latent vector extracted in the previous section is critical for effectively
capturing the vorticity field and lift. This latent vector serves as a compact, informative
representation of the complex, high-dimensional flow dynamics, enabling efficient
analysis and prediction while still preserving the essential features of the flow dynamics in
the network weights. Thus, we wish to learn how observable data can be used to estimate
the latent state of the flow. As illustrated in figure 2(b) on left side, we map surface pressure
measurements to the latent space using a NN with MLP hidden layers, denoted by Fp. By
leveraging the significant reduced dimensionality as the latent space representation, we
can uniquely estimate the flow field and lift coefficient from available sensor data.

An overview of the network architecture for estimation purposes is shown in figure 2(b).
The following sections will demonstrate that capturing heteroscedastic uncertainty –
characterised by noise-dependent variability – requires the model to output the statistics of
the low-order flow in the latent space, rather than simply providing a pointwise prediction
of the latent states. In this study, we predict the mean and covariance matrix as the first
two moments of a multivariate normal distribution in the latent space. To ensure that flow
estimation is invariant to the absolute position of the airfoil within the computational
domain, and to generalise the framework to potential different sensor configurations in
future studies, we augment the readings with the x and y coordinates of each sensor,
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expressed in a reference frame fixed to the airfoil with its origin located at the mid-chord.
These coordinates are stacked alongside the pressure measurements and the encoded
angle of attack, collectively forming the input vector pstacked . Including the angle of
attack provides the network with critical information about the flow incidence direction,
enabling it to distinguish between flow regimes associated with different orientations.
Although sensor locations are fixed in our current dataset, this input structure facilitates
generalisation to configurations with different sensor placements or airfoil geometries. As
a result, incorporating sensor positions improves the model’s capacity to generalise beyond
the specific scenarios encountered during training. In this study, 11 pressure measurements
are utilised, resulting in an input vector of size 38 for the pressure-based estimator (the x
and y sensor coordinates along with the readings themselves, as well as the encoded angles
of attack in the form of one of 5 cases). Weight regularisation is employed to constrain
the magnitude of the network’s weights, preventing them from becoming excessively
large. This helps control the model’s uncertainty, ensuring more stable and reliable
predictions.

Once the stacked pressure measurements and sensor positions are mapped to the latent
space, the pre-trained decoder component of the NN, denoted by Fd , from the lift-
augmented autoencoder as detailed in § 2.2, can be adopted to reconstruct the vorticity
field and lift from this latent vector. This reconstruction process, depicted in figure 2(b) on
the right side, leverages the network’s ability to translate the reduced-order representation
back into the high-dimensional physical space with high fidelity. The advantage of this
general approach is its capability to reconstruct the flow field and lift from limited
measurements without sacrificing generality or requiring a large network. By focusing
on the latent vector, we ensure that the essential characteristics of the flow are captured,
enabling accurate predictions even with sparse data. Both the autoencoder and inference
networks are trained on a dataset encompassing both undisturbed and strongly disturbed
cases.

2.4. Informative directions of measurements
Not all measurements contribute equally to estimating the flow field at each time step.
The most responsive measurement subspace contains the most informative directions for
capturing the flow field’s dynamics. These directions reflect how the estimated flow field is
most sensitive to particular weighted combinations of sensor measurements. This subspace
evolves due to the transient nature of vortex shedding behind the airfoil and gust–airfoil
interactions.

In this section, we outline the methodology for analysing the sensitivity of our NN
model, which maps inputs x to outputs y through a nonlinear function y = f (x; W ),
where W represents the network parameters, including weights and biases in a typical
deep network. In this study, inputs x ∈R

d correspond to the measurements augmented
with the sensor coordinates, denoted by pstacked , while the output y ∈R

l of the NN is the
l-dimensional latent vector ξ . The nonlinear mapping from inputs to outputs f :Rd →R

l

in this context refers to Fd
p which is similar to Fp in the previous section, but with the

output restricted to the mean prediction, i.e. we assume a deterministic form of the NN for
this discussion. Additionally, to neglect the effect of model uncertainty in this section, the
dropout layers in the Fd

p are active only during training. For clarity and consistency, we
use x, y and f in general form to refer to inputs, outputs and the mapping between them,
respectively, in the derivations presented in this section.

For stochastic inputs and outputs influenced by sensor noise, the primary directions in
the measurement space in which measurements are most informative of variations in the
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flow field (via the latent space) can be identified using the Gramian matrix of the Jacobian
in the input space, defined as follows (Quinton & Rey 2024):

Cx =E[∇ f (x)T ∇ f (x)], (2.4)

where E[·] denotes the expectation with respect to the noisy input x, and ∇ f represents
the Jacobian matrix that describes the derivatives of the output vector y with respect to the
input vector x. We call Cx the measurement space Gramian, and revisit (2.4) to obtain

Cx =
∫

∇ f (x)T ∇ f (x)dπ(x), (2.5)

where π(x) is the probability density function of the input x. The matrix Cx is positive
semi-definite, and its eigendecomposition can be written as Cx = UΛ2

x U T , where U ∈
R

d×d contains the eigenvectors with Λ2
x the associated eigenvalues. The eigenvectors

of the measurement space Gramian identify the subspace spanned by the dominant (i.e.
most informative) directions of the measurements. For convenience, we assume that the
eigenvalues Λ2

x are in decreasing order. In practice, we approximate these integrals using
the Monte Carlo method to compute Cx. The calculations of Jacobians ∇ f ∈R

l×d for a
deterministic NN denoted here by Fd

p can be performed using automatic differentiation.
For the low-order representations, only the first rx � d eigenmodes of the measurement

space are retained, which correspond to dominant modes Ur . The rank rx is tuned based
on the decay of Λ2

x . Typically these ranks are set to achieve a threshold γ ∈ [0, 1] for
the cumulative normalised energy of the eigenvalue spectra. The first rx eigenmodes of
Cx correspond to the directions in the input space that most influence the prediction of
the latent space. The components of an eigenmode represent the weights on the sensors’
contributions to this mode; a larger magnitude component indicates a greater relative role
for that sensor in detecting a disturbance.

2.5. Quantifying aleatoric and epistemic uncertainties
In real-world applications, measurement noise is a common occurrence, and the pressure
measurements in this study are no exception. This introduces uncertainty into the
predictions, which is particularly critical for risk management applications where accurate
quantification of uncertainty is essential. To assess the uncertainty in the outputs due to
measurement noise, we define the conditional output distribution given the input and the
network parameters W as πa( y|x, W ), where the subscript a denotes aleatoric uncertainty.
Here, the noisy inputs are represented as x = x̄ + η, with x̄ referring to clean data and η
representing the white sensor noise in the dominant directions of measurement space. This
noise will be defined later in § 2.

