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Abstract
Recent experiments aiming to measure phenomena predicted by strong-field quantum electrodynamics (SFQED) have
done so by colliding relativistic electron beams and high-power lasers. In such experiments, measurements of collision
parameters are not always feasible. However, precise knowledge of these parameters is required to accurately test SFQED.
Here, we present a novel Bayesian inference procedure that infers collision parameters that could not be measured
on-shot. This procedure is applicable to all-optical non-linear Compton scattering experiments investigating radiation
reaction. The framework allows multiple diagnostics to be combined self-consistently and facilitates the inclusion of
known information pertaining to the collision parameters. Using this Bayesian analysis, the relative validity of the
classical, quantum-continuous and quantum-stochastic models of radiation reaction was compared for several test cases,
which demonstrates the accuracy and model selection capability of the framework and highlight its robustness if the
experimental values of fixed parameters differ from their values in the models.
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1. Introduction

Laser–particle beam collisions have proven an effective tool
in the investigation of strong-field quantum electrodynamics
(SFQED). Early experiments utilized collisions between
a linear accelerator (linac)-accelerated electron beam
and a high-power laser[1] to observe non-linear Compton
scattering (NLCS)[2] and the non-linear Breit–Wheeler (BW)
process[3]. More recently, so-called all-optical experiments
(in which one laser pulse drives a wakefield accelerator[4],
producing a relativistic electron beam that collides with a
second laser pulse) aimed to probe radiation reaction[5,6],
the recoil experienced by a charge accelerated in an external
field upon emitting a photon. A number of initiatives[7,8] aim
to perform high-precision studies of NLCS and non-linear
BW pair creation.

The advent of laser facilities capable of attaining
1021 −1023 W cm−2 intensities[9–12] will enable the explo-
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ration of SFQED in regimes where quantum effects
are predicted to be substantial. Efforts are underway to
measure vacuum birefringence in collisions between a high-
power laser and a brilliant X-ray source[13,14], while future
campaigns propose to use high-power lasers to observe
exotic phenomena such as photon–photon splitting[15]

and the self-focusing and self-compression of light in
vacuum[16].

Many SFQED experiments propose to use collisions
between high-power lasers and particles beams, or between
high-power lasers, and may thus experience difficulties in
interpreting data due to shot-to-shot variation in collision
parameters. A recent study[17] of the effect of varying
collision parameters on model differentiation for radiation
reaction studies using electron beam–laser collisions found
20%–30% changes in the mean and 5%–10% changes in the
width of the final electron spectrum for typical variations
in longitudinal alignment between the electron beam and
laser pulse, while variations in the electron beam duration
and chirp induced changes of up to 20% in the final mean
electron energy and width. This motivates the development
of novel data analysis tools that account for uncertainties due
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to unknown or measured particle beam, laser and collision
parameters self-consistently.

To address this challenge, we have developed a Bayesian
inference framework that facilitates parameter inference and
model comparison for all-optical NLCS experiments aiming
to probe radiation reaction. This framework infers values
of collision parameters that directly affect experimental
observables but were not measured on-shot, and incorporates
knowledge of collision parameters from prior measurements
or simulations (in the form of prior distributions). This
procedure combines multiple diagnostics into a single, self-
consistent analysis and enables a quantitative comparison
of three radiation reaction models; the classical, quantum-
continuous and quantum-stochastic models outlined in
Section 2. While this framework applies to all-optical
radiation reaction experiments, some of the techniques used
in this work have wider relevance for beam–beam or laser–
beam collider experiments.

We identify a number of challenges associated with the
implementation of this analysis and propose strategies to
address them. Increasing the number of inference (or free)
parameters rapidly increases the computational cost of the
inference procedure beyond the point where the inference
is tractable. For example, in Section 5.3, convergence is
achieved for the slowest converging parameter after 8000
steps for the one-dimensional test cases and 31,000 steps
for the three-dimensional test cases. On average, the one-
dimensional inference procedures conducted for mono-
energetic electron spectra required 5 CPUs, 60 GB per
CPU and 8 hours of runtime, while the three-dimensional
inference procedures typically required 40 CPUs, 60 GB per
CPU and 480 hours of runtime.

In addition, an excessive number of free parameters may
result in over-fitting. Therefore, a number of collision param-
eters are assigned fixed values. We assess the impact of
fluctuating collision parameters on our experimental observ-
ables given their expected shot-to-shot variation. We then
demonstrate that degeneracies between free and fixed param-
eters allow free parameters to replicate the effect on the
experimental observables of a fixed parameter having an
experimental value that differs from its value in the model.
These two considerations inform the selection of free and
fixed parameters.

When using this approach, inference parameters should
be treated as effective parameters that replicate the collision
conditions, rather than physical parameters that accurately
represent electron beam and laser properties, or their spatio-
temporal alignment. If the experimental value of a fixed
parameter deviates from its value in the model by more than
a given amount, we find accurate model differentiation is
no longer possible. We identify the threshold at which this
occurs for transverse misalignments between the electron
beam and colliding laser and propose to mitigate this issue
by applying the Bayesian analysis to shots with the highest

photon yields, for which transverse misalignments are likely
to be small.

Finally, we assess the accuracy of model selection and
parameter inference using the Bayesian framework via a vari-
ety of test cases with electron, laser and collision parameters
representative of a recent experiment. We find that, given
the experimental uncertainties and the broad, uniform priors
we opted for, single-shot model differentiation is infeasible.
However, model selection may be achieved by combining
model evidences over multiple shots.

2. Theory

Two parameters, namely the electron quantum parameter,
η = ERF/Es, and the dimensionless intensity parameter,
a0 = |EL|e

ωLmec , govern the quantum and non-linear character of
electron–photon interactions, respectively[18]. The electron
charge and mass are denoted as e and me, respectively, ωL

and EL are the frequency and strength of the external electric
field in the lab frame, respectively, ERF is the electric field
strength in the electron rest frame and Es = 1.3×1018 V m−1

is the Schwinger field. A classical theory of radiation reac-
tion is expected to be valid when αa0η � 1 and η � 1[19,20],
where α is the fine structure constant, while quantum effects
become dominant for αa0 � 1 and η � 1[19,20]. Multi-photon
and relativistic effects manifest for a0 > 1.

Classical radiation reaction is expected to be well-
described by the Landau–Liftshitz model[21], which treats
radiation emission as a continuous process and does not
impose an upper bound on the frequency of radiation emitted
by an electron. For this reason, classical radiation reaction
over-predicts electron energy loss compared to quantum
models[22].

For a0 > 1, quantum models of electron–photon scatter-
ing become non-perturbative. An alternative approach is
employed (the Furry picture) in which electrons are ‘dressed’
by the background field[23]. In order to treat arbitrary electro-
magnetic fields, photon emission is assumed to occur over
timescales much smaller than the timeframe of electromag-
netic field variation, allowing the electric and magnetic fields
to be treated as locally constant and orthogonal (locally
constant field approximation, or LCFA)[24]. Between photon
emissions, electrons propagate classically[25–27]. The quan-
tum model of radiation reaction, here termed the quantum-
stochastic model, prohibits the emission of photons with
energies exceeding the electron energy and treats photon
emission as a stochastic process, which gives rise to spectral
broadening[22,28,29].

We also consider a quantum-continuous model, which
incorporates first-order quantum effects in a classical
framework. This model treats radiation emission as
continuous but applies a correction factor, the Gaunt
factor[30], to the radiation reaction force term to recover
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the same rate of change of average electron momentum
predicted by the quantum-continuous model[22,28]. Both the
classical and quantum-continuous models predict spectral
narrowing[22,28].

Throughout this paper, the subscripts qs, qc and cl refer
to the quantum-stochastic, quantum-continuous and classical
models, respectively.

