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NON-LINEAR ELLIPTIC OPERATORS ON A COMPACT
MANIFOLD AND AN IMPLICIT FUNCTION THEOREM

TOSHIKAZU SUNADA

Introduction

Many problems in differential and analytic geometry seem to have
something to do with the study of non-linear partial differential equa-
tions of elliptic type. For instance, the classical Weyl and Minkowski
problems for a convex surface have been studied by H. Weyl, H. Lewy,
and L. Nirenberg using the iteration method for the construction of
solutions of certain non-linear equations of elliptic type (see [6]). Also,
M. Kuranishi [3] constructed the effective complete family of deforma-
tions of complex analytic structures on a given compact complex mani-
fold as the solution space of another non-linear equation of elliptic type;
whereby the basic idea in his work is to apply an implicit funection
theorem to the non-linear operator of a Banach space, and to construct
the bifurcation of solutions explicitly.

In this paper, we will make researches with some geometric struc-
tures of the solution spaces of non-linear elliptic systems of partial dif-
ferential equations defined on a compact manifold, by using the gen-
eralized bifurcation method in (infinite dimensional) Fréchet manifolds.
The central theme of the present paper is to investigate an Implicit
Function Theorem (I.F.T.) for non-linear elliptic operators in the category
of the Fréchet topology. In his monograph [9], R. S. Palais has devel-
oped a very general culculus for non-linear differential operators on a
C~-manifold from a global point of view. Following the formulation of
Palais, we shall deal with operators acting on the space of global cross
sections of a C=-fiber bundle. In the case of opertors acting on smooth
functions, namely in the case of those on a trivial line bundle, we have
announced our results in [10].

We will now describe the results of the present paper. Let L be a
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(non-linear) differential operator from I'(E) to I'(F), where E and F are
C=-fiber bundles on a compact manifold M, and I'(E) (resp. I'(F")) denotes
the space of C=-global cross sections of E (resp. F). We suppose that
L is elliptic at se I'(E), namely, its linearization d,L of L at seI'(E)
by the Gateaux derivation (it always exists) is a linear elliptic operator
from I'(T,E) to I'(T,F), where Ty (F) (resp. T.,(F)) denotes the vector
bundle s™'TF(E) (resp. L(s)"'TF(F)) induced by s (resp. L(s)) from TF(FE)
(resp. TF(F)), that is known as the vector bundle along the fiber of E
(resp. F). We state in Theorem 1, §4, that the solution space &; =
{te '(E); L(t) = L(s)} islocally a finite dimensional subset in I"(E) around
s. To state more precisely, there is an open neighborhood 1 of s in
I'(E) with respect to the C=-topology such that &, N U is diffeomorphic
to a locally closed set of the finite dimensional vector space T,(&) =
{veI'(T\E); d;L(v) = 0}. This theorem is in part a generalization of a
result of J. Moser [4], who proved that, without the assumption of ellip-
ticity, the solution space is of zero-dimension when d,L is injective.
Later, M. Ise proposed the conjecture that the local dimension of &, at
g is not greater than the dimension of T,(®) in the case where E and
F are trivial line bundles. Our result is in a sense a verification of this
conjecture.

In order to prove Theorem 1, we have to construct the bifurccation
operator @ related to the operator L, based on the Hodge-Kodaira de-
composition, and show that @ endows a local diffeomorphism. Although
it is easy to show that the linearization of @ is an isomorphism of cer-
tain Fréchet spaces, we can not immediately apply the usual LF.T. to
the operator @, because it does not hold in general for Fréchet space.
For this reason, by utilizing the so-called I.L.H.-method introduced in
H. Omori [71 and the regularity of solutions of a non-linear elliptir equa-
tion (see A. Douglis-L. Nirenberg [1]), we prove a modified Implicit Func-
tion Theorem in certain Fréchet spaces with the C~-topology, which is a
unified method of non-linear global analysis and infinite dimensional
geometry (see [2], [5]).

The contents of this paper are as follows: To begin with, in §1,
we review of the manifold structure of the space of global sections of
C=-fiber bundles and the notion of non-linear elliptic operators, following
Palais [9]. In §2, we will explain two simple examples of non-linear
elliptic (overdetermined elliptic) operators. Some general results about
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linear elliptic operators with C~-coefficients, for instance, the classical
theory of Hodge-Kodaira’s decomposition, which we shall utilize in the
later sections, are summarized in §3. In §4, we state the main theorem
of this paper, and apply the theorem to the examples given in §2. We
also apply in §5 a modified implicit function theorem to the study of
the solution space of non-linear equations. Using the results in §3, we
prove an I.F.T. for elliptic operators in § 6. The proof is based mainly
upon the regularity of solutions. Finally, in §7, we give a more precise
result for the solution space under an additional assumption. In the
course of our arguments there, we shall need the notion of the minimal
elements.

Interesting examples and applications to differential and analytic
geometry will be discussed in a forthcoming paper.

The author is grateful to Professor Mikio Ise for suggesting the
present problem and for his advices in the course of preparation of this
paper.

§1. Review of the manifold structure of the space of global sections

We now fix our notations and recall some results which will be used
later. Specifically, we define the (non-linear) differential operators act-
ing on the space of cross sections of a C=~-fiber bundle, using the notion
of the jet bundles and the jet extension mapping. As for the definitions
and the results summerized here, we refer to Palais [8] as a standard
reference.

Let M be a compact n-dimensional C~-manifold without boundary,
and let #: E— M be a C>-fiber bundle over M. For an integer k=n/2 + 1,
we get a C=-Hilbert manifold W*(E), called the Sobolev manifold of
degree k, defined as the set of all global cross sections of E whose
(distributional) derivatives of order < k with respect to any local co-
ordinates are square integrable.

Let I'*(E) denote the space of sections of E of class C*. This is a
Banach manifold under so-called C* topology. The Sobolev embedding
theorem states that if = 0 and k& > (n/2) + k, then W¥E) C I'(E) and
the inclusion mapping is continuous.

We shall define a differentiable structure for I'(F) = I'*(E), the
space of global C~-cross sections of E, by expressing the C~-topology as
the inverse limit of the topologies of W*(E):
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I'E) =1lim WHE) = ( W¥E) .
«— k>n/2
Then the Fréchet manifold I'(E) is called an I.L.H.-manifold (the in-
verse limit of Hilbert manifolds; see [7]).