Aleatoric (or data) uncertainty, originating from inherent noise in data, must be
explicitly captured to enhance the network’s resilience to noisy inputs. In real-world
scenarios, the probability distribution of outputs typically varies as a function of inputs.
This data-dependent nature of aleatoric uncertainty can be effectively addressed using
heteroscedastic models, which incorporate learned loss attenuation to model input-
dependent noise levels (Kendall & Gal 2017). Consequently, the network architecture
depicted in figure 2 and listed in table 1 is designed specifically for uncertainty
quantification. It learns the parameters of a multivariate normal distribution, i.e. the mean
denoted as μ ∈R

l , and the covariance matrix represented by Σ ∈R
l×l . During training,

the network minimises a heteroscedastic loss function based on the negative log likelihood
of a multivariate normal distribution
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Layer Data size Dropout rate

Input (33) −
Fully connected (64) −
Dropout − (1 − p)

Fully connected (128) −
Dropout − (1 − p)

Fully connected (256) −
Dropout − (1 − p)

Fully connected (512) −
Dropout − (1 − p)

Fully connected (256) −
Dropout − (1 − p)

Fully connected (128) −
Dropout − (1 − p)

Fully connected (64) −
Dropout − (1 − p)

Fully connected (latent vector mean) (3) −
Fully connected (elements of a lower-triangular matrix) (6) −

Table 1. Structure of the sensor-based network employed in the present study, which maps the pressure
measurements to the latent variables.

Ldropout = − log
(
N ( y|μ̂, Σ̂)

)
, (2.6)

where y represents the true latent vector defined as the extracted latent vector from the
autoencoder and μ̂ and Σ̂ are the predicted mean and covariance matrix, respectively. The
multivariate normal distribution is defined as usual by

N ( y|μ̂, Σ̂)) = 1√
(2π)l det(Σ̂)

exp
(

−1
2
( y − μ̂)T Σ̂

−1
( y − μ̂)

)
. (2.7)

It should be noted that directly predicting a covariance matrix poses challenges since
the network might not inherently ensure that the matrix is symmetric and positive definite.
To address this, we reformulate the prediction: instead of predicting the full covariance
matrix, the network learns l × (l + 1)/2 elements of a lower-triangular matrix, L, in the
form of

L =

⎡
⎢⎢⎣

L11 0 0 · · · 0
L12 L22 0 · · · 0
...

...
...

...
...

L1l L2l L3l · · · Lll

⎤
⎥⎥⎦

l×l

. (2.8)

Considering that the dimension of the latent vector is denoted by l, the predictions are
in the space [μ̂, L̂] ∈R

l+l(l+1)/2. This guarantees uniqueness, symmetry and positive
definiteness by constructing the covariance matrix as Σ = LLT . For numerical stability,
the network predicts the logarithms of the squared diagonal elements, ensuring they
remain positive, and directly outputs the off-diagonal elements. By constructing the
covariance matrix this way, we ensure it remains positive definite and approximates the
Cholesky decomposition. Additionally, to include uncertainty in the input measurements,
we employ data augmentation during training, injecting Gaussian random noise into
the inputs to simulate real-world conditions and help the model better capture aleatoric
uncertainty in its predictions.
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Traditional DL models provide point-estimate predictions with overconfidence, and do
not typically account for the uncertainty in the fitted model, called epistemic (or model)
uncertainty. The main goal in model uncertainty is finding the conditional distribution over
the parameters W of the NN for a given dataset of inputs X and outputs Y, i.e. π(W|X, Y ).
Among the different ways to estimate uncertainty in the NN model, the Bayesian paradigm
provides a powerful mathematical framework. Indeed, Bayes’ rule expresses the desired
conditional distribution as a posterior distribution, starting from a prior π(W ) over the
weights

π(W|X, Y ) = π(X, Y|W )π(W )

π(X, Y )
. (2.9)

Here, π(X, Y|W ) is the conditional probability of the data, given a particular set of
weights. The denominator in this equation is the marginal distribution over the space of
model parameters W. Calculating this marginal distribution is challenging. Basically, there
are two primary approaches to address this difficulty: MCMC, which samples from the
true posterior and avoids the need for the denominator by only relying on comparison, and
VI (Blei, Kucukelbir & McAuliffe 2017), which approximates the posterior with a known
family of distributions denoted by q(W ). The MCMC converges very slowly in large and
complex networks and requires a large number of samples to achieve convergence. As an
efficient alternative for obtaining the posterior distribution, deep NNs with dropout applied
before every dense layer have been shown to be mathematically equivalent to approximate
VI in a deep Gaussian process (Gal & Ghahramani 2016a). This procedure, known as MC
dropout, uses a variational distribution defined for each weight matrix as follows:

zi, j ∼ Bernoulli(pi ),

Wi = Mi · diag(zi ), (2.10)

with zi, j referring to the random activation coefficient for the j th neuron in the i th layer
(1 with probability pi for layer i and 0 with probability (1 − pi )), and zi being the random
activation coefficient vector, containing all zi, j for layer i . The matrix Mi is the matrix
of weights before dropout is applied. This approximate distribution, as proven in Gal &
Ghahramani (2016a), minimises the Kullback–Leibler divergence (DK L ), which measures
the similarity between two distributions DK L(q(W )||π(W|X, Y )).

The architecture of the NN used to map surface measurements to the low-dimensional
latent space Fp, accounting for both aleatoric and epistemic uncertainty, is detailed in
table 1. In this network, to adopt MC dropout approach, dropout layers are strategically
incorporated after each dense layer.

In MC dropout, a subset of activations is randomly set to zero during training, and the
same values are used in the backward pass to propagate the derivatives to the parameters.
In typical NNs, dropout is usually turned off during evaluation. However, leaving it
on during inference produces a distribution for the output predictions, allowing for the
estimation of uncertainty in the predictions in the form of

πe( y|x, X, Y ) =
∫

π( y|x, W )q(W )dW. (2.11)

The subscript e in πe( y|x, X, Y ) denotes epistemic uncertainty. Using the Monte Carlo
method, multiple stochastic forward passes are performed to approximate this integral,
effectively sampling from the posterior distribution.

Although MC dropout is utilised to quantify model uncertainty, the dropout layers
in the network Fp remain active during both training and inference, and thus affect
both forms of uncertainty quantification. As described earlier, aleatoric uncertainty is
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quantified with a network that produces two outputs: the mean of the latent vector,
μ ∈R

l , and the covariance matrix of the latent vector Σ ∈R
l×l . By applying different

instances of MC dropout, Fp produces a distribution of the output, and this can be
assumed to be multivariate Gaussian with its statistics represented by the expected value
and covariance of the output samples obtained from T stochastic forward passes. As
such, during inference, the aleatoric predictive distribution, marginalised over the network
weights, is measured by

πa( y|x, X, Y ) =N
(

y; 1
T

T∑
k=1

μ̂k,
1
T

T∑
k=1

Σ̂k

)
. (2.12)

Additionally, the epistemic predictive distribution is computed by

πe( y|x, X, Y ) =N
(

y; 1
T

T∑
k=1

μ̂k, Cov
(
{μ̂k}T

k=1

))
, (2.13)

with {μ̂k, Σ̂k}T
k=1 a set of T sampled outputs. The convergence study was conducted to

determine an appropriate value for T that ensures reliable and stable uncertainty estimates.
We emphasise that the output covariance associated with the aleatoric uncertainty is
predicted directly by the network and averaged over the dropout passes (the mean of the
covariances), while the output covariance of the epistemic distribution follows from the
spread in the pointwise predictions of the output over these passes (the covariance of the
means).

