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Abstract

Suicide in the US has increased in the last decade, across virtually every age and demographic
group. Parallel increases have occurred in non-fatal self-harm as well. Research on suicide
across the world has consistently demonstrated that suicide shares many properties with a
communicable disease, including person-to-person transmission and point-source outbreaks.
This essay illustrates the communicable nature of suicide through analogy to basic infectious
disease principles, including evidence for transmission and vulnerability through the agent-
host-environment triad. We describe how mathematical modeling, a suite of epidemiological
methods, which the COVID-19 pandemic has brought into renewed focus, can and should be
applied to suicide in order to understand the dynamics of transmission and to forecast emer-
ging risk areas. We describe how new and innovative sources of data, including social media
and search engine data, can be used to augment traditional suicide surveillance, as well as the
opportunities and challenges for modeling suicide as a communicable disease process in an
effort to guide clinical and public health suicide prevention efforts.

The increase in suicide, suicidal behavior, and mood disorders in the US demand a public
health response. While global suicide mortality rates have decreased since the early 1980s
(Naghavi, 2019), including significant reductions in China and India, suicide in the US has
been increasing for approximately two decades, from 10.5 per 100 000 in 1999 to 14.2 per
100 000 in 2018 (Centers for Disease Control and Prevention, 2018a). Suicide deaths represent
the ‘tip of the iceberg’ and data have documented increases in suicidal ideation and attempts,
mood disorders, and psychological distress among US adolescents and adults. National, state,
and local public health efforts are being mobilized to address this growing epidemic. Among
the cascade of interventions that can be deployed to prevent suicide, high-quality surveillance
to guide action is among the most basic public health needs. Existing surveillance efforts for
suicide in the US are extensive (Crosby, Ortega, & Melanson, 2011), but few efforts have been
made to assess the magnitude and location of spatial and temporal suicide correlations.

Suicides, and suicidal behavior, statistically cluster across time and space (Gould,
Wallenstein, & Davidson, 1989). These clusters arise through multiple mechanisms mediated
by seasonal, geographic, demographic, and meteorological factors, but also exhibit properties
that resemble the spread of a contagion. Figure 1 shows the monthly suicides from 1999 to
2018. Suicide exhibits a seasonal trend, with increases in spring/summer months and decreases
in winter months, an overall increase in the general trend across time, as well as some poten-
tially anomalous increases at specific periods across the observed time series. All of these fac-
tors: trends, seasonality, anomalous changes, are often observed for contagious processes
(Anderson, Grenfell, & May, 1984; Grassly & Fraser, 2006). This contagion hypothesis, that
suicidal ideation can be shared, for example, by point-source and person-to-person transmis-
sion is supported by centuries of sociological and psychological literature on suicide, but has
not been formally interrogated using communicable disease methods. While we know that
outbreaks of suicide occur and that they are spatially and temporally correlated, less is under-
stood about how many or what proportion of all suicide deaths arise from clusters, v. de novo
(Gould, Wallenstein, & Kleinman, 1990; Insel & Gould, 2008). Outbreaks of suicide via
person-to-person transmission typically affect a relatively small proportion of suicide dece-
dents, and a larger proportion arises due to geographic and temporal autocorrelation (Sy
et al,, 2019), suggesting that clustering of suicide represents an important, although not com-
plete, component of suicide etiology.

The temporal and spatial features of suicide epidemiology indicate that suicide can and
ought to be studied with the same tools with which we study other contagious and
environmentally-mediated health outcomes. These various sources of time-space clustering
can be conceptualized through the paradigm of the agent, host, and environment triad that
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Fig. 1. Monthly recorded deaths from suicide in the US, 1999-2018".