From the local triviality of fiber bundle z: E — X, it follows that
the projection = is a submersion (namely, its differential dr; TE — TX
is surjective), whence that Ker (dz) is a vector subbundle of the tangent
bundle TE of E. This vector bundle over E will be denoted by TF(E),
and is usually called the tangent bundle along the fiber of E. If
seI'(F), then the induced bundle s™'TF(E) by s is a vector bundle over
M which we denote simply by T.(E). Then, the space of cross section,
I'(T.E), plays a role of the tangent space at s of the Fréchet manifold
I'(E).

For any continuous section s € I"(E), we define a vector bundle neigh-
borhood of s in E by a vector bundle & over M, such that & is an open
subbundle of E and sc I°(¢). Then, for any fiber bundle E, se¢ I'E),
and any neighborhood U of s(M) in E, there exists a vector bundle neigh-
borhood & of s in E with € £ U. Moreover, if se I'(F) we can choose
& so that s is the zero section of &; in this case & is clearly isomorphic
to T,(E).

Using the vector bundle neighborhoods, we have a covering

WHE) = U W@ ,

where in the union & runs over all open vector bundle neighborhoods of
E and W) is an open submanifold of W*(E).

Next we shall define (non-linear) differential operators acting on the
space of cross sections of a fiber bundle. For this purpose, we const-
ruct first the m-jet bundle J™E of FE, as follows: For a given ec F
with z(e) = x and local cross sections s, s, of £ defined around x with
s,(x) = s,(x) = e, we choose a chart around x in M, a local trivialization
of E around x, and a chart around e in the fiber £, = z~'(x) respectively;
under these conditions, if the m-th order Taylor expansions of s, and s,
coincide each other, we say that s, and s, have the same m-jet at . This
defines an equivalence rclation on the set of local cross sections s of
around z with s(x) = e. The set of equivalence classes is denoted by
J™E, and the equivalence class containing s is denoted by j,.(s),. Put
JME) = Ueer I™E, and =™ : J(E) — E denotes the projection given by
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a™(JrE,) = e. We define a C~-fiber bundle over M
™ J"E - M,

whose total space is J*E and whose projection is the composition =™
= gox{™. Then bundle J™E is called the m-jet bundle of E, and the
mapping j,: ['(E) — ['(J™E) defined by j,.(s)(x) = j.(s), is called the m-
jet extension mapping.

Now let F' be another C=-fiber bundle over M. Then a mapping
L:I'(E)— I'(F) will be called a (non-linear) differential operator of order
m from E to F if it can be factored as

ra 2= rgme) 2 rany

where T:J"E — F is a C~-fiber bundle mapping over M.

In the case of the operator L acting on smooth functions, a local ex-
pression of L with respect to local coordinates is represented as follows:
Choose the local coordinates z,, - - -, 2, in a coordinates neighborhood U in
M. In this case, the jet extension mapping is given by the derivation of
order < m: C>(U) — C=(U)?, that is furnished by u— {D*u},,<n, Where
N denotes the number of multi-indices &« = (&, - - -, @,) With |a| = > a; <m,
and D= denotes the partial derivation 9*/oxf* ... 9*»/oxz» as usual. Fur-
ther, the fiber bundle mapping: U X R¥ - U X R is given by an element
of C=(U X RY), say F(x,y). Then the operator: C=(U) — C~(U) induced
by L is of the form:

L(w) = F(x, D*w) .

Every (non-linear) differential operator L of order m can be ex-
tended to a C~-mapping of the Hilbert manifolds:

L® s WHE) — Wen(F)

for k¥ > (n/2) + m. Then the Fréchet derivative d,L* of L™® at se I'(E)
is a linear mapping of T (W*E) into Ty, (W* ™F), where T (W*E) (resp.
T, (Wt ™F)) denotes the tangent space of Hilbert manifold W*(E) at s
(resp. Wt=™(F) at L(s)). Now we have canonical identification:
T(W*E) = WXT,E) ,
TL(s)(Wk_mF) = Wkﬂm(TLw)F) ’

and have a linear differential operator of order m:
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d,L: I(T,E) — I'(T10,F)

which is called the linearization of L at s, with the property (d,L)® =
d,L'®; namely, the extension of linearization of L coincides with the
Fréchet derivative of the extension. We can also get d,L by Gdteaux
derivation; more precisely, let & be a vector bundle neighborhood of s
in E and ¢ that of L(s) in F. Then for I'(¢)

%(L(s + tu) — L(s)

converges in the C~-topology to d,L(u) as t — 0. Therefore, if L has a
local expression as above, its linearization can be expressed by

(a)
d,Lw = 5 F@y") Dru .
laigm oY@ y(a)=Das
Since the operator d,L is a linear differential operator of order m,
we can consider the leading symbol ¢,(d,L) in a usual manner. Namely
this is a bundle homomorphism

am(dsL) : p—lTsE i p—lTL(S)F

over the cotangent space T*M of M (p denotes the projection T*M — M).
Here, we define the ellipticity of non-linear differential operators, namely
L will be called elliptic (resp. overdetermined elliptic) at s if o,(d;L) is
an isomorphism (resp. monomorphism) outside the zero section of T*M,
that is to say, if d,L is a linear elliptic (resp. overdetermined elliptic)
operator of m-th order in the usual sense. We notice that if L is el-
liptic at s, then there exists a neighborhood Ul of s such that for any
uell, d,L is elliptic. This is a simple consequence of the definition of
ellipticity.

§2. Examples

Firstly, we give a very simple example of non-linear elliptic operator
acting on complex-valued C=-functions. We let R denote the real num-
bers, Z the integers, and T" = R"/(2zZ)" the flat torus with the natural
flat metric, where (27Z)" = 2xZ X --- X 2rZ denotes the lattice with the
side of length 2z. The point of T" is usually represented by the angular
parameters x,, -+, %, (0 < x; < 27x). We consider a non-linear elliptic
operator L defined as
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Lu = du + F(u)

where 4 stands for the usual Laplacian: (8%/02?) 4 --- + (8*/922), and

F:C— C an analytic function. Then, the linearization of L at f e C=(M)
is given by

d;L(w) = du + F'(f)u .