To quantify the uncertainty in the output most influenced by variations in the
input during inference, we introduce noise η aligned with the principal directions of
measurement variation. These directions are identified by the matrix Ur , which contains
the eigenvectors associated with the largest eigenvalues of the measurement space
Gramian, as discussed in § 2.4. The rank rx is determined based on capturing 99 % of the
cumulative energy spectrum of the eigenvalues Λ2

x of the measurement space Gramian Cx.
Typically, the first two eigenvalues were observed to account for over 99 % of the energy,
and often the first eigenvalue alone was sufficient. Thus, the input noise is modelled as η ∼
ζUr , where Ur represents the dominant modes of the measurements, and ζ ∼N (0, σ 2

x )

is a random coefficient with σ 2
x representing the variance in the sensor noise.

After training the network with corrupted sensor data, as described earlier, the
distributions of the latent vector are computed using (2.12) and (2.13). From these
distributions, M samples of latent vectors ξ̂ i are drawn and passed through the decoder
Fd (see figure 2) to reconstruct the corresponding vorticity and lift samples, {q̂i }M

i=1 ≡
{ω̂i , ĈL ,i }M

i=1. The reconstruction procedure is defined as

ξ̂ i ∼ πu( y|x, X, Y ) for i = 1, 2, . . . , M

q̂i =Fd(ξ̂ i ),
(2.14)

where the subscript u can be either a for aleatoric or e for epistemic. Notably, due to the
nonlinear nature of the decoder, the extreme uncertainty in the lift and vorticity fields
does not necessarily coincide with the extreme uncertainty in the latent space. We will
assume that the statistics of the reconstructed vorticity and lift follow a normal distribution,
described by the mean and variance of the reconstructed samples. In the case of vorticity,
this normal distribution is local to each grid point (pixel). To quantify the performance of
this reconstruction in either type of uncertainty quantification scenario, we compute the
log likelihood of the true vorticity value at each pixel as
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log
(N (ω|μ̂ω, σ̂ω))

)= −1
2

(ω − μ̂ω)2

σ̂ 2
ω

− log(σ̂ω) − 1
2

log(2π), (2.15)

where ω denotes the true vorticity, μ̂ω is the predicted mean of the vorticity and σ̂ 2
ω

represents the predicted variance at each pixel. This log likelihood is then averaged over all
pixels to provide a global measure of the prediction quality; large values of this averaged
log likelihood indicate two qualities: that the overall uncertainty is small and that the
true vorticity falls within the uncertainty bounds. The log likelihood encapsulates both
the reconstruction error from the learned operators and the uncertainty inherent in the
predicted latent variables due to noisy measurements. To isolate and analyse these two
sources of error, we perform a bias-variance decomposition of the prediction error. This
decomposition – defined as the following equation – enables a more detailed assessment
by separating the deterministic error (bias) from the stochastic variability (variance) in the
predicted latent states:

E
[
(q̂ − q)2]= (E[q̂ − q])2 +E

[
(E[q̂] − q̂)2]. (2.16)

Here, q̂ denotes the reconstructed samples obtained by decoding latent variables drawn
from the learned predictive distribution πu( y|x, X, Y ), and q refers to the corresponding
ground truth data in a given state space (e.g. vorticity, or lift space). The expectation is
taken over the latent distribution. The left-hand side of the equation corresponds to the
mean squared error (MSE), which quantifies the total prediction error. The first term on
the right-hand side captures the squared bias, representing the deterministic error between
the mean prediction and the true value, while the second term reflects the statistical
variance arising from uncertainty in the predictive distribution. The bias error reflects
the cumulative contribution of all learned operators, namely the decoder and the pressure
network, in the reconstruction pipeline. In this study, aleatoric and epistemic uncertainties
can be quantified independently for any variable of interest, including the latent vector, lift
force and vorticity field.

In the sensor-based prediction performed by the network Fp, the Rectified Linear Unit
(ReLU) activation function is used for its ability to introduce nonlinearity while effectively
avoiding the restricted uncertainty range often associated with TanH activation. Again, 80
% of the data are allocated for training, while the remaining 20 % are used for validation
and testing. To optimise training and prevent overfitting, Early Stopping is incorporated
to stop training if there is no improvement in validation loss for 500 consecutive epochs.
After experimentation, a regularisation constant of 10−7 and a dropout rate of 0.05 were
identified as optimal, yielding the highest average likelihood during training.

3. Results
Viscous flow over a NACA 0012 airfoil is simulated using the immersed layers method
proposed by Eldredge (2022), both in the presence and absence of disturbances. Detailed
descriptions of the flow solver and data generation process are provided in § 2.1. The
simulation covers 105 cases, resulting in a dataset of 78 225 snapshots (points), with 3 725
points corresponding to base cases and the remainder to random disturbed flow cases.
For estimation using DL, we collect the vorticity field ω, lift coefficient CL , pressure
coefficient C p and the coordinates of surface pressure sensors (xsens, ysens). We deploy
11 evenly spaced sensors on both sides of the airfoil, as shown in figure 1. Stacked with
their locations and the encoded angle of attack, the input measurement vector pstacked has
a dimension of 38.
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Figure 3. Low-order representation of flow data is presented with undisturbed cases highlighted in colour for
five AoAs. The light grey paths indicate disturbed cases with the black path highlighting one of them. The
black path illustrates the AoA axis.

To gain a deep understanding of sensor response and accurately identify the regions
most affected by gust interactions, a more detailed analysis is necessary. This detailed
assessment will be addressed in subsequent discussions within this section.

3.1. Extracting low-order representation of flow
To manage computational expenses associated with uncertainty quantification, we initially
reduce the dimensionality of the collected flow data via the lift-augmented autoencoder.
The results are presented in figure 3. It displays the projected flow field in a three-
dimensional latent space, illustrating the discrete pathlines for each case. This projection
demonstrates the distinguishability of different cases in three-dimensional space. Notably,
a curve connecting the centres of all undisturbed aerodynamic trajectories – called the
angle of attack (AoA) axis – traces the airfoil’s AoA, while the spread of the trajectories
captures the vortical variations in the flow. The limit-cycle behaviour is evident in the
trajectories, particularly in the gust cases. In these cases, the pathline deviates from
the undisturbed trajectory as the gust passes over the airfoil and eventually returns to
the periodic undisturbed orbit once the gust leaves the domain. This dynamic is clearly
illustrated for an airfoil encountering a gust at α = 60◦, as shown by the black trajectory in
figure 3. The reconstruction error of the learned autoencoder defined as ||ω − ω̂||2/||ω||2
will be reported in the following figures.

3.2. Sensor-based flow reconstruction
Stacked with their coordinates (x, y) and the encoded AoA, the sensor readings – denoted
by pstacked – are mapped to the three-dimensional latent space ξ , as illustrated on the left
side in figure 2(b). These latent variables, extracted in § 3.1, correspond to the compressed
flow field and lift. Given that both the inputs and outputs are vectors, we employ a MLP
network to model the mapping, denoted as Fp. To quantify the network’s uncertainty in its
predictions, we utilise MC dropout, incorporating a dropout layer after each dense layer in
the MLP network. During both training and inference, dropout layers are active to model
epistemic uncertainty. Furthermore, to account for uncertainty in the input measurements,
the network is trained to predict the covariance matrix in the latent space as well. The
details of the procedure are described in § 2.5, and the details of the network architecture
itself are provided in table 1.
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Figure 4. Periodic variation of lift and the first mode of surface pressure measurements over time for
undisturbed flow at an AoA of α = 60◦. The bar plot corresponds to the first eigenmode of the measurement
space Gramian; each bar represents a sensor, with their order corresponding to the numbering scheme depicted
in figure 1, arranged sequentially from left to right. The informative sensors numbered in the bar chart are
highlighted in the vorticity contour plots.