3. Method

3.1. Bayesian statistics

Bayesian inference is a statistical technique that allows the
unknown variables, ρ, which parameterize a given model,
Mx, to be inferred. Central to this technique is the approach
of using a forward model (which predicts the experimental
observables for a set of inputs) to obtain the probability that
the model is accurate given the observed data, D, that is,
P(Mx|D), the posterior probability. Crucially, the forward
models, and hence their posterior probability distributions,
are functions of the inference parameters. The posterior
probability is calculated using Bayes’ theorem:

P(Mx|D) = P(D|Mx)P(Mx)

P(D)
, (1)

where P(D|Mx) is the likelihood of observing the data given
Mx. The prior probability, P(Mx), incorporates known infor-
mation about the inference parameters prior to measuring
D, and the probability of observing the data, P(D), is a
normalization constant. Two models, here demarcated by ‘a’
and ‘b’, may be compared quantitatively using a Bayes factor,
r, defined as follows:

ra,b =
∫

P(D|ρa,Ma)P(ρa|Ma)dρa∫
P

(
D|ρb,Mb

)
P

(
ρb|Mb

)
dρb

, (2)

where P(D|ρa,Ma) is the probability of observing data, D,
given that Ma and ρa are both observed. Table 1 provides
guidelines for the interpretation of Bayes factors. Note that
for ra,b > 1, Ma is favoured over Mb, while for ra,b < 1, the
reverse is true and the Bayes factor interpretation is given by
the reciprocal of the first column in Table 1.

The Bayes factor may be challenging to compute as it
requires integrals over f -dimensional space, where f is the
number of fit parameters. For this reason, r is often approx-

Table 1. Guidelines for Bayes factor interpretation[31].

Bayes factor Interpretation of result
1–3.2 Inconclusive
3.2–10 Substantial
10–100 Strong
>100 Decisive

imated numerically. We used leave-one-out cross-validation
with Pareto-smoothed importance sampling[32], available in
the Python package ArviZ[33], to compute Bayes factors.

A Markov chain Monte Carlo (MCMC)[34] algorithm,
implemented using the emcee library in Python[35], was used
to perform the inference.

3.2. Implementation of Bayesian inference

The Bayesian inference procedure is summarized in Figure 1.
It was not possible to measure the pre-collision electron
spectrum for successful collision shots. Furthermore, the
pre-collision spectrum for a given shot may not be well-
represented by a summary statistic such as the mean electron
spectrum for shots with no colliding laser (null spectra) due
to substantial shot-to-shot variation in the electron spectrum.
For this reason, null spectra were used to train a neural
network, which was used to predict pre-collision electron
spectra for successful collision shots. The construction,
training and testing of this neural network are discussed
by Streeter et al.[36]. The neural network consisted of an
encoder followed by a translator stage and subsequently
a decoder. The former compressed information from four
diagnostics (the plasma density, laser energy and pointing
and the recombination light emitted by the plasma) into the
minimum number of parameters that allowed the key features
of the inputs to be re-constructed. The decoder performed
a similar function but in reverse, reconstructing a full pre-
collision electron spectrum from a small number of inputs.
The translator section provided a mapping between the
outputs and inputs of the encoder and decoder, respectively.
Once trained, the encoder, translator and decoder were used
to predict an ensemble of pre-collision electron spectra. This
was used to estimate the uncertainty due to the availability
of training data for each collision shot analysed using the
Bayesian inference procedure. The near-median and standard
deviation of the predicted distribution (the former is defined
as the spectrum closest in shape to the median spectrum of
the distribution) were used to approximate the pre-collision
electron spectrum and its uncertainty.

In the following section, curled variables, such as N ,
denote post-collision variables and pre-collision variables
are italicized. The superscripts – and ′ demarcate properties
of the gamma spectrum and measured (as opposed to pre-
dicted) observables, respectively.

The pre-collision electron spectra were complex and
varied significantly from shot to shot, necessitating an
analysis procedure capable of treating arbitrary electron
spectra. To this end, a routine was developed that
decomposed pre-collision electron spectra into a sum over
Gaussian sub-spectra, with mean and standard deviation
Lorentz factors, 〈γ 〉k and �k, respectively, where the
subscript k iterates over the number of sub-spectra, n〈γ 〉.
The sub-spectra were fed into the MCMC algorithm,
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Figure 1. The stages of the Bayesian analysis procedure are summarized. Initially, a distribution of pre-collision electron spectra is predicted by a neural
network (for simplicity only one pre-collision spectrum is shown). The pre-collision spectrum is decomposed into a sum of Gaussian sub-bunches that are
fed into the inference procedure. The MCMC returns three inference parameters, the laser a0, longitudinal displacement of the collision from the laser
focus, Zd, and the electron beam duration, τe, which are used to reconstruct the pre-collision phase space of the electron beam and the laser electric field it
experiences at the collision. This information is supplied to the forward model (in this case the classical, quantum-continuous or quantum-stochastic model),
which predicts the post-collision electron spectrum and photon spectrum for each sub-bunch. The full post-collision electron and photon spectra are obtained
by performing a charge-weighted sum over the sub-spectra predicted for each sub-Gaussian. The model predictions, measured post-collision electron and
photon spectra and their uncertainties are used to compute the posterior probability, which allows the MCMC algorithm to predict the subsequent region of
the posterior to sample. Once the MCMC has converged, model comparison is performed using Bayes factors computed for the different models.

Figure 2. A collision between an electron beam (red) and a tightly focused,
counter-propagating laser (normalized field strength shown in blue) is
depicted. The electron beam charge is normally distributed both spatially
and temporally, with duration τe, source size σr and energy-dependent
divergence θe. The laser intensity, which is proportional to the square of
the normalized intensity parameter, a0, has Gaussian spatial and temporal
dependence. The laser waist, w0, and duration, tL, are indicated. The
collision is longitudinally and transversely offset from the laser focus
(yellow cross) by Zd and rd, respectively.

which sampled three inference parameters from their prior
distributions, namely the laser a0, the longitudinal offset
of the collision from the laser focus, Zd, and the electron
bunch duration, τe, illustrated in Figure 2. Given τe, the
electron beam phase-space distribution was obtained by
assuming the longitudinal electron beam distribution was
Gaussian. The spatio-temporal distribution of the laser

Table 2. Measured laser parametersa.

Laser parameters Experiment Value in forward model
Energy on target (J) 6.13±0.02 Free parameter
FWHM transverse (2.52±0.20)× 2.47

waist (μm2) (2.09±0.10)

FWHM duration (fs) 45±3 45

aFWHM, full width at half maximum.

intensity at the collision was derived using a0 and Zd,
assuming the laser is well-described by the fundamental
transverse electromagnetic mode solution to the paraxial
Helmholtz equation. The laser phase is described by the
Gouy term and the transverse offset of the collision from the
laser focus is assumed to be zero. The laser a0 and electron
beam phase-space distribution comprised the inputs for the
forward model, that is, the parameterized model of radiation
reaction.

Various collision parameters (see Tables 2–4) affect the
energy loss of the electron beam and hence the measured
post-collision electron and photon spectra. The interpolation
procedure used in the forward models scales poorly with
the number of inference parameters, and thus the maximum
number of inferred parameters is largely limited by the
computational expense associated with an increasing number
of interpolation dimensions. For this reason, we selected
three parameters to infer and fixed the remaining parameters.
The choice of inference parameters was contingent upon a
number of factors, including the expected impact of the col-
lision parameters on the post-collision observables, data sub-
selection and degeneracy. (That is, two or more parameters
that cause similar changes in the post-collision observables.
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Table 3. Measured or estimated electron beam parametersa.

Electron beam property Experiment Value in forward model
Duration* (standard

deviation) (fs)
14±14 Free parameter

Transverse source size 0.68±0.13 0.68
(standard deviation)

(μm)
Electron beam

propagation distance
0 0

from source to
collision plane (mm)

Total electron charge
(pC)

140.1±12 Normalized

FWHM divergence
(mrad)

b1 −b2
√

γ me [GeV] b1 −b2
√

γ me [GeV]

aSimulated parameters are indicated with an asterisk. The electron beam
source size has been estimated from previous measurements[37], while the
electron beam duration was obtained from particle-in-cell simulations using
the code FBPIC. The constants b1 and b2 were b1 = 1.30+0.26

−0.19 mrad,
b2 = 0.26+0.24

−0.28 mrad GeV−0.5. FWHM, full width at half maximum.