Here, F’ is the usual derivative of F. Hence, for all fe C=(M), the
operator L is elliptic at f. In particular, in a special case where F(u)
=u + u% and f =0, we have

dL(w) = du + u™® .

We notice that the dimension of Ker d,L. over C is 2n.**

Secondarily, we consider a more geometric example. Let (M, g) be
a compact Riemannian manifold with the metric g, and let z: M x M - M
be the proposition on its first factor: z(x,y) = 2. Then, we may con-
gsider M X M as a trivial fiber bundle over M with projection =, and
the space of cross sections, I'(M x M), can be identified with C=(M, M),
which is the space of C~-mappings of M to M, by putting s(x) = (x, p(x))
(pe C~(M x M)). We here denote by S°M = S*(T*M) the symmetric co-
variant tensor bundle of degree 2. We can then define the operator

L:I'(M x M) — I'(S*M)

by putting L(p) = ¢*g for e I'(M X M) = C~(M, M), where ¢*g is the
tensor field induced from g by ¢ (notice that g e I'(S?M)).

Now, to see that L is a differential operator of first order, we shall
write down a local expression of L; let g;; denote the components of g
with respect to a local coordinate system (z,, ---,z,) around x; namely,

9:; = 9(d/0x,,d/3x,), and also let (y,, - - -, ¥,) be the one around ¢(x). Then,
we have

dp; 0p
* = P x))——~ bt ,
(@* D ;} 9:4(p( ))axk oz,

where ¢; = y;0¢p. Thus, we see that L is in fact a differential operator
of first order.

Next, we determine the linearization of L, at the identity mapping
Ide C~(M,M). For this sake, we identify T ,(M x M) with TM as fol-

@ This case was suggested by K. Masuda (see also §4).
% Tn the real case, the solution =0 is isolated in the solution space of Lu=0.
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lows: T (M xM)={AD)'TFM x M) =Ad)"'z7'TM =TM. We can then
prove:

LEMMA 1. Under the identification of Tw(M X M) with TM wmen-
stoned above, we have

dIdL(X) = 2.0,

where X denotes a C=-vector field, and ¥, denotes the Lie derivative
with respect to X.

Proof. Define now the mapping ¢: TM — M X M by
() = (p(v), expv) ,

where p: TM — M denotes the bundle projection and exp: TM — M de-
notes the exponential mapping with respect to the Riemannian metric g¢.
As is well-known, for a small positive number ¢, ¢ defines the bundle
isomorphism of T.(M) ={v e TM;||v| <e} onto an open subbundle of M x M
containing the diagonal 4(M) C M X M such that ¢(0,) = (z,2) and the
linearization dyp: I'(TM) — I'(TM) at the zero-section of TM is the
identity mapping of I'(TM). Hence, it is enough to show that

d(Lop)(X) = Z.9 .

We take a local chart (U;x, ---,2,) of M, and let X = > ; £43/0x;) be
a C=-vector field. For a small £, we put

zi(exp tX) = ¢'(x, t&' (), - - -, t&™()) .

Then, we have

. — lim L _ dp" dp
ALo9)(X) = lim T((tX)*g — g) = { (Z 01/t X2 axk)

e

- {i(w(x, tE))l + 2. glk(x)”“(ai>

0x,
}kl

By the way, it is obvious that (d/dt)pi(x, t&)|,_, = &; whence we obtain

t=0

+ Z gu(x)—<ai)

oy,

i 7
dL(X) = dy(Lop)(X) = {z Wregn 4 56, % 4 > g,ﬁ‘i} = Z..
" 0% 7 a0z, T 0% ke

This completes the proof.
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REMARK. A vector field X satisfying that £,9 =0 is called a
Killing vector field.

The operator L defined above is not elliptic at Ide C~(M,M).
However, we have from [8]

LEMMA 2. The leading symbol of dL is injective (namely, dL s
overdetermined elliptic).

§ 3. Summary of the Hodge-Kodaira theory for linear elliptic operators

We will now summarize the Hodge-Kodaira theory for linear elliptic
operators on a compact manifold which we shall need in later sections.
The proofs will be found in Palais [8].

In what follows, £ and F will denote C* vector bundles over M, and
we consider a linear elliptic operator of m-th order:

D:I'(E)—I'(F).

Furthermore, we assume once and for all that there is given on M a
Riemannian metric g = (g;,) and a hermitian metric {, >z in F (resp. {, dr
in F). We denote by dM(g) = +/det (g;,)dx, A --- A dx, the volume ele-
ment of M with respect to g, and by (s, )z the L*-inner product on I'(¥)
(resp. (¢, w)r on I'(F)), which is defined by

(s,M)p = IM<S, rydM(9) , ¢, wp = _[M<t,u>de(g) .

Let D* now denote the formal adjoint operator of D with respect to these
inner products, that is, D* is given by

(Ds, )r = (8, D*D)p

for every se I'(E), te I'(F). In fact, D* becomes also an elliptic operator
of m-th order.

As before, we denote by J*E (resp. J*F') the k-jet bundle of E (resp.
F) and by j,.:'(E) - I'(J*E) the k-jet extension mapping. In this case,
J¥E) is a vector bundle and j, is a linear mapping. Introducing a
metric in J*E (resp. in J*F), we can define the Sobolev inner product
of degree k& as follows:
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(8, Mpp = jﬂ@‘ks, §er> s dM(g)
(b e = [ ety GuyonedM(@)
We put further

Islfx = (8, 9 -

Then, by the Sobolev space W (x) of degree k, we mean the completion
of I'(x) with respect to the Sobolev norm ||-||, s (* denotes E or F). We
would like to point out here that the Sobolev space W#(E) coincides with
the Sobolev manifold introduced in §1 in the case where n: F — M is a
vector bundle.