In the context of MC dropout, the dropout rate (1 − p) is a hyperparameter that is
optimised to maximise the log likelihood (or equivalently, minimise the loss given in
(2.6)). Interestingly, it was observed that the dropout rate has minimal impact on the log
likelihood. Consequently, a fixed dropout rate of 0.05 was selected for training the MLP
network Fp.

3.2.1. Sensitivity analysis to flow disturbances
To analyse how sensor variations respond to disturbances in the flow structures, we identify
the most informative direction within the measurement space Gramian, Cx, as defined
in (2.5). In this subsection, we aim to identify the dominant eigenvectors within the
measurement space. To achieve this, we utilise the same network architecture described in
table 1, but we modify the final layer to directly output the latent variables deterministically
(i.e. we omit the prediction of covariance). As mentioned earlier, this network is called Fd

p .
This network is trained on clean data using a MSE loss function to optimise the model
weights effectively. During the evaluation phase, dropout is disabled to ensure consistent
predictions with the same inputs. Additionally, we approximate the integral in (2.5)
through Monte Carlo sampling, employing 100 samples of noisy measurements during
inference to obtain a robust estimate of the dominant eigenvectors. The measurement noise
is modelled as independent and identically distributed (i.i.d) white noise with a mean of
zero and a variance of 2.5 × 10−5, corresponding to a measurement accuracy of 0.15 %
for the maximum pressure reading. The sensor coordinates on the airfoil are assumed to
be accurately measured (i.e. they are assigned zero variance). Our analysis reveals that
the first two eigenmodes of the Gramian account for more than 99 % of the cumulative
energy spectrum of the eigenvalues. The first eigenmode indicates the direction in the
measurement space that is most informative for latent vector estimation.

We first examine the undisturbed (base) cases for flow over an airfoil. The importance
of pressure sensors in detecting flow structures around the airfoil, and the amount of
information they convey, is illustrated in figure 4 for an AoA of α = 60◦, exemplifying
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an unsteady vortex shedding case. The figure illustrates the placement of pressure sensors
on the airfoil, marked by black circles. Accompanying each snapshot is a bar chart that
highlights the relative importance of the pressure measurements in estimating the latent
vector. This significance is derived from the first eigenmode of the Gramian matrix in
the measurement space. Each bar represents a sensor, with their order corresponding to
the numbering scheme depicted in figure 1: the first bar represents the sensor on the
upper surface nearest the trailing edge, and the subsequent bars correspond to sensors
that proceed counter-clockwise around the airfoil, culminating in the sensor closest to the
trailing edge on the lower surface. The height of the bar, whether positive or negative,
indicates its relative importance to estimating the latent state.

According to figure 4, in the interval t ∈ [0, 2.8] a clockwise leading-edge vortex (LEV)
grows, sustained by the shear layer from the leading edge. As the vortex grows to extend
across the entire chord, the airfoil experiences its highest lift at t = 1. From t = 1 through
2, the sensors 2–4 near the mid-chord of the suction side become the most impactful.
This interval corresponds to the generation and extension of counter-clockwise secondary
vorticity along the entire suction side. After t = 2, the LEV begins to shed from the airfoil,
and the importance of the suction-side sensors begins to diminish in favour of those on
the pressure side. As the trailing-edge vortex (TEV) emerges and develops from t = 3.0
through 3.6 and lift is at its lowest level, the sensors 9–11 on the pressure side become
important. At t = 4.4, new secondary vorticity develops under the TEV and a new vortex
develops at the leading edge, and the sensors in the respective regions (1–3 and 6–8) are
most informative. The cycle returns to the state at t = 0, when the trailing-edge sensors (1
and 11) become most important.

In contrast to cases at large AoAs, in which the first measurement mode varies
periodically over time, at steady flow conditions – such as those for an airfoil at an AoA
of α = 20◦ or less – we find (though omit the plots for brevity) that sensors closest to the
trailing edge on either side (1 and 11) are most informative.

The sensitivity of sensors to changes in the vortical structures becomes significantly
more complex and transient during gust encounters over an airfoil. Figure 5(a) illustrates
the evolution of lift over time for a counterclockwise (positive) disturbance. In this
scenario, there is an initial increase in lift as the gust approaches the airfoil, occurring
around t3 = 1.5. The lift force reaches its lowest point when the centre of the vortical
structure aligns with the trailing edge of the airfoil, at an instant between t4 = 2.6 and
t5 = 3.2. This is then followed by an increase in lift due to tail-induced effects. For a
clockwise (negative) gust, the sequence of events and their impact on the lift is reversed,
as shown in figure 6(a).

Figure 5(b) illustrates a spatio-temporal distribution of the pressure coefficient for an
airfoil subjected to a positive gust, with the baseline flow pressure subtracted for enhanced
clarity. This visualisation highlights distinct high-pressure regions on the pressure side
and low-pressure zones on the suction side of the airfoil. A striking observation emerges:
the positive, counterclockwise gust disturbance distinctly imprints on the pressure field,
elevating pressure on the lower surface while diminishing it on the upper surface. This
effect creates a stronger upward pressure difference between the two surfaces, ultimately
enhancing the lift. These findings reinforce the rationale behind our strategic placement
of pressure sensors to effectively capture flow perturbations around the airfoil. The strong
interaction between the gust and the LEV disrupts the typical vortex dynamics, delaying
the shedding process. This disruption is evident in the periodic non-zero pressure regions
observed on the map, which persist even after the gust has exited the domain. Such
behaviour reflects a significant shift in the periodic vortex shedding pattern induced by
the gust, underscoring the lasting impact of gust-driven disturbances on the flow field.
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Figure 5. Primary mode of pressure measurements at six different snapshots as a positive gust interacts with
the airfoil. Panel (a) depicts the temporal variation in lift. The spatio-temporal map of the pressure coefficient
in (b), with the base flow subtracted, provides insight into how sensors respond to gust–airfoil interactions.
The locations of the leading edge (LE) and trailing edge (TE) are indicated along the y-axis of the plot. Panels
(c) present vorticity contours alongside sensor placements. Each bar represents a sensor indicating its value
in the dominant eigenmode, with their order corresponding to the numbering scheme depicted in figure 1,
arranged sequentially from left to right. The conditions are an AoA of α = 60◦, and gust characteristics of
(G = 0.9, 2R/c = 0.98, yo/c = −0.06). The informative sensors numbered in the bar chart are highlighted in
the vorticity contour plots.