Table 4. The expected transverse and temporal alignment of the
electron beam and the colliding laser and the expected shot-to-shot
jitter in the above parametersa.

Collision parameters Experiment Value in forward model
Transverse displacement of 0±17.54 0

collision from focus (μm)
Temporal displacement of ±N (0,30) Free parameter

collision from focus (fs) +U (2.73,45.82)

aU and N denote uniform and normal distributions, respectively.

If one such parameter is fixed in the forward model but takes
a different value experimentally, the inference procedure
can change the value of the free, degenerate parameter to
accurately recover the post-collision observables.) As a con-
sequence of the use of degeneracy, the inference parameters
should be treated as effective parameters that collectively
represent the collision distribution of η to the first order,
rather than physical characteristics of the electron beam and
laser pulse.

Each forward model consisted of five four-dimensional
interpolation tables produced using a Monte Carlo code
written in C++ (see Appendix B). Three of these tables
parameterize the post-collision electron spectrum for a
Gaussian pre-collision electron spectrum or sub-spectrum
as a Weibull distribution (as indicated by simulations),
providing its location, μ, scale, λ, and shape, κ:

dN
dγ

= κ

λ

(
γ −μ

λ

)κ−1

e−
(

γ−μ
λ

)κ

. (3)

The two remaining interpolation tables returned the pho-
ton number, A, and the normalized critical energy, εc, of the
photon spectrum:

dF k,l

dε
= A

(
ε

εc

)− 2
3
e− ε

εc , (4)

where ε = �ω

mec2 .
Pre-collision electron spectra input into the Bayesian infer-

ence procedure were decomposed into n〈γ 〉 Gaussian sub-
spectra that re-created the full spectra when summed, as
illustrated in Figure 3(a):

dN
dγ

=
n〈γ 〉∑
k=1

hke
− (γ−〈γ 〉k)2

2�2
k , (5)

where 〈γ 〉k, �k and hk denote the mean, standard deviation
and electron number of the kth bunch, where k denotes
decomposition along spectral axis, and 0 ≤ k ≤ n〈γ 〉.

Given the longitudinal displacement of the collision from
the laser focus, Zd, and the electron bunch duration, τe,
sampled by the Bayesian inference procedure, the phase
space of the pre-collision electron spectrum, obtained under
the assumption that each sub-spectrum has a Gaussian lon-
gitudinal distribution as indicated in Figure 3(b), is given by
the following:

d2N
dγ dz

=
n〈γ 〉∑
k=1

hk√
2πc2τ 2

e

e
− (γ−〈γ 〉k)2

2�2
k e

− (Z−Zd)
2

2c2τ2
e , (6)

where Z denotes the longitudinal co-ordinate. The
interpolation tables were produced using electron beams
with Gaussian temporal profiles and standard deviation
durations 2/ωL = 0.85 fs. To enable the inference procedure
to construct electron beams of arbitrary duration without
requiring the addition of a fifth dimensional interpolation
table for τe, a second Gaussian decomposition was
performed on the electron spectrum input into the Bayesian
analysis, in which each sub-bunch was split into nz femto-
bunches of 0.85 fs duration, as shown in Figure 3(c). This
second, longitudinal decomposition is denoted by the index l.
In order to perform this longitudinal decomposition, it is
assumed that the electron beam is well-described by the
sum over many short, Gaussian, non-interacting femto-
bunches of equal duration situated at different longitudinal
positions. The longitudinal position of each femto-bunch
will depend on the duration and longitudinal offset of the
full electron beam from the laser focus at the collision. Given
the longitudinal displacement of each of these sub-bunches
from the laser focus, the interpolation tables were used
to obtain the post-collision electron and photon spectrum
of each longitudinal sub-bunch. These post-collision sub-
bunches were recombined with appropriate weights to obtain
predictions for the full post-collision electron and photon
spectrum. The longitudinal position of each femto-bunch,
Zd − 3cτe ≤ zk,l ≤ Zd + 3cτe. The electron number in each
femto-bunch, gk,l, is given by the following:

gk,l = hk√
2πcτe

e
− (γ−〈γ 〉k)2

2�2
k e

− (zk,l−Zd)
2

2c2τ2
e . (7)

https://doi.org/10.1017/hpl.2024.83 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2024.83


6 E. E. Los et al.

Figure 3. (a) The decomposition of a pre-collision electron spectrum predicted by a neural network (cyan) into Gaussian sub-spectra (purple), the sum over
which (black) reproduces the original spectrum. (b) The phase-space projection (centre) of a single Gaussian sub-spectrum with the mean, 〈γ 〉k , and standard
deviation, �k , Lorentz factor demarcated by continuous and dashed vertical black lines, respectively. The location, Zd, and width, cτe, of its longitudinal
distribution are indicated by continuous and dashed horizontal black lines, respectively. The longitudinal (left) and spectral (bottom) distributions of the
Gaussian sub-spectrum (obtained by integrating its phase-space distribution over the spectral and longitudinal axes, respectively) are shown in cyan.
(c) Decomposition of the phase-space distribution in (b) into femto-bunches (magenta) with varying numbers of electrons, gk,l, evenly spaced mean
longitudinal positions, zk,l, and 0.85 fs durations, where the latter two properties are indicated for a single femto-bunch by continuous and dashed black
horizontal lines. The sum over the femto-bunches yields the spectral (bottom) and longitudinal (left) distributions shown in cyan.

Figure 4. Overview of the forward models used to predict the post-collision electron and photon spectra. Once the phase-space decomposition has been
performed, the mean and standard deviation Lorentz factor and mean longitudinal position of each femto-bunch are fed into five interpolation tables together
with the laser a0. Each interpolation table generates a single output, three of which describe the post-collision electron spectrum location, μ, scale, λ, and
shape factor, κ , while the remaining tables output the critical factor, εc, and photon number, A, of the photon spectrum. The interpolation table outputs are
used to obtain the post-collision electron and gamma spectra for each femto-bunch, which are then weighted by the number of electrons in the pre-collision
femto-bunch and summed, yielding the full post-collision electron and photon spectra, respectively.

Together, a0, gk,l, �k and 〈γ 〉k comprise the inputs for the
interpolation tables, which constitute the forward model.

The forward model for the post-collision electron spectrum
consists of three interpolation tables that each generate one

output for the four inputs that parameterize each femto-
bunch. The three outputs, namely μ, λ and κ , are fed into
Equation (3) to obtain each post-collision femto-spectrum,
dFk,l

dγ
. This procedure is illustrated in Figure 4.
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As the interpolation tables returned normalized electron
spectra, the post-collision electron femto-bunches are
weighted by the number of electrons in the corresponding
pre-collision femto-bunch and then summed over to obtain
the full post-collision electron spectrum, dN

dγ
:

dN
dγ

= 1
De

n〈γ 〉∑
k=1

nz∑
l=1

gk,l�k
dFk,l

dγ
, (8)

where De = ∑nz
k=1gk,l�k. The post-collision photon spec-

trum was obtained using a similar procedure, where the
forward model returns two parameters per femto-bunch, A

and εc, which are inserted into Equation (4) to obtain dFk,l
dε

.
As with the electron spectrum, a weighted sum is performed
to obtain the full photon spectrum, dN

dε
.