From the definition of the Sobolev space, we have a natural inclu-
sion: W**tC Wk, Rellich’s lemma asserts that the inclusion: W*"'cCW*
is a compact operator of Hilbert spaces. Thus, we get a discrete chain
of Hilbert spaces:

wo-wo>... oWeD -

such that lim W* = N W* =1T".
(—-

The Sobolev inner product defined as above, however, seems to be
inconvenient to investigate the properties of elliptic operators. There-
fore, we will introduce another inner product of I'(¥) which is equiv-
alent to the Sobolev norm: We put first

g =D*D, [Jr = DD*;

[z (resp. []z) is a formally self-adjoint strongly elliptic operator of
order 2m (called the Laplacian associated with D). We define then the
inner products in I'(E) and I'(F) related to the Laplacian [], by the
following :

[s, /’.]E,lc = (O + s, 1)z,
[t, u]Fk = ((DF + D*, Wz,

where k is a non-negative integer and s,rel'(F),t,ue I'(F). Denote
further by H*(E) (resp. by H*(F)) the completions of I'(E) (resp. of I'(F))
with respect to the inner product [, 1z, (resp. [, lr ). It is clear that

[;]*,0:(;)*-
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Hereafter, [ ] (resp. H* and I' represents either [z or [y (resp.
H*E) or H¥(F), and I'(F) or I'(F)), for the brevity. Some well known
properties of the Laplacian [] which we will need are as follows:

(1) (Garding inequality) For any se ', it holds: ([Js,s) = C,| sl
— |Is|?, where ||s|,, denotes the Sobolev norm of sel” of degree m.

(2) (A-priori estimate), ||Slm.x =< C.(I(] + Dslle + lIslly- (C, and C,

are constants not depending on se ).

LEMMA 8. H* is isomorphic to the Sobolev space W*™ as Banach
spaces.

Proof. By virtue of the Garding inequality for the Laplacian [],
we have

O+ Vs, = Colisl -
On the other hand, if we make use of (1) and (2), one has a inequality
6y I + Dslle = const. |8 ]m s
for all ¥ = 0. For, from the Garding inequality, it follows that
1O + Dslhlisl = (3 + Ds, )y = Cs sl = const. |[sla sl

which proves that |[((] + 1)s|, = const. ||s|,. Combining this inequality
and (2), we have

sllem+x < const. (I(C] + Dslle + [Islly < const. (I + Dslle + lislin)
< const. (|((] + sl + const. |[((] + Vsl < const. [((] + 1)slly -

This proves (3).

We now claim that the norm [s], = [s, sli/?is equivalent to the Sobolev
norm |(|8|nz. First we consider the case when k is even (= 2¢). The
above inequality (3) yeilds

[s, sl = (O + D*s,9) = (O + D, (O + D’)

= const. ||s|,, = const. ||s|}, .
While it is clear that
[39 s]k é COHSt. “S“im »

since ([] + 1) is a differential operator of order 2¢m. Hence, we can
conclude that [s, s], is equivalent to ||s|f, when k is even. Next, when
k is odd (= 2¢ + 1), we have similarly
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[s, 51, = (0 + DO + D', 0 + D) = const. | (] + Dislf,
> const. ||8[Eysam = const. [|s[E -

Furthermore, we have
[s, sy < const. ||((] + 1)’s| < const. ||s|k. ,

where we use the inequality: (] + Ds,s) < |s|f. Thus we get the
same conclusion in this case, too. This completes the proof of the lemma.

REMARK. According to the above lemma, we know that D can be
extended to D® : H¥*(K) — H*'(F).
Now, we introduce for every i¢ C the space

I'y={sel';[]s = 4s] .

If I', # (0), we call 1 an eigen-value of []. Since ([Js,s) = 0, all eigen-
value are non-negative. We can now establish the following basic prop-
erties of eigen-value of Laplacian:

PROPOSITION. (i) The set of eigen-value of [ ] is discrete:
0§20<21<22< crr > 00,

(ii) The eigen-space I'; is a finite dimensional vector space for any
eigen-value 2.
(iii) We have a H*-orthogonal decomposition

H =>@®r,

where the summation runs over all eigen-value of [ ].
(iv) The decomposition in (iii) is orthogonal with respect to the L?-
inner product.

Proof. It is first to be noticed that the operator [ ] + 1 has the
abstruct inverse operator A (namely, A(C] +1) = (] + DA =1d). In
fact, for ¢t eI, the operator s— (s,%) (se H’) is bounded with respect to
the H'-topology. Hence, by Riesz’s representation theorem, there is % ¢ H*
such that [s,u], = (s,t). In particular, for any se I, we have

@O+ Ds,w) = (s,0) .

This implies that ((] + Du =t¢. In view of hypoellipticity of elliptic
operator [ ] + 1 (it is due to the a-priori estimate), if follows that ueI.
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The uniqueness of u with (] + Du = ¢ is clear. Therefore, [ ] 4+ 1 has
the inverse A. Moreover, from the definition of inner product [, ],, we
have

[AS’ t]k = [S, t]k~1 = [S; At]lc »
[As]; = [sli_

and so A has the extension A® : H* - H**:, By the way, we know that
the inclusion: H***— H* is a compact operator by Rellich’s lemma.
These imply that A (= A™®) is a self adjoint compact operator of H*.
Hence, it follows from the Riesz theorem for the self adjoint compact
operators of Hilbert spaces that, for any given 1e R, E,(4) = {se H*;
As = Js} are mutually orthogonal subspaces of H*, and H* is their Hilbert
space direct sum. Moreover, the spaces E,(4) are finitely dimensional,
and the set {1e¢ R; E,(A) + (0)} of eigenvalues of A has no limit points
possibly except zero. If se E,(A), then As = ps and this means that
]+ Ds =s. From the hypoellipticity of [ ] + 1, we have seI'y,,_;.
In other words, this implies that

Fx = El/(1+l)(A) .

This gives the proof of (i), (ii), and (iii).

Now we prove (iv). It suffices to show that the orthogonal projection
7% onto E, in H* coincides with z). For this purpose, we take se F,(4)
and te H*. Since [As,t], = [s,tl,.,, we have Ais,t], = [s,tl;,_,. This
implies that if (s, ---,s,) are the orthonormal basis of E, in H*, then
(/+7)s,, -++,(1/4/2)s,) are the orthonormal basis for E, in H*'. Let
rt: H* — E, be the orthogonal projection in H*, defined by

24t = Z [t, s:liSs

for te H*. Then, we have the equality:

R TR U0 T R T
. (t)_Z[t, ﬁsi]k_l Tyt =2l s,

=1 im
= Zi [Z, siles: = =5(2) .