underlies other communicable health outcomes. The agent-host-
environment triad is a classic organizing framework for describ-
ing risk factors for infectious disease. Agent factors are the actual
pathogens, such as bacteria and viruses, that cause the disease or
the vectors that transmit them; host factors are individual-level
factors that increase vulnerability to disease (e.g. older adults at
increased risk for complications due to respiratory viruses); and
environmental factors are those social and physical features that
increase the risk for disease transmission or pathogenicity (e.g.
some viruses are more transmittable in certain seasons). Similar
to the classic agent-host-environment triad in infectious disease
epidemiology, Figure 2 displays the hypothetical examples of the
agent-host-environment triad for suicide risk. Public health
surveillance aims to provide forward-looking information that
anticipates where, when, and for whom the risk for suicide is con-
centrated and increasing. Such forecasts would be especially
important when new risk factors occur, such as those associated
with infectious disease epidemics or other natural disasters.
Further, recognizing and modeling the ways in which suicide has
communicable disease properties can complement clinical risk man-
agement, by providing tools that move beyond individual risk factors
to aiding prediction of who is most at risk, when, and where.

The COVID-19 epidemic has placed mathematical models for
understanding disease processes and forecasting disease progress in
sharp focus across the world (Li et al., 2020), and emphasized the
critical role of surveillance data, including how to appropriately
use data that is incomplete (e.g. asymptomatic or undiagnosed
cases). In this editorial, we describe the features of suicide that
are analogous to other communicable diseases and provide an

"The notes appear after the main text.

1Data are from the Multiple Cause of Death Files, 1999-2018, as compiled from data
provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative
Program, National Center for Health Statistics, Centers for Disease Control and
Prevention. Intentional self-harm ICD-10 codes: U03, X60-84, Y87.0. Accessed at
http://wonder.cdc.gov/ucd-icd10.html on Apr 22, 2020.
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overview of the data that would be necessary to leverage existing
methods to predict outbreaks and inform clinical care.

Agent factors that are associated with suicide risk

Suicide can be transmitted similarly to a contagious process
(Cheng, Li, Silenzio, & Caine, 2014; Haw, Hawton, Niedzwiedz,
& Platt, 2013), including person-to-person transmission, as well
as point-source outbreaks. Person-to-person transmission of sui-
cide most commonly arises in smaller local suicide clusters
(Cheng et al.,, 2014; Gould et al., 1989). These clusters occur pri-
marily among adolescents and young adults in close geographic
proximity (e.g. within a school or small community) (Gould
et al,, 1990, 2014). Psychological autopsy, ethnographic, and jour-
nalistic reporting suggest that suicide deaths within these clusters
may have a direct causal relationship (Gould et al., 1989; Joiner,
1999), although these methods are insufficient alone for causal
inference. Understanding the dynamics of these clusters is critical
for identifying and estimating risk. Local clusters may arise in part
due to processes of assortative social network formation; adoles-
cents and young adults with shared vulnerabilities, including
experiences of stressful life events, tend to form relationships,
and it is this assortative tie formation and subsequent social learn-
ing that, in part, can create accumulated risk of suicidal behavior
transmission (Gould et al., 1989). The spread of information and
learning, coupled with the social network ties that concentrate
risk, suggest that local suicide clusters share characteristics with
person-to-person transmission of infectious diseases. Unlike
infectious diseases, however, interventions to reduce suicide trans-
mission are not provided in isolation, but rather to bolster sup-
portive contacts within the social network and with providers.
Indeed, theories of suicidal behavior arising from eusocial pro-
cesses (Joiner, Hom, Hagan, & Silva, 2016) (perceived self-harm
to reduce the burden on others, or for other sacrificial reasons)
highlights the communicable aspect of suicidal behavior as exist-
ing within a social environment and strategies for its prevention.
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Fig. 2. Epidemiological triad of communicable diseases, with examples from suicide.