4. Calculation of posterior probability

The calculation of the uncertainties on the measured
and predicted post-collision electron and photon spectra,
and the derivation of the posterior probability, up to a
constant, are discussed in this section. The neural network
that predicted the pre-collision electron spectra returned
nP = 100 distinct spectra, dNj

dγ
, where j enumerates each

prediction. At each iteration of the Bayesian inference
procedure, this pre-collision distribution is used to obtain
the corresponding post-collision electron spectra for a set of
collision parameters, as discussed in Section 3.2. The near-
median of the distribution of post-collision spectra, dNnm

dγ
,

approximates the post-collision spectrum. The uncertainty
on the predicted post-collision electron spectrum, ζ (γ ), is
the root mean squared (rms) deviation of the distribution
of predicted post-collision spectra from the near-median
spectrum. The uncertainty in the measured post-collision
electron spectrum due to the uncertainties in the magnet,
lanex screens and gas jet positions, ζ ′ (γ ), is as follows:

ζ ′ (γ ) =
dNnm

dγ

(
γ +σγ

)+ dNnm
dγ

(
γ −σγ

)
2

, (9)

where σγ = Ce(γ me [MeV])2/me [MeV] and Ce = 32.45 ×
10−6 MeV−1. The log likelihood for the electron spectrum
is given by Equation (10) where dN ′

dγ
is the measured post-

collision electron spectrum:

〈
log

(
P

(
dN ′

dγ

∣∣∣∣Mx
))〉

=
∫ ⎛

⎜⎝− 1
2

log
(

2π
(
ζ 2 (γ )+ ζ ′2 (γ )

))

−
(

dN ′
dγ

− dNnm
dγ

)2

2
(
ζ 2 (γ )+ ζ ′2 (γ )

)
⎞
⎟⎠dγ .

(10)

The uncertainty, ζ pre, in the predicted post-collision

gamma spectrum, dN
dε

, due to the uncertainty in the predicted
pre-collision electron spectrum is given by the standard
deviation of the distribution of predicted post-collision
gamma spectra.

A separate Bayesian inference routine was used to fit
Equation (4) given the measured gamma spectrometer signal.
This procedure yielded nY -valued distributions of εc and A
that yielded the best fit, as discussed in Appendix A. These
values of εc and A were used to generate a distribution
of nY gamma spectra, dN ′

v
dε

, where v, which denotes the
vth spectrum in the distribution, has values 0 ≤ v ≤ nY .
The mean,

〈
dN ′
dε

〉
, and standard deviation, ζ

′
(ε), of the

distribution indicate the most probable gamma spectrum
and its corresponding uncertainty. The log likelihood,〈
log

(
p
(

dN ′
dε

∣∣∣Mx
))〉

, for the gamma spectrum is then as
follows:
〈

log

(
p

(
dN ′

dε

∣∣∣∣∣Mx

))〉

= 1
nP

nP∑
j=0

1
�ε

∫
⎛
⎜⎜⎜⎝−0.5 log

(
2πζ

2
(ε)

)
−

(
dN j
dε

− dN ′
dε

)2

2ζ
2
(ε)

⎞
⎟⎟⎟⎠dε,

(11)

where ζ (ε) =
√

ζ
2
pre (ε)+ ζ

′2
(ε) and �ε is the interval size

for ε. Assuming P
(

dN ′
dε

|Mx
)

and P
(

dN ′
dγ

|Mx
)

are indepen-
dent, the probability of observing both the electron and
photon spectra for a given model, P(DT|Mx), is given by
their product, or equivalently:

log(P(DT|Mx))

=
〈

log

(
P

(
dN
dε

∣∣∣∣∣Mx

))〉
+

〈
log

(
P

(
dN ′

dγ

∣∣∣∣Mx
))〉

,

(12)

where DT denotes the measured electron and gamma spectra.
The prior distribution, P(a0,Zd,τe), is given by the sum

over the log priors for a0, P(a0) and zk,l, P
(
zk,l

)
:

log(P(a0,Zd,τe)) = log(P(a0))+ log
(
P

(
zk,l

))
, (13)

where P(a0), P
(
zk,l

)
are uniform priors that reflect the

ranges of the interpolation tables for a0 and zk,l, respectively:

log(P(a0)) = 0 0.1 ≤ a0 ≤ 35,

log(P(a0)) = −∞ a0 < 0.1,

log(P(a0)) = −∞ a0 > 35, (14)

log
(
P

(
zk,l

)) = 0 −4800/ωL ≤ zk,l ≤ 1440/ωL,
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Figure 5. (a) The post-collision electron spectrum obtained from a Monte Carlo simulation for a collision between an electron beam with initial 〈γ 〉 = 2550
and �k = 263.4 and a laser with a0 = 35 where Zd = 0. The reconstructed electron spectrum obtained using the interpolation tables (magenta) shows good
agreement with the simulated post-collision spectrum. (b) The photon spectrum simulated using a Monte Carlo code for the parameters provided in Figure 5
is shown alongside the fit thereto (with Equation (4)) and the photon spectrum constructed using the interpolation tables.

log
(
P

(
zk,l

)) = −∞ zk,l ≤ −4800/ωL,

log
(
P

(
zk,l

)) = −∞ zk,l ≥ 1440/ωL. (15)

The quantity optimized by the MCMC, log
(

p
(

Mx|DT

))
,

was calculated using the following:

log
(

p
(

Mx|DT

)))
= log(P(DT|Mx))+ log(P(a0,Zd,τe)) .

(16)

Here, p(Mx|DT) is proportional to the posterior proba-
bility, P(Mx|DT), up to a normalization constant, P(DT);
P(DT) is calculated by integrating the posterior probability
over the parameter space. If this integral has no analytic
solution and is multi-dimensional, as is the case in this
work, it can be extremely challenging to compute P(DT)

accurately. However, as P(DT) is constant, it does not affect
the results of the inference procedure. Therefore, p(Mx|DT)

may be used to perform the inference instead without loss
of accuracy. The MCMC optimized the log posterior as this
enabled the inference procedure to treat extremely small
probabilities. The log

(
P

(
Mx|DT

))
obtained for a given set

of a0, Zd and τe determined the subsequent region of the
parameter space to be explored by the MCMC. This proce-
dure was continued iteratively until the MCMC converged.
The degree of convergence and the point at which conver-
gence was reached were calculated as described by Sokal[38]

and the emcee module documentation[39], respectively.
The full forward models were benchmarked using the

Monte Carlo code QEDCASCADE[40,41], as illustrated in
Figures 5(a) and 5(b).

The interpolation tables that comprised the forward mod-
els were produced using a Monte Carlo code written in C++.
Appendix B details the computational implementation of
each model of radiation reaction.

5. Results

A number of difficulties arise when implementing Bayesian
inference in a context such as this, where many parameters
affect the observables, are poorly constrained and their
effects on the observables are correlated. If the latter
statement holds, a change in one parameter may be partially
compensated for by a change in another parameter. If
the prior is insufficiently restrictive, many regions of the
parameter space may exist that optimize the posterior: a
unique solution may not exist. This problem is known as
degeneracy. There is also a risk of over-fitting; if the number
of inference parameters (i.e., the degrees of freedom of
the forward model) is increased, the inference procedure
will return progressively larger hyper-volumes of the f -
dimensional parameter space which optimize the posterior
probability. Without sufficiently constraining priors, addi-
tional diagnostics or smaller uncertainties, increasing the
number of free parameters may not increase the quantity of
meaningful information that can be extracted from the data.
Furthermore, if an excessive number of poorly constrained
free parameters are used, these parameters may compensate
for inaccuracies in the models, allowing any model of
radiation reaction to be made compatible with the data. This
may be avoided by applying strong priors; however, such
priors require measurements of the unknown parameters
or must otherwise be physically motivated, and many
parameters in collider experiments lack either constraint.

We employ three approaches to address these challenges,
as discussed below.