To explain some of the features we observe in the dominant eigenmodes, it is important
to emphasise that the informativeness of pressure sensors as assessed by the Gramian
is intrinsically tied to variations in their readings. These readings capture the evolving
flow structure represented in the reduced-dimensional latent space. Consequently, the
difference in the pressures across successive snapshots reflects the information conveyed
in estimating flow states. Observing the vorticity fields alongside the sensor importance
bars in figure 5(c), we can trace the impact of gust passage on pressure readings. When
the gust tail reaches the leading edge at t2 = 0.8, nearly all sensors – particularly those
near the trailing edge on the suction side and leading edge on the pressure side – register
the flow changes. However, the tail’s influence is weaker compared with the dominant
effects of the primary LEV and TEV. Therefore, the sensors with the highest eigenmode
response remain predominantly influenced by the primary vortices, similar to the base
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Figure 6. Primary mode of pressure measurements at six different time snapshots as a negative gust interacts
with the airfoil. Panel (b) depicts the temporal variation in lift. The spatio-temporal map of the pressure
coefficient in (b), with the base flow subtracted, provides insight into how sensors respond to gust–airfoil
interactions. Panels (c) present vorticity contours alongside sensor placements. Each bar represents a sensor
indicating its value in the dominant eigenmode, with their order corresponding to the numbering scheme
depicted in figure 1, arranged sequentially from left to right. The conditions are an AoA of α = 60◦, and
gust characteristics of (G = −0.98, 2R/c = 0.77, yo/c = −0.26). The informative sensors numbered in the bar
chart are highlighted in the vorticity contour plots.

flow case. As the gust core interacts with the airfoil and the LEV/TEV beyond t2, the
dominant eigenmode of the pressure deviates significantly from the undisturbed scenario.
At t3 = 1.5, the pressure distribution plot reveals the steepest change in time on the lower
side near the leading edge, making sensors 6 and 7 the most responsive to local flow
changes. The interaction between the positive gust and the LEV leads to the formation of
a vortex pair with unequal strengths, which moves downstream with the flow. At this time
until the gust core moves approximately one chord length away at approximately t4 = 2.6,
sensors on the suction side and the leading edge sensors become more informative due
to substantial flow changes occurring there. When the gust core drifts further from the
airfoil, sensors on the pressure side regain prominence, as seen at t5 = 3.2. Eventually,
the sensor responses transition back to the periodic behaviour typical of the undisturbed
flow once the gust exits the domain. During this recovery phase, the pressure distribution
plot reveals a pronounced change in time on the suction surface. This is attributed to the
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substantial adjustments in the primary edge vortices and boundary layer on this side as the
flow reverts to its baseline state.

The evolution of the first dominant mode of the measurement space Gramian for a
negative gust is in many ways similar to that of a positive gust discussed earlier. Figure 6
illustrates the variations in the pressure coefficient during the passage of the negative gust.
The spatio-temporal map, which depicts the pressure coefficient with the baseline flow
subtracted, reveals dynamics that is qualitatively the inverse of a positive gust. Notably,
however, the gust–vortex interactions induced by the negative gust are less disruptive
overall. As the negative gust approaches the airfoil, it decreases pressure on the lower
surface while increasing pressure on the upper surface during the period between t2 = 0.8
and t3 = 1.7. This reversal in pressure distribution creates a downward-directed pressure
difference across the airfoil, ultimately reducing the lift generated by the airfoil during this
interval. This distinct interaction underscores the impact of gust polarity on aerodynamic
performance. When the negative gust interacts with the LEV, the vortices begin to rotate
around a shared centre and eventually coalesce into a larger vortex. This merging process
initiates around t3 = 1.7 and concludes by t5 = 3.2. The resulting larger vortex intensifies
the strength of the LEV, significantly affecting the pressure distribution on the suction side.
Consequently, sensors 1–6, located on the upper surface of the airfoil, exhibit increased
sensitivity to the localised flow changes up to t5. As the gust core moves beyond one
chord length from the airfoil, the influence on the suction side diminishes, and sensors
on the pressure side regain prominence. This shift is particularly evident at t5, further
marking the transition back to baseline conditions as the gust recedes from the domain.
In contrast to the positive gust scenario, a negative gust does not cause a lasting delay in
vortex shedding. This is apparent in the spatiotemporal map of the pressure coefficient,
which reverts to baseline levels after the negative gust leaves the domain.

This general trend has also been observed for the airfoil at the other four AoAs. Overall,
throughout the gust–airfoil–wake interaction, nearly all sensors play a role in capturing
the reduced-order flow dynamics, with their contributions varying over time based on the
evolving flow structures and gust effects. This dynamic redistribution of sensor importance
underscores the complexity and time-dependent nature of gust-induced disturbances.
A uniform distribution of sensors across the airfoil surface is therefore recommended,
as it provides robust coverage and effectively captures critical flow variations without the
need for case-specific sensor tuning.

3.2.2. Aleatoric uncertainty
As described in § 2.5, to account for measurement noise in the reported predictions, we
utilise the network trained with a heteroscedastic loss and active dropout, which maps
surface pressure measurements to the mean and covariance matrix in the latent space
representing the flow field and lift coefficient. During inference, the pressure coefficient,
obtained from a high-fidelity numerical solver, is perturbed randomly along the most
informative directions of the input measurements, denoted as Ur , as identified in § 2.4;
at most, there are only rx = 2 modes used. The noise coefficient ζ is modelled as an
i.i.d white noise with zero mean and variance of 2.5 × 10−5. We generate noisy inputs
accordingly and perform T = 100 forward passes through Fp to obtain a distribution of
the mean and covariance of the latent variables. The expected value of the inferred mean
over 100 samples is referred to as the predicted mean and represents the expected latent
state, while the expected value of the covariance quantifies the aleatoric uncertainty of this
state (see (2.12)).
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Figure 7. Predicted mean with 95 % confidence ellipses of latent variables at a couple of instants for five
undisturbed cases are shown. The solid-coloured curves represent the mean of μ̂, while the dashed black
curves indicate the true trajectories extracted from the lift-augmented autoencoder. Thicker ellipses correspond
to periods of maximum uncertainty. This figure showcases aleatoric uncertainty due to inherent noise in the
input measurements. The solid black path connecting the centre point of all trajectories corresponds to the AoA
axis.

Figure 7 illustrates the trajectories of the predicted means of the latent variables
alongside their 95 % confidence ellipses at a small number of time instants, depicted in
three plots representing the three coordinate planes of the latent space. These ellipses
visualise the uncertainty distribution across five undisturbed cases. To compute these
uncertainty bounds, we first perform a singular value decomposition (SVD) on the
covariance matrix of the latent variables and then project the ellipsoid on the
corresponding coordinate planes. The SVD extracts the principal axes of uncertainty,
enabling us to align the ellipses along these dominant directions. The figure also includes
the corresponding true trajectories extracted from the autoencoder, shown as black dashed
lines for comparison. The figure clearly demonstrates that, despite the noise in the input
measurements, the trained NN effectively maintains its robustness in predicting the
low-dimensional representation of the flow from these measurements. The uncertainty
ellipses further provide more information about the effect of measurement noise on the
uncertainty in the predictions. The dominant direction of uncertainty across all AoAs
primarily (during most of the time) lies perpendicular to the AoA axis, depicted as a
solid black path in figure 7. This suggests that measurement noise has a significant impact
on vorticity field predictions within the surrounding flow at a given AoA. Conversely,
the reduced uncertainty along the AoA axis can be attributed to the encoding of the
AoA alongside pressure measurements. The alignment of the major axis of the ellipses,
primarily tangential to the trajectory, suggests that the estimator’s uncertainty about its
predictions is most significant in the direction of preceding or subsequent snapshots.
This behaviour indicates that vorticity variations between consecutive snapshots lead to
sensor measurement changes that remain within the uncertainty bounds, implying reduced
measurements’ sensitivity along this direction.