This implies, in particular, that z? = zJ. q.e.d.
We put P} = n},.,: H* — I';, and we call in particular H = P} the
harmonic projection associated with the Laplacian [].
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COROLLARY 1. For any scl', the Fourier expansion
> Pls =3 Pls
P 2
converges in C=-topology of I to s.

COROLLARY 2 (Hodge-Kodaira). There is a operator G:I" — I', called
the Green operator, such that

s=Hs + []Gs = Hs + G[Js
for sel.
Proof. We put

G=x1pm.
2

>0

Since [P} = AP3, we have

§= 1P =Pl + 3 Plis = Hs + DZ%P@:HS +[0Gs. qed.
>0 >0

az0

LEMMA 4. [Gsli,, < const. [s];. FEspecially, G has a extension G*® : H*

—s Hk+2.

Proof. By the definition of &, we have

2

[Gshiiz = [Z }—PAS] = >, —1—[P,1$],2ch2 < const. > [P;s]E
>0 A k42 50 A2 =0
= const. ([s]: — [Hs]}) < const. [s]?,
where we use the fact (1 + 1)[P,sl2 = [P,s:,.. q.e.d.

COROLLARY. Im (D*)®*D (resp. Im D**Y) {s a closed subspace in
H*(E) (resp. in H*(F)).

Proof. Since H¥(E) = I'(E) @ (3,50 @ I'(E)), it is enough to show
that Im (D¥)®* = ST, @ I(E). We take s = SloP'se o ® Ii(E).
Then, we have

8 = D(k+2)G(k)s —_— (D*)(k+1)D(k+2)G(k)s e Im (D*)(k-H) .
Conversely, let s = (D*)**V¢ ¢ Im (D*)**Y, Then, for any ue I'(E)

(u, 8) = (u, (D*)**Y8) = (Du,?) = 0.
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This implies our assertion.

REMARK. (i) In particular, Im D* = lim (D*)**" (resp. Im D
lim D%®+Y) is a closed subspace in I'(F) (respf_i_n I'(F)).
- (i) I'W(F) = Ker D, I'(F) = Ker D*,

§4. Main theorems

In this section, we let E and F' denote C~-fiber bundles over M, and
let L be a (non-linear) differential operator of m-th order from I'(F) to
I'(F) which is elliptic at se I'(F), namely, its linearization d.L is an
elliptic operator from I'(T,E) to I'(T,F).

Since the linearization means, roughly speaking, to replace locally
the non-linear mapping L by an approximating linear mapping, and
further we know that the dimension of the solution space of a linear
elliptic equation is finite. We may therefore expect that the dimension
of the solution space of any non-linear elliptic equations oughts to be
finite. In order to make exact the formulations, we now introduce some
notations:

S ={te'(E); L(t) = L(s)},
T() ={uel(T,E); d,L(w) = 0} .

We regard &, as a topological subspace of I'(F) with the induced topol-
ogy. It is here noticed that the dimension of 7,(®) is finite.

THEOREM 1. Let L be a (non-linear) differential operator which is
elliptic at se I'(E). Then the solution space S, is locally a finite dimen-
stonal subset in I'(E) near s. More precisely, there is a neighborhood
N of s in I'(E) with respect to the C=-topology such that S, N U 1is
diffeomorphic to a locally closed set in finite dimensional vector space
T,(S).

REMARK. (i) Even if L is elliptic at any se I'(F), the solution
space is not in general globally of finite dimension.

(ii) In order to show that the solution space has more fine struc-
tures (for example, manifold structure, analytic space structure), we need
to suppose more precise assumption of L: I'(F) — I'(F) (see, § 7).

(iii) Though L is overdetermined elliptic at se I'(F), the above as-
sertion is also valid.
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Return now to the examples in §2. In the first example, we put
L(u) = du + u + u*. Thus,

G ={ueC(Tv; du + u + w* = 0},
T(®) ={ueC(T"); du + u = 0} .
Hence, the solution space ©, must be, by the above theorem, locally realized

in T\(®), which is the eigen space of 4 corresponding to —1. We make
expand % € C~(T™) in Fourier series:
u®@ = Y e’
¥ Ad

where <{z,&> = 2§ + -+ + €&, If ue Ty(®), then u is expressed by
u(m) = u(xl, ey xn) — Zn:“ cief-—_lxi + Zn; c_,e” Vizg ,
i=1 i=1

where ¢,; (1 =1, ..., n) are arbitrary complex numbers. From this point
of view, we shall parametrize T,(&) by the coordinate (¢, c_,, - -+, Cny C_n).
Then, the solution space &, is realized in T(&) as follows:

{leyegy o yeme ) eTy(@); c6., = -+ = CaC_p = 0} .
Hence, &, is an analytic set with singularity (in fact, it consists of the

2"-union of mn-planes). Especially, the solution u(x) parametrized by
(¢,0, -+, ¢,,0) is expressed by
w@) = > kecfem(x,f>
£20 ¢eZn
(¢ = cft - ci)
where k. can be determined by inductive process.

Next, in the second example, the solution space €, = {p e C~(M, M);
L(p) = ¢*g = g} containing the identity mapping is no other than the
isometry group of Riemannian manifold (M, g), and T1(©) = {X e ['(TM);
dpL(X) = Z,9 = 0} is the Lie algebra of Killing vector fields, which is
identified with the Lie algebra of the isometry group. As is well-known,

By is a (finitely dimensional) compact Lie group. Therefore, in this
case we can know the global structure of the solution space.

§ 5. Bifurcation

We keep the notations of previous sections. In this section, we shall
construct the bifurcation operator™** associated with L in order to prove

@kt We refer to as for this concept the lecture note due to L. Nirenberg: Func-
tional Analysis, Courant Instituts of Mathematical Science, New York Univ., 1960/1961.
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Theorem 1. Without loss of generality we can assume that E and F are
C=-vector bundles over M, and s and L(s) are zero sections of I'(F) and
') yespectively, because the statement of Theorem 1 is local in its
nature, and if necessary we can choose vector bundle neighborhoods.
From this view point, we put

&, = {te I'(E); L(t) = 0},
Ty(©) = {uel'(E); dL(u) = 0},

and we put D = d,L for the sake of simplicity. From our assumption,
D is a linear elliptic operator.