Parameter selection The collision parameters whose
expected variations have the highest and lowest impact
on the post-collision electron and gamma spectra are
identified. The latter are assigned fixed values in the forward
models.
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Degeneracy Degeneracies between the parameters that
have the greatest impact on the observables are identified,
if present. These degeneracies are used to further reduce the
number of free parameters; two degenerate parameters may
be replaced by one, so long as it is able to accurately repro-
duce the underlying physics of the collision. This inference
parameter is then treated as an effective parameter. As such,
its inferred value will not reflect a physical property of the
electron beam or laser, but rather will reproduce, to first
order, the distribution of η at the collision. This is because
η indicates the importance of the correction to the electron
energy due to photon emission, which in turn indicates the
expected impact of radiation reaction on the post-collision
observables. From the definition of η given in Section 2, the
expression η = 2ã0γ

λC
λL

may be derived, where λC = h
mec

is the Compton wavelength. Thus, the distribution of the
inferred effective laser a0, ã0 (a0,Zd,τe), and the electron
spectrum can be used to obtain the distribution of η at the
collision.

Shot selection We propose to perform the analysis
on shots selected to minimize the potential impact of
collision parameters excluded from the forward model. For
these shots, degeneracies between included and excluded
parameters enable the inference procedure to compensate for
any contributions to the change in electron beam energy and
spectral shape from parameters not included in the forward
model.

5.1. Effect of laser, electron and collision parameters on
post-collision observables

The laser, electron and collision parameters that were mea-
sured, estimated or inferred from previous measurements are
summarized alongside their assigned values in the forward
models in Tables 2–4, respectively. These parameters are
illustrated in Figure 2 for clarity. The temporal displacement
of the collision from the focus provided in Table 4 combines
the shot-to-shot variation in the timing between the two

laser pulses with the additional delay due to the unknown
injection point of the electron beam. As the electron beam
is accelerated to velocities exceeding the group velocity of
the laser in the plasma, vg, if injection occurs earlier, the
colliding beam would need to arrive earlier for the electron
beam to interact with the peak laser intensity.

Figures 6 and 7 illustrate the effect of varying the laser,
electron beam and collision parameters on the mean energy
and width of the post-collision electron spectrum, respec-
tively. This allows the collision parameters with the highest
impact on the experimental observables to be identified. We
have chosen to neglect spatio-temporal coupling terms such
as pulse front tilt and chirp in the laser, as these higher-order
effects are expected to have a significantly lower impact on
the post-collision observables compared to the parameters
considered here. The variation in the number of emitted
photons, A, with these parameters has not been shown as this
trend is merely the inverse of the trend shown in Figure 6.
The variation in the critical energy of the photon spectrum,
εc, is not shown as this is much less sensitive to fluctuations
in the collision parameters than the properties of the electron
spectrum, which are shown.

Figure 6 indicates that, given the expected uncertainties
in the collision parameters, the transverse offset has the
most significant effect upon the electron beam energy loss,
followed by the laser energy, the longitudinal offset of the
collision from focus and the source size of the electron beam.
By comparison, the effect of changing the electron beam
chirp and duration and the laser duration are negligible. The
effect of changing the electron beam divergence also appears
insignificant; however, this is because the longitudinal offset
of the collision from the laser focus was set to 0, and thus the
effect of the changing energy-dependent divergence of the
electron beam on its transverse size (and hence the average
laser intensity during the collision) is negligible.

In Figure 7, the expected transverse jitter also has the
highest expected impact on the electron spectrum; however,
the most impactful parameters following this are the electron
source size, the longitudinal offset and the electron beam

Figure 6. The mean Lorentz factor of the post-collision electron spectrum predicted by the classical and quantum-stochastic models varies with the deviation
of a given collision parameter from its mean value, normalized by the standard deviation. This choice of normalization factor illustrates the probability that
a parameter will deviate from its mean value by a given amount.
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Figure 7. Similar to Figure 6, where the standard deviation of the post-collision electron spectrum is shown along the y-axis.

Figure 8. The effect of electron beam divergence and source size on the
relative transverse sizes of the electron beam and colliding laser is shown
as a function of longitudinal displacement from the electron beam source
and the laser focus, respectively.

duration. In Figures 6 and 7, the quantum-continuous model
has been omitted as it exhibits trends similar to the classical
model.

The laser, a0, longitudinal offset of the collision from the
laser focus, Zd, and the electron beam duration, τe, were
chosen to be free parameters in the inference procedure. As
the laser duration and waist at focus remained constant, a
change in laser a0 indicates a change in the laser energy. The
laser a0 was chosen as its expected effect on the electron
energy losses was larger than any other parameter, barring
the transverse jitter. This also allowed an arbitrary number of
shots with differing laser energies to be analysed using the
same forward model. The longitudinal offset was selected
due to the significance of its impact on both the mean
and width of the post-collision electron spectrum. Finally,
the electron beam duration was chosen over the source
size, which has a greater effect on the width of the post-
collision electron spectrum, as degeneracy allowed the effect
of changing source size to be compensated for by varying Zd

and a0, as will be discussed in Section 5.2. Finally, only the
shots with the highest photon yields were analysed to reduce

the probability of analysing a collision transversely offset
from the laser focus. For this reason, the transverse offset
in the forward models was fixed at 0. This is discussed in
greater detail in Section 5.2.

5.2. Degeneracy

A change in source size alters the relative transverse sizes
of the laser and electron beam. However, as illustrated in
Figure 8, when the longitudinal position of the collision rel-
ative to the laser focus varies, the energy-dependent electron
beam divergence, which is included in the forward models
as a fixed parameter, changes the relative transverse sizes
of the electron beam and laser pulse. Thus, if the electron
beam source size is fixed in the forward model but varies in
the experiment, the transverse distribution of laser intensity
experienced by the electron beam during the collision can be
recovered in the inference procedure by varying a0 and Zd,
if the electron beam divergence in the forward model is non-
zero. Here, the relative size of the electron beam and laser
is varied by changing Zd, and corresponding change in laser
intensity due to the change in the laser waist at the collision
is compensated for by varying a0. This is further supported
by Figures 9 and 10, which indicate that degeneracies exist
between Zd and the initial source size for both 〈γf〉 and �f.

The transverse jitter is by far the most impactful colli-
sion parameter. The combination of the large shot-to-shot
variation in the electron beam pointing and the steep radial
dependence of the intensity of the colliding laser ensure
that the electron beam energy loss becomes negligible if
the transverse offset is even 0.5σ from perfect alignment
for Zd = 0. As the transverse offset was expected to affect
the electron beam energy loss more severely than any other
parameter, both in terms of the magnitude of its effect on
the electron beam energy loss and the high probability of a
transverse misalignment due to large shot-to-shot variations
in the electron beam pointing, the shots that produced the
highest gamma yield out of a dataset of successful collisions
were more likely to be well-aligned transversely than lon-
gitudinally. For this reason, we propose that the Bayesian
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Figure 9. The location of the post-collision electron Lorentz factor, 〈γf〉, as a function of electron beam source size and longitudinal displacement of the
collision from the laser focus for the classical and quantum-stochastic models.

Figure 10. The scale of the electron spectrum, �f, predicted by the classical and quantum-stochastic models of radiation reaction as the electron beam
source size and the longitudinal displacement of the collision from the laser focus are varied.

analysis should be applied to shots that produce the highest
photon yields. This increases the probability that the trans-
verse offset is small for the selected shots, and can thus be
compensated for by exploiting the degeneracy between the
laser a0, Zd and τe and the transverse offset. Note that while
this is true for laser pulses with steep transverse intensity
profiles (e.g., Gaussian beams), for laser pulses that vary
more gradually transversely (i.e., pulses with Airy rings),
it may be necessary to include transverse offset as a free
model parameter as shot selection will not guarantee a small
transverse offset. This would substantially increase the com-
plexity and computational expense of the forward model.

Figures 11 and 12 demonstrate the existence of degen-
eracies between Zd and transverse offset, as was the case
for source size and Zd. However, while degeneracies are
evident in 〈γf〉 and �f when these observables are con-
sidered separately, for the inference framework to exploit
the degeneracies between free and fixed parameters, it must
identify a combination of a0, Zd and τe that reproduces these
observables simultaneously.