Point-source outbreaks of suicidal behavior have been studied
for centuries. Suicide rates increase with exposure to fictionalize
and nonfiction suicide information, especially sensationalistic
irresponsible media reporting, often in the wake of a high-profile
suicide. Systematic and qualitative reviews (Sisask & Virnik, 2012;
Stack, 2005) and meta-analysis (Niederkrotenthaler et al., 2012,
2020) indicate that suicide rates correlate with a number of
media reports, nature of reporting, and demographic characteris-
tics of the decedent and subsequent decedents. Increases in sui-
cide following media reporting are often sudden and relatively
short in duration. A recent example is the death of Robin
Williams, in which the overall US suicide rate increased by
>10% over the expected rate in the 5 months following his suicide
(Fink, Santaella-Tenorio, & Keyes, 2018). Suicidal behavior
exceeding expected patterns, which is consistent with, although
not definitely demonstrating, a causal effect and has been
observed across other countries (Pirkis et al, 2020a, 2020b;
Whitley, Fink, Santaella-Tenorio, & Keyes, 2019). Netflix’s show
13 Reasons Why was also associated with anomalous increases
in suicide death, especially among adolescent girls (Bridge et al.,
2019; Niederkrotenthaler et al., 2019), although more data are
needed. Conversely, responsible media reporting of suicide pre-
vents contagion and spread of suicidal  behavior
(Niederkrotenthaler, 2016). The effect of media reporting on sui-
cide is analogous to a rapidly and broadly distributed point-source
outbreak of infectious disease. In the case of suicide, the ‘source’
of the outbreak is media reporting.

Other agents affecting the lethality of a suicide attempt include
the method, which could be considered a vector in classic infec-
tious disease epidemiology. Figure 3 shows the method of suicide
for all US suicides from 2001 to 2018, by sex. Among men, fire-
arms are used in 56.6% of suicide deaths; self-inflicted gunshot
wounds are highly lethal (Fowler, Dahlberg, Haileyesus, &
Annest, 2015; Miller & Hemenway, 2008; Miller, Barber, White,
& Azrael, 2013), whereas intentional overdoses are much more
likely to be non-fatal (Miller & Hemenway, 2008). Suffocation
(e.g. hanging) is the next most commonly used lethal method
of suicide among men, accounting for a quarter of deaths.
Among women, there is an approximately equal percentage of
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suicide deaths attributable to firearms (31.5%) and drug poison-
ing (31.7%), followed by suffocation (23.1%).

Host factors that are associated with suicide risk

Much of the literature in suicide epidemiology has covered the host,
or individual-level factors, that increase risk (Franklin et al., 2017).
Demographic factors, including age, race, socio-economic status are
among the most well-replicated and strong risk factors for suicide
death (Martinez-Alés & Keyes, 2019). Several individual-level fac-
tors have been the subject of review articles. Indeed, personal or
family history of suicide attempts, as well as personal, or family his-
tory, or psychiatric disorders (Franklin et al., 2017; Olfson et al,
2017b), especially mood disorders (Olfson et al., 2016), are
among the most well-replicated risk factors, including both suicide
attempts as well as suicide. However, the vast majority of indivi-
duals with a psychiatric disorder, even severe disorders, will not
die by suicide (Cavanagh, Carson, Sharpe, & Lawrie, 2003).
Beyond mental health, there are well-replicated social and ethnic
disparities in suicide epidemiology; individuals with financial stress,
employment, and poverty (Goldman-Mellor, 2015), are at
increased risk of suicide. Indigenous populations have increased
vulnerabilities to psychiatric disorders and depressive symptoms
due to generations of persecution, poverty, and poor access to
health care. Trauma exposure more generally is associated with
increased risk of suicide through increasing risk for psychiatric dis-
orders as well as other mechanisms (Borges et al., 2006; Petruccelli,
Davis, & Berman, 2019). Individuals on active duty and veteran
military members, for example, have elevated risk of suicide, espe-
cially in recent years (Ursano et al., 2015). Other risk factors are
unique to some stages of suicidal behavior. For example, women
are overrepresented in suicide attempts, whereas men are overre-
presented in suicide (Callanan & Davis, 2012), and the motivations
underlying suicidal behavior that result in death can differ from
those that do not (Kessler, Berglund, Borges, Nock, & Wang,
2005). Risk factors vary in association with various stages of suicid-
ality, including birth month (Elbogen et al, 2020). The ways in
which these factors influence suicide risk are dynamic across
time and the life course; factors may increase baseline vulnerability
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Fig. 3. Methods of suicide in the US from 2001 to 2018, by sex?.

to intense periods of suicidality, as well as serve as triggers for sui-
cidal episodes.