Applying the theorem of Hodge-Kodaira to the elliptic operator D,
stated in §3, we have the direct decompositions:

I'E) = T(©) ® Im D*,
I'F)=KerD*®ImD,

which are orthogonal with respect to the L*inner products.
We put furthermore

H=Hg:T'(E)—-T(©,
K=G|p: IT'F)>ImD =3 P},.
>0

Since Im D and Im D* are closed subspaces of the Fréchet spaces, these
are also Fréchet spaces with the induce topology. By Ty«(©)® Im D, we
mean the direct sum of Fréchet spaces T\(&) and Im D. Then, we define
the non-linear operator which we want to call the bifurcation operator:

O:I'E)—->T(©)DImD
by putting @(t) = H(t) ® Ko L(t). Notice that &(0) = (0, 0).

LEMMA 5. The linearization d,@:I'(E) — T\(S)® Im D is an isomor-
phism of Fréchet spaces.

Proof. From the definition of @, we have
dP(u) = Huw) ® Ko d,L(w) .
Since K is the projection onto Im D, it follows that
dy@(u) = H(u) ® D(u) .

We first prove that d,@ is surjective. Indeed, let w = w, ® w,e T\(S) D
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ImD. We put 4 = w, + D*Gpw,c I'(E) = T|(©)® Im D*. 1f we use the
fact that HD* = 0, DD*Gyw, = w, — Hyw, = w,, and Dw, = 0, we have

dd(w) = Hw, + HD*Gyw, + Dw, + DD*Gyw, = w, + w, ,

gso that d@u) = w. In order that d@ is injective, we assume that
Hu) =0 and D) =0. According to Corollary 2, in §3, we have
u=Hu + GJu =0+ GD*Du = 0. This shows that d,@ is injective. By
the open mapping theorem in Fréchet space, d,® gives an isomorphism.

THEOREM 2. @ maps a neighborhood U of 0 in I'(E) diffeomor-
phically onto a neighborhood of @(0) = (0,0).

So as to prove this theorem, we shall utilize a slight variation of
the so-called implicit function theorem (I.F.T.), which will be discussed
in the later section.

As was noted, the usual I.LF.T. for Banach spaces asserts that if ¢
is a C-mapping (in the sense of Fréchet derivative) of a Banach space
X into a Banach space Y, if ¢(0) = 0, and if dy is isomorphic, then ¢
gives a local diffeomorphism around the zero point. The proof is quite
elementary, and we use intrinsically the fact that X and Y are Banach
spaces. In our case, however, I'(F) and T(©)@® Im D are considered as
Fréchet spaces with the C~-topology, and L.F.T. for Fréchet spaces is
not in general valid (cf. [2]). Therefore, Lemma 5 does not immediately
imply Theorem 2. Under such circumstances, we need to use the more
precise culculus of the bifurcation operator @ in the Sobolev space HF
so as to prove Theorem 2 (see, §6).

By using a standard bifurcation method of mnon-linear functional
analysis, the proof of Theorem 1 can be derived from this theorem, as
follows: In fact, let 1,%,, and B, be neighborhoods respectively in
I'(E), T(®), and Im D such that 0ell, 0%, 0e%,, and the mapping
O: U - B, DB, is diffeomorphic. Then a C~-mapping Q: B, PV, —
Ker D*®Im D = I'(F) can be defined such that in the diagram:

u -2, wes

@ e

I'F) = KerD*®ImD,

the commutative relation Q@ = L is valid. If we define the mapping:
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R: B, ® B, — Ker D*

by R = H,L®* (as was noted before H, denotes the harmonic projec-
tion: - I'(F) — Ker D*), we obtain

Quy, uy) = R(un Uu) DUy,
where u; € 8; (it = 1,2). Indeed,
Quy, uy) = HpL® ' (uy, uy) © KLO™'(uy, us)

and if we put Qu = u, ® u,, then u, = Ko L(x). Hence, the above Q(u,, u,)
is equal to R(u,, %;) @ u,.

Thus it follows at once that under the diffeomorphism @, & = {(u, 0)
eB, ®B,; R(u,0) = 0} is diffeomorphically mapped onto &, U. This
proves that S, N 1 is diffeomorphic to the set of zeros of finitely many C=-

functions defined on an open set 2B, of the finite dimensional vector space
T,(©); namely that of zeros of the mapping

R(-,0): B, — Ker D* .
(Note that Ker D* is of finite dimension).
REMARK. When L is an overdetermined elliptic system at s, namely
the leading symbol ¢, (d,L) is injective, Ker D* is in general an infinitely

dimensional vector space. But, the assertion of Theorem 1 is valid also
in this case by similar arguments as above.

COROLLARY. If d,L:I'(TE)— I'(T,F) is surjective, the solution
space S, has o manifold structure of finite dimension around s with the
tangent space T,(S) at s.

Proof. Rince Ker D* = 0, R(-,0) is the constant 0-mapping. Hence,
&, N U id diffeomorphic to an open neighborhood of T,(©). q.e.d.
§ 6. The Proof of Theorem 2

This section is devoted to the proof of Theorem 2, keeping the situ-
ation of previous sections.

We regard the Fréchet spaces which we consider in this section as
the inverse limits of Hilbert spaces:

I'(E) = lim H¥E) , I'(F) = lim H¥(F) ,
<« <«

Im D = limIm D® , Im D* = lim Im (D*)%® .
<« «—
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Now we consider the extension of D = d,L
D(k) — (doL)(k) . ch(E) s Hk—l(F) ,
and the orthogonal decomposition of H*:

H*E) = Ty(©) @ Im (D*)*+? ,
H*Y(F) = Ker D* ® Im D® .

As is noticed of in § 3, their decompositions are orthogonal with respect
to the L*inner product, too. Then we have

LEMMA 6. The restriction of D®
D(lc) l Im (D*)(k+1) . Im (D*)(k+1) — Im D(k)
is an isomorphism of Hilbert spaces.