5.3. Bayesian test cases

We investigated whether the Bayesian inference procedure
treats free parameters as effective parameters, that is, uses
free parameters to reproduce the effects on post-collision
observables of fixed parameters that differ from their set
values in the forward models. To this end, the procedure was
performed on a series of simulated post-collision electron
and gamma spectra for each model of radiation reaction.
In these simulations, the longitudinal offset, transverse
offset or the electron beam source size was varied. Each
inference procedure then fitted the simulated data using the
corresponding forward model (i.e., the data simulated using
the classical model were fitted using the classical inference
procedure). For each inference procedure, the parameters
fixed in the forward models had the values given in Tables
2–4. The inference results are summarized in Figure 13.

Degeneracies between electron beam duration and longi-
tudinal offset of the collision from focus allow the quantum-
stochastic model to recover the post-collision electron and
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Figure 11. The location, 〈γf〉, of the post-collision electron Lorentz factor distribution predicted by the classical and quantum-stochastic models of radiation
reaction is shown with varying longitudinal and transverse displacement of the collision from the laser focus.

Figure 12. The scale of the post-collision electron Lorentz factor distribution, �f, predicted by the classical and quantum-stochastic models of radiation
reaction for varying transverse and longitudinal alignment between the electron beam and the colliding laser.

gamma spectra with a total error (which combines the error
in the inferred mean and standard deviation of the electron
spectrum with the mean photon energy), which is typically
at the few percent level, and is always less than 10%. The
maximum total error in the classical model is 25%; however,
for the majority of the parameter values considered in Figure
13, the uncertainty is less than 10%. For both models,
the uncertainty in the inferred spectra for varying source
size (a fixed parameter) is only a few percent higher than
the inferences performed for varying longitudinal offset (a
fitted parameter), confirming the high degree of degeneracy
between these parameters and motivating the decision to
include the latter but not the former. The effect of the
transverse offset is harder to replicate: this motivates our
decision to down-select our data to reduce the probability
that a large transverse offset was present for the collisions
we analysed using the Bayesian framework. As the gamma
radiation yield scales as ∝ ã0Qγ 2[5], where Q is the total
electron beam charge, by selecting shots with the high
gamma yield normalized by Qγ 2, the probability that the

collision is transversely offset from the laser focus for the
selected shots is minimized.

A set of inference procedures was run for mono-energetic
electron beams with mean energy 1 GeV, in which the
transverse offset in the simulated collision was progressively
increased, for the following collision parameters: a0 = 21.38,
Zd = 0, τe = 20 fs. It was found that model differentiation
was no longer possible for a transverse offset of 1.5w0 =
3.3 μm, at which the reduction in the effective collision a0

and the spectral broadening induced by the transverse offset
rendered model selection infeasible.

Three further test cases were performed to determine
whether the inference procedure is able to extract the
correct (input) model of radiation reaction and the correct
collision parameters for pre-collision electron spectra and
uncertainties representative of experimental data, as these
spectra are broadband and have complex, non-normal charge
distributions. To achieve this, the post-collision observables
were simulated for collisions characterized by different
parameters in each test case. Three inferences were then
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Figure 13. The percentage difference between the simulated and inferred values for the average, 〈γf〉, and standard deviation, �f, of the post-collision
electron Lorentz factor distribution, and the average energy of the photon distribution, 〈εf〉, are shown as the longitudinal and transverse offset of the
collision from the laser focus and the electron beam source size are varied. The total error is given by the root mean squared deviation of the inferred 〈γf〉,
�f and 〈εf〉 from the simulated values.

performed on the data produced by each simulation – one per
model.

For the first test case, described as ‘ideal’, the stochastic
model was used to simulate the collision and the simulation
parameters have identical values to their fixed counterparts in
the forward models. This means that in both the simulation
and the forward model, the transverse offset of the colli-
sion from the laser focus is zero, the electron beam source
size is 0.68 μm, etc. This test case probes the ability of the
inference procedure to retrieve the collision parameters and

perform model comparison accurately for an ideal scenario,
where the collision conditions are fully described by the
forward model. The inferred post-collision electron spectra
and photon spectrometer responses for this test case are
compared to the simulated data in Figure 14.

In Figure 15, the quantum-stochastic and quantum-
continuous models retrieve 〈ã0〉, 〈η〉 and ση within 1σ of
the input parameters. None of the models infer τe within 1σ

of the input value. For the classical and quantum-continuous
models, this indicates that τe has been treated as an effective
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Figure 14. The quantum-stochastic model of radiation reaction was used to simulate a collision between a focusing, Gaussian laser pulse with a0 = 16,
Zd = 30fs and τe = 14 fs (the remaining laser and electron beam parameters are provided in Tables 2 and 3, respectively) and the pre-collision electron
spectrum. Simulated data and classical, quantum-continuous and quantum-stochastic inferences are shown in red, green, blue and magenta, respectively.
This colour scheme will be used consistently for the remaining figures in this section. (a) The simulated post-collision electron spectrum, predicted pre-
collision electron spectra (orange), and its median (black), alongside the inferred post-collision electron spectra. (b) The simulated and inferred responses of
the photon spectrometer as a function of photon propagation depth.

Figure 15. Inference parameters obtained for the first test case, where the quantum-stochastic model was used to simulate the collision. The collision
parameters inferred by the classical (green), quantum-continuous (blue) and quantum-stochastic (magenta) models are compared to the simulation input
parameters (red star). (a) 〈ã0〉, the average effective collision a0 that the electron beam interacts with during the collision. The collision distribution of 〈ã0〉
stems from the finite size of the electron beam, the spatio-temporal dependence of laser intensity and their overlap. Hence, 〈ã0〉 is a function of all three
inference parameters. (b) The mean and standard deviation of the collision distribution of η due to the broadband electron spectrum and the range of ã0 the
electron beam experiences during the collision.

parameter. Rather than reflecting the true electron beam
duration, the inferred value of τe allows the distribution of
effective a0 and η to be most closely reproduced. Of the
three models, the quantum-stochastic model infers the value
of τe most accurately, but fails to recover the correct value
within 1σ , indicating that the uncertainty in the pre-collision
electron spectrum and the lack of sensitivity of the post-
collision electron spectrum to small variations in τe inhibit
accurate inferences of this parameter. The classical and
quantum-continuous inferences both retrieve τe considerably
greater than the true value, thereby increasing the range of ã0

with which the electron beam interacts and hence the range
of energy losses it experiences. This allows the classical
and quantum-continuous models to reproduce the spectral
broadening induced by the quantum-stochasticity inherent
in the quantum-stochastic model, which the classical and
quantum-continuous models do not predict. As the classical
model predicts higher energy losses than the quantum-
stochastic model for equivalent collision parameters, it infers
a lower 〈ã0〉 to produce comparable energy losses.

The 〈ã0〉 and standard deviation ã0 (the latter results from
the spatial and temporal overlap of the electron beam and
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Figure 16. The classical model of radiation reaction was used to simulate a collision between a focusing, Gaussian laser pulse with a0 = 21.38, Zd = 30fs,
τe = 14 fs and an electron beam, which were offset transversely by 1.05 μm (the remaining laser and electron beam parameters are provided in Tables 2 and
3, respectively). (a) The simulated post-collision electron spectrum, predicted pre-collision electron spectra (orange), and its median (black), alongside the
inferred post-collision electron spectra. (b) The simulated and inferred responses of the photon spectrometer as a function of photon propagation depth.

laser) are reflected in the mean, 〈η〉, and standard devia-
tion, �η, of the distribution of η, which characterizes the
collision.

When comparing the quantum-stochastic and classical
models, rqs,cl = 1.2, while the quantum-continuous and
classical models yield rqc,cl = 1.3, and the quantum-
stochastic and quantum-continuous model comparison
gives rqc,qs = 1.1, indicating there is insufficient evidence
to differentiate among the quantum-stochastic, quantum-
continuous and classical models for the simulated collision
conditions, given the uncertainties on the predicted pre-
collision electron spectrum and the measured post-collision
electron and gamma spectra.