To compute the aleatoric uncertainty in the predicted flow field, we draw M = 100
samples of the latent variables from the predicted probability distribution (2.12) computed
during the evaluation phase, and used these sampled latent variables to reconstruct
samples of the vorticity and lift via (2.14). The expected value and variance of the
reconstructed samples indicate the characteristics of a Gaussian distribution. The left
column of figure 8 presents the predicted lift history across five undisturbed cases,
including the corresponding 95 % confidence interval. The predictions show high
accuracy across all AoAs, with slightly wider uncertainty envelopes at α = 30◦, 50◦.
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Figure 8. Aleatoric (data) uncertainty of five undisturbed cases due to measurement noise, represented by the
predicted mean and two standard deviations for the lift and the vorticity fields. The left column illustrates the
evolution of the predicted lift coefficient alongside the ground truth for five different AoAs. The decoder’s
reconstruction error in the reference vorticity field is computed to be ≈ 0.03 for all AoAs. Symbols indicate the
instants of maximum uncertainty in the predicted latent space, with the corresponding predicted vorticity field
shown in the right panels. The far-right column presents the two standard deviations of the vorticity field. The
term ‘ll’ refers to the average pixel-wise log likelihood of the predicted vorticity field computed by (2.15).

At these specific angles, even minor perturbations in the measurements can cause
the predicted latent space samples to deviate, aligning with adjacent trajectories and
compromising the robustness of the results. Despite this, the actual lift measurements
consistently fall within the predicted uncertainty intervals.

The variance of the predicted samples fluctuates over time; in the heteroscedastic model,
this variance is data-dependent, changing based on the input conditions. The instants when
the variance in the predicted latent variables is maximum are indicated in figure 7 with
thicker ellipses. These specific times are also marked in figure 8 using coloured symbols.
At these critical moments, when the predictions in the latent space exhibit considerable
uncertainty, we further investigate the uncertainty in the predicted lift and vorticity fields
as in figure 8. In general, the instants when the latent variables’ predictions show maximum
deviation from true trajectories do not align with the highest uncertainty in the lift and
vorticity predictions. This is not surprising, given the nonlinear nature of the decoder.
The analysis shows that the greatest uncertainty in vorticity predictions at each snapshot
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occurs in the regions of the largest gradient of the vorticity field. This suggests two aspects
of pressure-based estimation that deserve further study: first, the regions of large vorticity
gradient also tend to coincide with dynamically important topological features, such as
saddle points (Tu et al. 2022); also, these large-gradient regions are often associated with
shear layers, where at higher Reynolds numbers, small-scale vortices and instabilities tend
to form. While these smaller-scale structures introduce local turbulence, their impact on
pressure readings is typically less significant than that of large-scale vortices in the wake
and separation events near the airfoil itself.

To assess the estimator’s performance, we can evaluate the log likelihood at the
reference vorticity by (2.15) and show it as ‘ll’ in the predicted mean panels. Interestingly,
the predictions at all AoAs perform reasonably well. The high positive log-likelihood
values indicate a dense concentration of predicted values around the ground truth,
suggesting that the model provides accurate overall predictions for all angles under study.

We now shift our focus to gust-encounter scenarios. Figure 9 presents aerodynamic
predictions for an airfoil experiencing random disturbances at three distinct AoAs: α ∈
{30◦, 50◦, 60◦}. The comparison between the predicted means (with a 95 % confidence
interval) and reference data highlight several key aspects of the model’s performance
during gust encounters. The presence of gusts disrupts the normally periodic behaviour
of the latent space trajectories, pulling them away from their stable limit cycle. As the
disturbance fades, however, the trajectories gradually return to their stable trajectory. This
cyclical deviation and recovery showcase the model’s capability to capture the transient,
complex nature of the gust–airfoil interaction. Despite the introduction of disturbances,
the predicted means in the latent space maintain a strong alignment with the reference
data at higher AoAs. However, at lower angles, particularly on the ξ1 − ξ2 plane for
α = 30◦, the accuracy of the predictions diminishes, as evident in the larger covariance
ellipse in that plane. Nevertheless, even with this degradation, the true trajectory remains
within the uncertainty bounds, suggesting that the model still captures the underlying
flow dynamics despite increased uncertainty. The predicted lift evolution closely tracks
the reference values, with a minor deviation observed at the peak due to the passage of
the gust. A key insight from the figure is the model’s capacity to effectively capture the
heightened uncertainty during gust–airfoil interactions. As gusts induce more variability
in the flow, the model appropriately widens the uncertainty bounds, reflecting a reduced
confidence in the predictions. This expanded confidence interval is vital, as it ensures that,
despite the added complexity of gust disturbances, the true values stay within the predicted
uncertainty range.

A notable observation is the difference between disturbed and undisturbed cases: the
uncertainty of the predicted latent variables during gust encounters is consistently larger
than in the undisturbed flow at similar time instants. This reflects how the model captures
the added complexity and instability introduced by the gusts. Additionally, comparing
the uncertainty ellipses in the latent space for disturbed cases with undisturbed cases
(figures 7 and 9) shows that the greatest uncertainty in the dominant directions during
gusts is noticeably larger. The moment of peak uncertainty in the latent space aligns with
either the gust’s approach to the airfoil or its direct interaction with it. As in undisturbed
cases, the pressure measurements during disturbed aerodynamics are observed to display
low sensitivity to changes in the flow structure across consecutive snapshots. At the point
of maximum uncertainty in the latent space, the corresponding predicted vorticity field
is shown for further analysis. The elevated uncertainty regions are predominantly located
within the wake, particularly around the shear layers and high vorticity gradient regions,
as well as in the vicinity of the gust. These areas are characterised by a more complex flow
dynamics, driven by unsteady aerodynamic effects that introduce greater variability and
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Figure 9. Aleatoric uncertainty in gust–airfoil aerodynamics is illustrated with the predicted mean (solid-
coloured curves) and a 95 % confidence interval for lift coefficient and vorticity field. The conditions depicted
are: (a) α = 30◦, G = 0.93, 2R/c = 0.98, yo/c = 0.04; (b) α = 50◦, G = 0.93, 2R/c = 0.68, yo/c = 0.09; and
(c) α = 60◦, G = −0.98, 2R/c = 0.77, yo/c = −0.26 (a). The light solid curves in the lift plots represent the
corresponding undisturbed cases, providing a baseline for comparison. The black solid orbits in the latent space
illustrate the true trajectories. Symbols indicate the instants when deviations from the mean are at their peak in
the latent space, with ellipses showing the eigenmodes of these deviations. The vorticity plots show predictions
at these specific times, highlighting the impact of the gust on the flow field. The decoder’s reconstruction error
in the reference vorticity field is computed to be ≈ 0.17 for all AoAs.

challenge the model’s ability to provide accurate predictions. The reduced performance of
the trained estimator in predicting the mean vorticity field at lower AoAs, specifically
at α = 30◦, is reflected in the deviations of the predicted latent vector from the true
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Reference Variance Squared bias
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Figure 10. The decomposition of the prediction error into variance and squared bias for aleatoric samples in
the vorticity space.

trajectory in the ξ1 − ξ2 plane. These discrepancies occur in regions of the flow far from
the airfoil, where the variations in vorticity have a negligible impact on the surface pressure
measurements within the associated uncertainty bounds.