Proof. First, we note that the restriction is surjective. For, let
ueIm D®, Then, there is we H¥E) with D®w = u. Writing

w = w, + w, € Ty(S) @ Im (D*)**»

we see that v = D®w = Dw, + D®w, = D®w,. So, D® |Im (D*)**V is

surjective. That D |Im (D*)**" is injective is obvious from Ker D N

Im (D*)%+v = (. q.e.d.
Next, we define the non-linear operator of Hilbert spaces:

@, H¥(E) — Ty(S) @ Im D®

by putting @,(f) = H® () ® K%~V o L*(t) for tc H*(E). Here, we suppose
that £k = k, = Q/m)(m + [n/2] + 1).

PROPOSITION 2. The mapping @, is C° in a sense of Fréchet deri-
vative, and is an extension of @ defined in §5. Moreover, for £ = k,
we have

¢k!H‘(E) = Qz
and d,D,: H¥(E) — T(S) @ Im D® 4s an isomorphism.
REMARK. Namely, {@;};zs, is an I.L.H.-mapping of I.L.H.-spaces [7].

Proof. The first half of Proposition follows at once from the- defi-
nition of @, if we note that the direct decompositions are common to
any H*. The last statement follows from the above lemma and an
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argument that is similar to the proof of Lemma 4 in §5. q.e.d.
Hence, if we apply the usual implicit function theorem in Banach
spaces to the mapping @, we get

PROPOSITION 3. @, maps a neighborhood U, of 0 in H*(E) diffeo-
morphically onto a nmeighborhood B;_, of ®(0) = (0,0) in Ty(S) D Im D®.

This proposition, however, does not immediately lead to our desired
results, because we don’t know whether we can take in general a sequence
{U:}isx, such that

HYE) N0, =1,

for £¢>= k. But, if we make use of a result of A. Douglis and L. Nirenberg
[1], we obtain the following weak form:

PROPOSITION 4. There exists a sequence of neighborhood {Uz}isr, of
0 in HYE) and {Bi_}xzx, of D0) = (0,0) in T(©) ® Im D® such that

(1) uy: Up — By, s a diffeomorphism for k= k,.

(i) For ¢,k = k,, we have

renun,=reynuy,, & eEImbH)NYB,_,=T,(S)®ImD)NYB,_,.
where as before, k, = A/m)(m + [n/2] + 1).

Before we proceed to prove this proposition, we define the notion of
elliptic element of L as follows: TUp to the present, we have considered
the linearization of L only at the C~-section se I'(E). Of course, for
any sc H*(E), we can always define the Gateaux derivative (= Fréchet
derivative) d,L at s, which is a linear differential operator possibly with
the lower differentiable coefficients. In this case too, we can define the
leading symbol of d,L as a continuous homomorphism

pE —pT'F,

and if this homomorphism is bijective, we call a cross section s ¢ H*(E)
an elliptic element of L. As a matter of fact, if L is elliptic at se I'(F),
then s is an elliptic element of L.

For the proof of the above statement, we need the following lemma
about the C=-regularity of solutions of a non-linear differential equation
of elliptic type, which is due to A. Douglis and L. Nirenberg [1] (see
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Theorem 5):

LEMMA 7. Let uc H*(E) be an elliptic element of L. We assume
that L%y 4s a C=-section of F. Then, ueI'(E).

After these preliminary remarks, let us turn to the proof of Prop-
osition 4. Let U,, and By,_, be open neighborhoods such that 11,, consists
of elliptic elements of L and &,,:1,, — U;,_, is a diffeomorphism. (We
notice that the set elliptic elements of L is open in H*). Then it is
enough to show that for & = k, we can choose open neighborhoods 1,
B,_, so that &,: U, — B;,_, is diffeomorphic, and

I'E) N U =I'E) N U, ,
(Ti(@)@ImD) N By,_, = (Ty(©) ®Im D) N By,_, .

We observe first that for any ¢te I'(E) N U,,, there is a neighborhood
U,(t) of t in H*(E) such that @, is a local diffeomorphism of 1,(t) onto
0,(U,(@). For this purpose, we show that the linearization

4,9, : HY(E) — Ty(©) @ Im D®

is an isomorphism of Hilbert spaces. From the injectivity of d,9,,, it
is clear that a homomorphism d,0, is also injective. To indicate the
surjectivity, let (u,, u,) € T)(©) ® Im D, Then, there is a (w,, w,) € T\(S)
@ Im (D*)%*d = H*(E) such that d,0,,(w,, w,) = (u,, u,), since &, is a dif-
feomorphism. In view of the definition of &,, we have '

E®-d,L%(w) = u, ,
SO

AL* () = Hyd, L%(w,) + K*=d, L% (w,)
= Hyd,L*(w,) + 4, -

Since u,e Im D® and Hzd,L*(w,) e I'(F), it follows that d,L*"(w,)e
H*-(F"). Hence, according to the H*-regularity of linear elliptic operator
d.L with C~-coefficient (we notice that ¢t e I'(F)), we have w,c H*(F) and
so (w,,w,) € H*(E). This implies that surjectivity of d,9;, and by I.F.T.,
@, gives a local diffeomorphism around f%.

We put

uk = Ltj uk(t) ’ %k—-l = @k(uk) ’
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where the union runs over all te I'(E) N U,,. Then it is clear that U,
is an open neighborhooe of 0 in H*(E), B,_, an open neighborhood in
H*Y(F), and I'(E) N U, = ['(E) N U,

Finally we would like to show that (T,(®)@® Im D) N B;_, = (Ty(S) ®
ImD) N B;,_,. Given u = (u,u,) € (T(S) D Im D) N By,_;, thereis a w =
(w,, w,) € Uy, with @, (w) = u. From the similar argument as above, we
have

L%we ['(F) .

Therefore, owing to Lemma 6 we have we I'(E), and so w e I'(E) N Uy,
By the definition of 8B,_,, we have u = @,(w) € B,_,. The inverse inclu-
sion is obvious. This completes the proof of Proposition.

We now put

U=TIE N1,
B = (Ty() ® Im D) N By, -

Then, it follows immediately from Proposition 4 that @: 1l — 8 gives a
diffeomorphism with respect to the Fréchet topology.