For the second test case, the results of which are shown
in Figure 16, the classical model was used to simulate a
collision that was transversely offset from the laser prop-
agation axis by 1.05 μm. Three inference procedures, one
for each radiation reaction model, were performed on the
simulated electron and photon spectra. The presence of
a finite transverse offset between the electron beam and
laser focus at the collision induces electron spectral broad-
ening, which resembles the spectral broadening predicted
by the quantum-stochastic model. This test case illustrates
the extent to which the inference procedure is able to per-
form model selection accurately (i.e., select the classical
model) if the collision parameters with fixed values in
the forward models differ from those values. This is par-
ticularly pertinent if the classical model is accurate and
the additional collision parameters induce spectral broad-
ening, an effect also predicted by the quantum-stochastic
model. This test case also indicates whether and how infer-
ence procedures use degeneracy to compensate for collision

parameters that differ from the fixed values in the forward
model.

The inferred and input collision parameters for the second
test case in Figure 17 indicate that only the classical model
is able to infer the mean effective a0 of the collision and
the mean η within 1σ . However, all models, including the
classical model, over-estimate the electron beam duration
and ση. This contrasts with the first test case in which
the correct model (i.e., the quantum-stochastic model) also
inferred �η within 1σ of its true value. In the second
test case, all models treat τe as an effective parameter,
stretching the electron beam longitudinally to replicate (in so
far as possible) the broad distribution of a0 with which the
electron beam interacted due to the finite transverse offset.
This is also reflected in the overly large �η inferred. For
the second test case (see Figure 16), each of the models
appears to infer the post-collision electron and gamma spec-
tra with comparable accuracy. This is substantiated by the
Bayes factors; we obtain rcl,qs = 1.0, while rcl,qc = 1.4 and
rqs,qc = 1.4, and thus there is insufficient evidence to favour
any of the models.

In the third test case, the collision was simulated using
the quantum-stochastic model and was transversely offset
by 3.2 μm from the laser propagation axis. This allowed
the model selection capability of the Bayesian analysis to
be verified for a collision with parameters that differed
from their fixed values in the forward model, in which
the quantum-stochastic model was used to produce the test
data. The results for the third test case are provided in
Figures 18 and 19. For the third test case, the Bayes fac-
tor obtained when comparing the quantum-stochastic and
classical models, rqs,cl = 1.8, the quantum-continuous and
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Figure 17. Similar to Figure 15, where the input and inferred parameters pertain to the transversely offset classical test case.

Figure 18. The quantum-stochastic model of radiation reaction was used to simulate a collision between a focusing, Gaussian laser pulse with a0 = 21.38,
Zd = 30 fs, τe = 20 fs and transverse offset of 2.1 μm (the remaining laser and electron beam parameters are provided in Tables 2 and 3, respectively) and
the pre-collision electron spectrum. Simulated data and classical, quantum-continuous and quantum-stochastic inferences are shown in red, green, blue and
magenta, respectively. (a) The simulated post-collision electron spectrum, predicted pre-collision electron spectra (orange), and its median (black), alongside
the inferred post-collision electron spectra. (b) The simulated and inferred responses of the photon spectrometer as a function of propagation depth.

Figure 19. Similar to Figure 15, where the input and inferred parameters pertain to the transversely offset stochastic test case.
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classical models yield rqc,cl = 1.7 while a comparison of
the quantum-stochastic and quantum-continuous inferences
yields rqc,qs = 1.0, and thus there is insufficient evidence
to differentiate among the quantum-stochastic, quantum-
continuous and classical models.

Each test case yielded 0.33 < r < 3.2, indicating model
selection could not be performed for a single shot given
the collision conditions and uncertainties considered for
each test case. However, for both test cases in which the
quantum-stochastic model was used to generate the test data,
rqs,cl > 1.0, indicating model selection would be feasible if
evidence were combined across multiple shots. For the ideal
test, assuming model evidence is consistent for each shot,
seven shots would be required to allow model differentiation.

For the test case in which the classical model was used to
generate the test data, rcl,qs = 1.0 and rcl,qc > 1.0, indicating
that if the collision parameters induce spectral broadening,
the stochastic model would not be unduly favoured over the
classical model.

We have ascertained that the quantum-stochastic model
retrieves 〈ã0〉, 〈η〉 and �η within 1σ of the input parameters
when this model is used to generate the simulated test
data and the forward model accurately describes the full
complexity of the collision. As illustrated in the classical test
case, if additional collision parameters that are not present
in the forward model are present in the simulated data, the
correct model (i.e., the classical model) infers 〈ã0〉 and 〈η〉
within 1σ of the simulation values, but significantly over-
estimates τe and hence ση. This indicates that while the
distributions of η and 〈ã0〉 are inferred accurately to the first
order, there are insufficient degrees of freedom in the models
to accurately infer higher-order moments (i.e., σã0 , ση) if
collision parameters that are fixed in the forward models
differ significantly from these values.

6. Conclusion

We have developed a novel Bayesian framework that
infers values of unknown collision parameters and predicts
corresponding experimental observables for the classical,
quantum-continuous and quantum-stochastic models of
radiation reaction. We identify challenges associated with
the application of a Bayesian approach to this problem, such
as over-fitting and insufficiently constraining priors. We
address these issues by down-selecting the number of free
parameters and the data to be analysed and by exploiting
degeneracies between free and fixed parameters. This has
motivated the choice of a0, Zd and τe as fitting parameters
and the decision to fix the remaining parameters.

We demonstrate that the Bayesian framework consistently
infers 〈ã0〉, 〈η〉, ση accurately (within 1σ ) for the highest-
performing model. The 1σ criterion has been used to provide
a rule-of-thumb indication of the accuracy of the inferred
parameters. Quantitative comparisons of the relative per-

formance of these models for a single shot yield insub-
stantial evidence in favour of the correct model over other
models, indicating that while model discrimination may not
be feasible at the single-shot level, this may be accomplished
by combining evidence across multiple shots. For the test
cases we have considered, model evidence combined over
seven shots or fewer would yield substantial evidence favour-
ing the correct model, assuming each shot produces the same
Bayes factor. We find that when the transverse offset differs
from its fixed value in the forward models, the standard
deviations of the distributions of 〈ã0〉 and η are inferred
less accurately; however, accurate model selection with this
framework is still robust for transverse offsets up to 3.3 μm,
roughly 2.4 times the laser waist, for the electron beam and
laser parameters considered.

The inclusion of free parameters such as the transverse
offset would be facilitated if the computational expense (and
runtime) of the Bayesian analysis were reduced. This could
be accomplished if the electron spectra were mono-energetic
and if strong priors could be applied to restrict the available
parameter space and avoid over-fitting. Strong priors would
also facilitate the inference of parameters that accurately
represent laser and electron beam parameters, rather than
effective parameters that reproduce the collision distribution
of η. Another route to increase the number of free parameters
in the forward model or decrease the computational cost of
the procedure could involve substituting the interpolation
with a machine learning technique (e.g., a neural network)
with a lower associated computational cost. However, it
should be noted that a large number of simulations would
be required to train a neural network to accurately predict
electron and photon spectra for many possible combinations
of different collision parameters, which could be computa-
tionally expensive to generate. In addition, care would need
to be taken to ensure the training dataset fully represented
the neural network inputs during the inference procedure.

From an experimental perspective, improved laser stability
would facilitate a greater fraction of collisions with good
spatial-temporal overlap between the electron beam and
colliding laser, increasing the number of collisions for which
quantum effects are expected to be substantial.

We anticipate that Bayesian inference will prove to be
a powerful analysis tool for the interpretation of future
strong-field QED experiments involving colliding lasers and
particle beams, and have demonstrated the feasibility and
utility of such an analysis for an all-optical radiation reaction
experiment.