Before ending this section on statistical analysis of data uncertainty, it is important
to examine the two sources of error decomposed in (2.16). Figure 10 illustrates this
decomposition for the vorticity field at a representative time instant during gust–airfoil
interaction. The squared bias and variance are computed after decoding each latent
sample, enabling an assessment of how uncertainties in the latent space propagate
to the physical field. The results show that the bias error introduced by the learned
operators is concentrated primarily near the gust core and its immediate vicinity,
indicating a systematic deviation between the mean reconstructed field and the ground
truth. The relatively balanced magnitude of squared bias and variance across the field
indicates that both deterministic and stochastic sources contribute meaningfully to the
total reconstruction error. However, the presence of a localised and non-negligible bias
component underscores the importance of exercising caution when interpreting the
reconstructed states: predictions based solely on the mean states may systematically under-
or overestimate critical flow features in regions affected by strong disturbances. On the
other hand, the log likelihood defined earlier in (2.15) accounts for both sources of error
in a systematic and interpretable manner, as it incorporates not only the deviation of the
predicted mean from the reference field (i.e. bias) but also the uncertainty captured by the
predicted covariance (i.e. variance).

3.2.3. Epistemic uncertainty
Epistemic uncertainty, stemming from incomplete knowledge about the trained DL
model, is crucial in data-driven studies of gust-encounter aerodynamics. Unlike aleatoric
uncertainty, epistemic uncertainty can be reduced through better models and additional
data. To quantify this, in § 2.5 we described a probabilistic approach using MC dropout
to sample from the model’s weights during inference. We use samples generated in the
last section to estimate the model’s epistemic probability density function with (2.13),
capturing both mean and covariance information through the statistics of the output
samples {μ̂k}T

k=1. This method allows us to estimate the reliability of our predictions and
refine our understanding of the transient flow fields and aerodynamic loads. In this section,
we will detail our results, highlighting how MC dropout helps assess unreliability in the
trained model.

Figure 11 illustrates the estimated means of the latent variables alongside their 95 %
confidence ellipses across five undisturbed cases. This figure highlights the model’s ability
to compress and predict the underlying flow dynamics accurately, despite variations in
the fitted model. The ellipses, representing epistemic uncertainty, highlight the degree
of imprecision arising from the model’s inherent knowledge gaps or limitations due to

1013 A41-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
25

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10253


H. Mousavi and J.D. Eldredge

α = 20° α = 30° α = 40° α = 50° α = 60°

1

0

0 1

−1

1

0

−1

1

0

−1
−1 0 1−1 0 1−1

ξ1 ξ1 ξ2

ξ2 ξ3
ξ3

(a) (b) (c)

Figure 11. Epistemic (model) uncertainty of estimation of five undisturbed cases. Predicted mean with 95 %
confidence ellipses of latent variables at a small number of instants for five undisturbed cases are shown.
The solid-coloured curves represent the mean of μ̂, while the dashed black curves indicate the true trajectories
extracted from the lift-augmented autoencoder. Thicker ellipses correspond to periods of maximum uncertainty.
The solid black path connecting the centre point of all trajectories corresponds to the AoA axis.

insufficient data. The major axes of these ellipses are predominantly perpendicular to
the trajectories, reflecting the scarcity of training data away from the primary trajectory
paths. These broader uncertainty regions reveal the model’s performance in terms of the
epistemic uncertainty, especially when it encounters conditions that differ from what it has
been trained on, reflecting the inherent limitations of the network or data.

To assess the epistemic uncertainty in lift and vorticity, we draw M = 100 samples of the
latent variables from the predicted probability distribution (2.13) and reconstruct samples
of vorticity via the procedure described by (2.14). The expected value and variance of the
reconstructed samples indicate the characteristics of a Gaussian distribution. Figure 12
presents the mean predictions along with their 95 % confidence intervals, within which
the true lift is contained. The symbols along the lift curves in figure 12 represent the
snapshots when the predicted latent space samples exhibit the greatest spread around the
mean (indicated by thicker ellipses in figure 11). The corresponding vorticity fields at
these instants are displayed on the right, highlighting regions of maximum uncertainty in
the wake. The model demonstrates significant epistemic uncertainty in regions of complex
flow dynamics, particularly within regions of large vorticity gradient, such as shear layers
and between vortices, which further suggests that the model would struggle most in regions
of small-scale flow interactions at higher Reynolds numbers.

At lower angles such as α = 20◦, the flow remains relatively steady and attached to the
airfoil surface, making it easier for the model to predict the aerodynamic characteristics. At
higher angles, the flow becomes fully unsteady, but the model has learned to handle these
consistently unsteady patterns. The model exhibits lower confidence in its predictions in
regions where the training data are sparse or underrepresented. This reduced certainty
likely stems from the model’s limited exposure to the dynamics in these areas during
training, making it more challenging to accurately capture and generalise the complex
flow behaviour. As a result, the model’s predictive accuracy decreases, and uncertainty
increases in these regions. The log likelihood per pixel is reported for the estimated
vorticity field in each case, providing further insight into the model’s performance. The
negative low log likelihood for α = 20◦ is a result of the steep penalty this metric applies
to deviations from the mean when the variance is small.

The analysis in figure 11 showed that the dominant uncertainty spans all three directions
within the latent space across all cases. The uncertainty along the AoA axis reflects
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Figure 12. Epistemic (model) uncertainty of five undisturbed cases, represented by the predicted mean and
two standard deviations for the lift and vorticity fields. The left panels illustrate the evolution of the predicted
lift coefficient alongside the ground truth for five different AoAs. Symbols indicate the instants of maximum
uncertainty in the predicted latent space, with the corresponding predicted vorticity field shown in the
right panels. The far-right column presents the two standard deviations of the vorticity field. The decoder’s
reconstruction error in the reference vorticity field is computed to be ≈ 0.02 for all AoAs.

uncertainty in the AoA. This is particularly notable in the covariance ellipses for α ∈
{40◦, 50◦, 60◦}, which overlap with the mean trajectories of neighbouring angles in the
latent space. This multidirectional uncertainty suggests that randomness in the model
weights gives rise to large variations in the vorticity predictions not only far from the airfoil
(where uncertainty perpendicular to the AoA axis plays a prominent role, as in the case of
aleatoric uncertainty), but also adjacent to it (where AoA uncertainty is most influential).
Indeed, the uncertainty plots of the predicted vorticity field presented in figure 12 illustrate
the estimator’s confusion regarding the vorticity field adjacent to the airfoil at the specified
AoAs, moreso than in the case of aleatoric uncertainty.