Environmental factors that increase suicide risk

Many communicable diseases are influenced by environmental
factors. For suicide, these may include not only geography and cli-
mate, but also social contexts, such as social network patterns and
the macro-economic conditions of a geographic area. In the US,
meta-analytic estimates suggest that firearm access, for example,
increases the risk of suicide death between two and three-fold
(Anglemyer, Horvath, & Rutherford, 2014).

While less proximally dangerous than firearms, other environ-
mental factors that increase suicide rates include altitude (Brenner,
Cheng, Clark, & Camargo, 2011), warmer seasons (Woo,
Okusaga, & Postolache, 2012), and generally warmer temperatures
and areas with more sunshine, although the increase is non-linear
and is dependent on other built environmental factors (Kim et al.,
2019; Petridou, Papadopoulos, Frangakis, Skalkidou, &
Trichopoulos, 2002). Additionally, contextual economic factors
such as country-level economic recession and rurality (Norstrom
& Grongqvist, 2015; Oyesanya, Lopez-Morinigo, & Dutta, 2015)
have also been implicated. Recessions generally increase the risk
for suicide, although results are not uniform (Margerison-Zilko,
Goldman-Mellor, Falconi, & Downing, 2016). Home foreclosures
predict at least part of the increase in suicide among middle-aged
men during and after the recession period (Houle & Light, 2014).
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Given that the 2020 global economy is experiencing the worst reces-
sion since the US depression, monitoring suicide trends is critical.

Using epidemic modeling approaches to simulate and
forecast suicide outbreaks

While not all deaths by suicide arise from communicable pro-
cesses, the unignorable spatial-temporal correlations indicate
that understanding the communicable dynamics of suicide risk
serves to deepen the literature on the natural course and etiology
of suicide. These processes are not linear, and non-suicidal self-
injury as well as non-fatal suicidal behavior often have different
underlying mechanisms and risk groups than death by suicide
(Fox et al., 2015). Developing mathematical models of suicide
dynamics might provide forecasting tools for public health plan-
ning and resource allocation as well as clinical risk assessment.
Mathematical models for the infectious disease have come into
sharp focus as the COVID-19 pandemic has progressed. Much
like with other infectious disease outbreaks, these models are
used to: (1) understand transmission processes and forecast geo-
graphic spread during the emergence of novel pathogens, includ-
ing COVID-19 but also recently for Chikungunya, Zika (Reis &
Shaman, 2018), pandemic flu (Yang, Lipsitch, & Shaman,
2015), and Ebola (Backer & Wallinga, 2016); (2) assess the sever-
ity and activity of recurrent infectious outbreaks, such as for mal-
aria (Smith et al, 2012), seasonal flu (Biggerstaff et al.,, 2016,
2018), and West Nile virus (DeFelice et al., 2018); and (3) guide
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and evaluate prevention and interventions, such as for HIV
(Sucharitakul, Boily, Dimitrov, & Mitchell, 2018). For suicide,
an analogous set of forecasting models would enable better track-
ing of suicide activity, identification of clustering of suicidal risk,
evaluation and quantification of social and environmental drivers
of clustering, prediction of future suicidal behaviors, and more
effective and cost-efficient targeting of interventions.

Communicable diseases vary in host, agent, and environmental
properties. These differences influence disease transmission and
occurrence of epidemics, which are further affected by modes of
transmission, severity of symptoms, and natural course. Yet all
communicable diseases can be described in part by their basic
reproductive number, Ry, which is defined as the number of sec-
ondary infections caused by a single infectious person in a fully sus-
ceptible population. When R, is >1, periodic epidemics of disease
are possible, and the rate at which these epidemics propagate
depends on population susceptibility to infection, patterns of con-
tact with the infectious source, and duration of exposure.

Given this established paradigm for communicable diseases and
the observed spatial-temporal clustering of suicide consistent with
contagious spread, several fundamental questions need to be
addressed: What is the basic reproductive number of suicidal
behavior? Does it differ across developmental periods, gender,
environment and location, and for various stages of suicidal behav-
ior, including contemplation, ideation, plan, attempt, and death?
Suicide causation unfurls over a life course of accumulating risk fac-
tors, from distal childhood experiences to acute events that are
associated with imminent death. If we can quantify the extent to
which suicide and suicide attempts are transmitted within and
across populations, heterogeneity in this transmission by imminent
risk factors v. distal, and elucidate mechanisms by which this trans-
mission is borne, this understanding can help guide control efforts.