Appendix A: Bayesian inference of the photon spectrum

The photon spectrum was measured using a stack of nc CsI
crystals as described by Behm et al.[42].

A Bayesian inference routine, implemented using the
emcee package in Python[35], was used to fit Equation (4)
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to the measured photon spectrometer signal under the
assumption that inverse Compton scattering produces a
photon spectrum with a shape given by Equation (4)[42].
Following convergence, the inference procedure yields
distributions of A and εc, which correspond to the posterior
optimum. By substituting the values of εc and A that
correspond to the posterior optimum into Equation (4), a
distribution of photon spectra is obtained. The most likely
photon spectrum and its uncertainty are given by the mean
and standard deviation of this distribution.

The posterior distribution for the photon spectrum,
P

(
dN ′
dε

|Y
)

is obtained by multiplying the likelihood,

P
(

Y| dN ′
dε

)
, and prior, P

(
dN ′
dε

)
, probability distributions

in accordance with Bayes’ theorem (see Equation (1)). The
fitted photon spectrum, dN ′

dε
, is parameterized by A and εc

as discussed previously, and Y is the signal measured by the
photon spectrometer. Under the assumption that the noise on
the measurement, s, is normally distributed, the likelihood
distribution is as follows:

P

(
Y|dN ′

dε

)
=

i=Nc∏
i=1

1√
2πs2

i

e
− (Yi−Yi(A,εc))

2

2s2
i , (A1)

where i denotes the ith row in the spectrometer. The
reconstructed spectrometer response, Y , is as follows:

Yi = dN ′

dε
Di (ε)Ci, (A2)

where Di (ε), the energy deposition in each row of the
spectrometer as a function of incoming photon energy,
and Ci, a calibration factor, are obtained as described by
Behm et al.[42].

Here, A and εc were assigned the following priors:

P(εc) = 1.0 0 ≤ εc ≤ ∞,

= 0 εc < 0,

P(A) = 1.0 0 ≤ A ≤ 3AB,

= 0 A < 0, (A3)

where AB, the scaling constant obtained for a bremsstrah-
lung calibration, is far larger than the scaling constant
obtained for inverse Compton scattering.

The exponential terms in Equation (A1) tend rapidly
towards ∞ or 0 for small or large exponents, which can
inhibit convergence. To avoid this, the MCMC algorithm
optimizes the log of the posterior distribution:

logP

(
dN ′

dε
|Y

)
= logP

(
Y|dN ′

dε

)
+ logP(εc)+ log(P(A)) .

(A4)

Appendix B: Radiation reaction modelling

A quantum treatment of radiation reaction in a strong field
requires a direct calculation of the scattering matrix for an
electron interacting with an arbitrary electromagnetic field,
as the expansion describing the interaction of the charge with
the field becomes non-perturbative, and thus all higher-order
terms must be retained[43]. For fields with spatial and tempo-
ral structure, such calculations are not tractable. To surmount
this difficulty, the Furry picture is utilized, in which the
interaction of an electron with a classical background field
is integrated into its basis state. Perturbation theory may
then be applied to these states to describe quantum photon
scattering processes. We also use the LCFA[44], expected to

be valid for a0 � 1 and
a3

0
η

� 1[28]. The photon emission
rates derived under the LCFA are used to formulate the
equations of motion for an electron interacting with a strong
external field. Between photon emissions, electron motion
is classical. The equations of motion are propagated in time
using a fourth-order Runge–Kutta algorithm in C++[25–27].

The classical theory of radiation reaction predicts that the
reaction force manifests as a higher-order correction term in
the relativistic equation for the Lorentz four-force[21]:

me
duα

ds
= eFαβuβ −P0

uα

c2 , (B1)

where P0 = mec5e2

6πε0�
, me, e and uα are the electron

mass, charge and four-velocity, respectively, Fαβ is the
electromagnetic tensor, c is the speed of light in vacuum, �
is the reduced Planck’s constant, ε0 is the permittivity of free
space and η, the electron quantum parameter, is defined in
Section 1.

Photon emission is accounted for as follows. The classical
rate of photon emission[34],

Ṅ
cl = 5αmec2χ

2
√

3�γ
, (B2)

is integrated over time, t. Here, the quantum photon param-

eter, χ ≈ εb
2 , b = 1

αEs

√(−→
E +−→v ×−→

B
)2 −

(−→
E ·−→v /c

)2
,
−→
E

and
−→
B are the electric and magnetic fields, respectively, −→v

is the electron velocity vector and α is the fine structure
constant. A photon is emitted when Tcl ≥ − ln

(
1−�cl

)
,

where �cl is sampled randomly from a uniform distribution,
U [0,1][26].

The polar angle, θ , at which the photon was emitted was
sampled from the differential rate of photon emission ∂Ṅ

∂z

with respect to z = (
2γ 2 (1−β cosθ)

)3/2[45]:

∂Ṅ
cl

∂z
= αmec2χ√

3�γ

z
2
3 − 1

2

z2 , (B3)
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where β =| −→v | /c. This closely resembles the approach
employed by Duclous et al.[25] and Arber et al.[26] where the
photon energy is obtained by sampling from the differential
rate of emission with respect to energy.

Given z, the photon energy is computed from the differen-
tial probability of photon emission, ∂2Ṅ

∂u∂z
[45]:

∂2Ṅ
cl

∂u∂z
= 2αmec2

3
√

3�πχγ
u
(

2z
2
3 −1

)
R 1

3

(
2uz
3χ

)
, (B4)

where u = ε
γ−ε

, ε = �ω

mec2 and R 1
3

is a modified Bessel

function of the second kind[46]. The azimuthal angle, φ, is
sampled from a uniform distribution, U [0,2π ].

Under the quantum-continuous model, the reaction force
term in Equation (B1) is modified by the Gaunt factor,
g(η)[30]:

me
dui

ds
= eFikuk −g(η)P0

ui

c2 , (B5)

where g(η) is defined as[27,28]

g(η) = 9
√

3
8π

∫ ∞
0 dy

(
2y2R5/3(y)

(2+3ηy)2 + 36η2y3K2/3(y)

(2+3ηy)4

)
, (B6)

and is well-approximated by[22]

g(η) ≈ (
1+4.8(1+η) ln(1+1.7η)+2.44η2)−2/3

. (B7)

The rate of photon emission is sampled from the quantum

differential rate, Ṅ
st

[27,45],

Ṅ
st = αmec2

3
√

3π�γ

∫ ∞

0

5u2 +7u+5
(1+u)3 K2/3du, (B8)

where K2/3 is a Bessel function of the second kind.
The photon energy is sampled from the quantum differen-

tial rate, dṄ
dε

[28]:

dṄ
st

dε
= αmec2

√
3�πγ 2

((
2

3ηy
+ 3ηy

2

)
K2/3(y)−

∫ ∞

y
K1/3(s)ds

)
.

(B9)

Given ε, the polar angle at which the photon is emitted is
sampled from[45]

∂3Ṅ
st

∂u∂z∂φ
= αmec2

3
√

3�π2ηsγ

u

(1+u)3

× (
z2/3 (

2+2u+u2)− (1+u)
)

K1/3

(
2uz
3ηs

)
.

(B10)

As with the classical model, φ is sampled from a uniform
distribution, U [0,2π ].

The equation of motion for an electron under the quantum-
stochastic model of radiation reaction in between emission
events is merely the Lorentz force with no additional reaction
term[25]:

me
dui

ds
= eFikuk. (B11)

As in the quantum-continuous model, the rate of photon
emission is sampled from Equation (B8), the photon energy
and polar angle are sampled from Equations (B9) and (B10),
respectively, and φ is sampled from a uniform distribu-
tion, U [0,2π ]. However, unlike the quantum-continuous
approach, the effect of the recoil on the electron energy and
trajectory is then calculated using Equation (B12)[25]:

p′α = pα −qα, (B12)

where pα and p′α are electron four-momenta before and after
the emission and qα is the photon four-momentum.
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