In figure 13 we investigate the epistemic uncertainty of the model’s performance in
gusty aerodynamics under the same conditions as in figure 9. The predicted mean lift
closely aligns with the ground truth in all cases. Similar to aleatoric uncertainty, the
model exhibits greater epistemic uncertainty in its latent space predictions for disturbed
cases compared with base cases. This behaviour can be attributed to the higher number of
training samples corresponding to undisturbed flows, as each gust case contains intervals
that revert to the underlying periodic orbit once the gust has exited the domain. As
a result, the model gains more exposure to the base flow dynamics, leading to lower
uncertainty in those regions. The instant when the norm of the uncertainty ellipse is
maximum is depicted in the latent space. This instant is primarily linked to the gust’s
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Figure 13. Epistemic uncertainty in gust–airfoil aerodynamics is illustrated with the predicted mean (solid-
coloured curves) and a 95 % confidence interval for lift coefficient and vorticity field. The conditions depicted
are: (a) α = 30◦, G = 0.93, 2R/c = 0.98, yo/c = 0.04; (b) α = 50◦, G = 0.93, 2R/c = 0.68, yo/c = 0.09; and
(c) α = 60◦, G = −0.98, 2R/c = 0.77, yo/c = −0.26. The light solid curves in the lift plots represent the
corresponding undisturbed cases, providing a baseline for comparison. The black solid orbits in the latent
space illustrate the true trajectories. Symbols indicate the instants of greatest deviation from the mean in the
latent space, with ellipses showing the eigenmodes of these deviations. The vorticity plots show predictions at
these specific times, highlighting the impact of the gust on the flow field. The decoder’s reconstruction error in
the reference vorticity field is computed to be ≈ 0.15 for all AoAs.
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approach or interaction with the airfoil. Notably, the point of maximum uncertainty in the
latent variables does not always coincide with the peak variance in lift or vorticity due
to the nonlinearity of the decoder. Similar to aleatoric uncertainty modelling, the model
shows the highest uncertainty during gust–airfoil interactions, especially around the first
lift peak, due to the highly complex aerodynamic behaviour. The mean of the estimated
vorticity clearly indicates the disturbance, and the model also identifies it through a region
of heightened uncertainty in its predictions. When a gust approaches and interacts with
the wake, the model shows increased uncertainty not only at vortex boundaries but also at
the disturbance location, highlighting its awareness of the complex flow interactions and
the presence of a gust.

4. Conclusion
This study has developed a DL approach for reconstructing gust-encounter flow fields
and lift coefficients and their respective uncertainties using sparse and noisy surface
pressure measurements. We have demonstrated the approach on undisturbed and disturbed
two-dimensional low Reynolds number flow about an airfoil at a variety of AoAs. By
employing a nonlinear lift-augmented autoencoder, we effectively reduced the high-
dimensional flow data to three latent components, greatly minimising the computational
demands for sensor-based estimation. Our investigation has offered an in-depth analysis
of how sensors dynamically respond to gust–airfoil interactions, revealing the transient
importance of sensors in different positions on the airfoil surface during gust encounters.

It was observed that during the interaction of a gust, regardless of its polarity, with
an edge vortex, sensors located on the upper surface of the airfoil as well as leading-
edge sensors consistently captured critical information about the localised flow changes.
This dominance persisted as the gust traversed up to a distance of approximately one
chord length from the airfoil. Beyond this point, the influence of the gust shifted, with
sensors on the lower side becoming the primary indicators of flow variations. Once the
gust moved far away from the airfoil, the transient sensor responses gradually returned to
their periodic behaviour, characteristic of the undisturbed flow conditions. The transient
response of surface-mounted sensors indicates that a uniform distribution along the airfoil
is effective for covering the most informative flow regions throughout gust interactions.
Investigating the impact of sensor dropout or non-uniform sensor placement remains an
important direction for future research. In the event of a sensor failure, its contribution can
be effectively suppressed during inference by either omitting the corresponding input or
artificially increasing its noise level to reflect its unreliability.

To effectively manage the uncertainties inherent in DL models, we employed strategies
to model both aleatoric and epistemic uncertainties. Aleatoric uncertainty, arising from
sensor measurement noise, was addressed using a heteroscedastic loss to predict the
parameters of a multivariate normal distribution in the latent space. The directions of
the greatest uncertainty in the covariance ellipsoid in the latent space were found to be
nearly tangent to the latent variable trajectories, indicating that the estimator’s uncertainty
is most pronounced in the direction of preceding or subsequent snapshots.

Epistemic uncertainty, stemming from the model’s dearth of training, was tackled
using MC dropout to capture uncertainty in the model itself. Unlike aleatoric uncertainty,
epistemic uncertainty is most significant in directions perpendicular to the latent variable
trajectories, which correspond to regions with less training data. The stochasticity of
both the model and the pressure readings results in high uncertainty when predicting
compressed representation of the flow, lift and vorticity fields, particularly during gust–
airfoil interactions. For both types of uncertainty, the highest levels of uncertainty in the
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predicted vorticity were observed at the vortex boundaries, where small-scale vortices and
shear instabilities tend to develop at higher Reynolds numbers. We hypothesise that these
small-scale structures would likely have a minimal impact on pressure sensor readings and
the trained model compared with the larger-scale flow phenomena that emerge from flow
separation and subsequent vortex shedding around the airfoil.

The results have demonstrated the effectiveness of our approach in accurately
quantifying uncertainties within complex aerodynamic environments, all while
maintaining computational efficiency. This highlights its potential to significantly enhance
sensor-based flow field estimations. The uncertainty analysis presented highlights the
vital importance of addressing both aleatoric and epistemic uncertainties to achieve
robust and reliable predictions, particularly in complex aerodynamic environments. This
uncertainty quantification can be leveraged to improve model performance. For example,
by strategically employing active learning, data sampling can be concentrated in the
dominant directions of uncertainty, thereby efficiently reducing model uncertainty and
enhancing predictive accuracy. This approach not only strengthens the reliability of the
model but also optimises resource utilisation in data acquisition.

There are a number of other aspects of this study to pursue further. We have observed
the largest uncertainty in regions of high vorticity gradients. These regions often coincide
with kinematically important features such as saddle points, and it would be useful to
further explore this connection more deeply (Tu et al. 2022). Also, while the current study
employed synthetic sensor data with added Gaussian noise, the model’s performance
should be validated with real-time sensor measurements and experimental flow data.
Moreover, the versatility of this approach allows for its application beyond aerodynamics,
potentially broadening its impact across various domains. While our method requires an
offline training phase that includes hyperparameter tuning and network optimisation, this
cost is a one-time investment that enables real-time prediction capabilities. Once trained,
the model infers flow fields and aerodynamic loads orders of magnitude faster than
traditional full-order solvers, making it highly suitable for embedded, online and control-
oriented applications. Furthermore, the trained model is lightweight and easily deployable
on edge computing hardware, and the hyperparameter search process can be partially
automated using standard tools. This trade-off between offline cost and online efficiency
ensures that the framework remains practical and scalable for real-world implementations.

Given the sequential nature of both the state and observation spaces, an alternative
approach would be to employ recurrent neural networks, such as long short-term memory
networks (LSTMs) or gated recurrent units (GRUs), to perform flow estimation when
the full temporal sequence of pressure measurements is available. Building on this idea,
we are currently extending our framework to incorporate sequential filtering for real-time
estimation of aerodynamic states as new pressure data become available.
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