§ 7. Final remarks

In this section, under an additional assumption, we shall state the
more precise result as for the solution spaces.

In Theorem 1, we showed that the solution space of an elliptic
operator is locally of finite dimension, which is in fact realized as the set of
zeros of finitely many C~-functions on a finite dimensional vector space.
In general, the set of zeros of C~-functions has a complicated structure.
We want therefore to seek a sufficient condition so that the solution space
has a manifold structure in a local sense.

In the case of smooth mappings, the inverse image of a point is
locally a smooth manifold around the point where the mapping has
maximal rank. In analogy to the notion of maximal rank of C*-mapping,
we introduce the notion of minimal elements as follows: As cross sec-
tion seI'(E) will be called a locally minimal element of L, if L is
(overdetermined) elliptic at s and there is an open neighborhood U of s
such that dim 7,(©) < dim Ker d,L for any tell.

In the elliptic case, index d,L = dim Ker d,L. — dim Coker d.L is con-
stant independent on fell (we assume that 11 is connected), since the
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index of elliptic operator is homotopy invariant. Hence, the above con-
dition is equivalent to:

dim Coker d,L = dim Coker d,L ,
for any tell. In particular, if d,L is onto, s is a locally minimal element.

EXAMPLE. Let (M, g) be a Riemannian manifold. We consider the
differential operator introduced in §2:

L:C*(M,M)— I'(S'M) ,
Lip) = ¢*g .

As is noticed in §2, L is overdetermined elliptic at 1d ¢ C=(M, M). Here,
we show that Id is a locally minimal element of L. For this purpose,
we denote by 2(M) the diffeomorphism group of M, which is open in
C~(M,M). We take ¢,c2(M) and let g, = L(p) = ¢fg. We define
L,: C~(M,M)— I'(SM) by Lp = ¢*g,. So we have

Lip = ¢*9, = ¢*¢fg = (pp)*g = LR,O;(QD)

where R, is the C=-fiber bundle mapping (diffeomorphism) defined by
(@, y) — (@, 9.(9)), namely, R, : M XM — M X M, and R(¢) = ¢,p. There-
fore dy L, = d, LdR,, so that dim Ker d,, L = dim Ker d,L, = dim Ker d,L,
since diR, is an isomorphism and (M, g, is isometric to (M,9) by o.
This shows that Id is minimal.

We now return to the first situation. We put p = dim T,(&).

LEMMA 8. Let secI'(F) be a locally minimal element of L. Then,
there is an open neighborhood 1V (C W) of s in I'(F) such that

o = dim T(&) = dim Ker d,L
for any tell'.

Proof. Let 11 be an open set as in the avove definition. Then
{d,L};ex is a continuous family of elliptic operators over the topological
space 1. Therefore, by the upper semi-continuity of the dimension of
the kernel of an elliptic operator, there is an open neighborhood I’ C 11

e = dim (T(®)) = dim Ker (d,L)
= dim Ker (d,L)

for all te 1. This proves the lemma. q.e.d.
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THEOREM 3. Let s be a locally minimal element of L. Then the
solution space &, is locally a p-dimensional C=-manifold around s with
the tangent space T(S) at s.

Proof. As the argument in § 5, we assume that E and F' are vector
bundles and that s = L(s) = 0 (0-section). Also, we adopt the notations
of preceeding sections. We set

&, = {te ['(E); KL(t) = 0} .

Then, &; is locally a C=-manifold around the 0-point, with the tangent
space t + Ker(Kd,d) at tc S}, that is an affine subspace of I'(E). For,
under the local diffeomorphism @: I'(E) — T(©) @ Im D, &} is diffeomorphic
to the open neighborhood of 0 in T,(©). We need the following lemma
for the proof of Theorem 3.

LEMMA 9. H,LE, =0 around 0.

Proof. We notice that H;L : &) — Ker D* is a C~-mapping of finitely
dimensional C~-manifold ©;. Hence, it is enough to show that d,(HyLS,
=0 near 0. Let ue T, (&) =t + Ker (Kd,L). Then, from our assump-
tion, we have

dim Ker d,L = dim Ker d,L., and Ker (Kd,L) D Ker d,L ,

so that Ker (Kd,L) = Ker d,L and d,(HzLS))(n) = Hpd,L(u) = Hz(0) = 0.

Returning to the proof of Theorem 3, we now show that &, = &;
near 0. From the dfinition, it is obvious that &, D &, Take uec &
near 0. Since HyLu = 0 by Lemma 9, we have

Ly =HzLu + KLu =0 .

This completes the proof of Theorem 3.

REFERENCES

[1] A. Douglis and L. Nirenberg: Interior estimate for elliptic systems of partial
differential equations, Comm. Pure Appl. Math., 8 (1955), 503-538.

[2] J. Eells: A setting for Global Analysis, Bull. Amer. Math. Soc., 72 (1966),
751-809.

[3] M. Kuranishi: New proof for existence of locally complete families of complex
structure, Proceeding of the Conference on Complex Analysis, Minneapolis (1964),
142-154.

[4] J. Moser: A new technique for the construction of solutions of non-linear dif-
ferential equations, Proc. Nut. Acad. U.S.A., 47 (1961), 1824-1831.

https://doi.org/10.1017/5S0027763000016470 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016470

200 TOSHIKAZU SUNADA

[5] J. Nash: The imbedding problem for Riemannian manifolds, Ann. Math., 63
(1956), 20-63.

[ 6] L. Nirenberg: The Weyl and Minkowski problems in differential geometry in the
large, Comm. Pure Appl. Math., 6 (1953), 337-394.

[7] H.Omori: On the group of diffeomorphisms on a compact manifold, Proc. Symp.
Pure Math., Vol. XV, Amer. Math. Soc. (1970), 167-183.

[81 R. S. Palais: Seminar on the Atiyah Singer index theorem, Princeton study 57
(1965).

[9]1 R. S. Palais: Foundation of Global Non-linear Analysis, W. A. Benjamin Inc.
(1968).

[10] T. Sunada: The solution spaces of non-linear partial differential equations of
elliptic type on compact manifolds, Proc. Japan. Acad., 49 (1973 (, 385-389.

Nagoya University

https://doi.org/10.1017/5S0027763000016470 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016470