Mathematical modeling approaches have been used to address
many similar questions for infectious diseases. Models are used
to simulate observed outbreaks, identify critical social and environ-
mental drivers of disease, infer key epidemiological features (e.g.
Ry), and develop and test appropriate interventions (e.g. school clo-
sures, vaccine deployment). Similar to prevention strategies such as
facemasks and distancing to slow the COVID-19 pandemic, suicide
prevention efforts such as prevention of lethal means and the pro-
motion of social connections may be critical to slow suicide epi-
demics, and can be modeled. These dynamic models can provide
calibrated, real-time ensemble forecasts of future outcomes, much
as numerical weather models generate weather forecasts.
Infectious disease forecasting has advanced markedly over the
past decade and is now routinely used by health agencies to plan
for and respond to disease outbreaks (Centers for Disease
Control and Prevention, 2020a). Importantly, incomplete ascertain-
ment of cases, which has been cited as a principal limitation of
understanding suicide in the US (Bohnert et al, 2013), also
impedes infectious disease surveillance. However, detecting signals
through noisy, partially-observed data is a central feature of infec-
tious disease modeling and forecasting.

Mathematical models to predict and forecast suicide are
underutilized, but evidence supports their validity and
utility

Previous studies have used quantitative models to understand risk
factors for and dynamics of suicide (Belsher et al., 2019; Kessler
et al., 2017; Torous et al, 2018), suggesting the amenability of
these models to assessing suicide risk and evaluating potential
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points of intervention. Machine learning and other prediction-
focused models, which do not simulate processes, but nonetheless
use computational algorithms to identify data-driven patterns, are
increasingly common in suicide research (Belsher et al.,, 2019).
However, the results have not always been promising. A recent
meta-analysis and prediction model incorporating 17 existing pre-
diction models from cohort data demonstrated that although the
models themselves have internal accuracy and reliability, they are,
in totality, currently relatively poor vehicles for prospectively iden-
tifying future suicide events (Belsher et al., 2019). Positive predict-
ive values from these efforts remain frustratingly low, reinforcing
the common thread that suicide is difficult to predict accurately,
yet the difficulty does not preclude the necessity. Positive predictive
values from these efforts remain frustratingly low, reinforcing the
common thread that suicide is difficult to predict accurately, yet
the difficulty does not preclude the necessity. The absence of
data on both distal risk factors that increase vulnerability to suicide
and suicide attempts as well as proximal data that predict immi-
nent suicide death remain a challenge impeding the development
of more sophisticated and accurate prediction models. However,
technology is advancing, and data sources are rapidly expanding
(Kessler, Bossarte, Luedtke, Zaslavsky, & Zubizarreta, 2020).
Other computational approaches for estimating and forecast-
ing suicide risk have focused on Markov chain, compartmental,
and agent-based models. These models can account for the
dynamic transitions between states of the suicidal process, from
suicidal ideation, to attempt, to death (Keyes, Hamilton,
Swanson, Tracy, & Cerda, 2019; Mesoudi, 2009). These models
are diverse in the research questions asked and parameterizations
used (Yip, So, Kawachi, & Zhang, 2014), illustrating quantitatively
the added public health impact of population-based approaches.
Agent-based models focusing on the transmissibility of suicidal
behavior through homophily and social learning have demon-
strated that specific dynamics can generate anomalous increases
in rates after, for example, the suicide of a celebrity (Mesoudi,
2009). These simulation approaches acknowledge and provide
bounds for the transmissibility of suicidal behavior via
person-to-person and point-source outbreak mechanisms.

Available suicide data pose challenges and opportunities
for mathematical modeling

Methods to model and forecast suicide as a contagious process are
capable of representing the dynamics and handling of data
recording issues specific to suicide. Specifically, mathematical
models can be tailored to represent key features of suicide epi-
demiology and can flexibly work with misclassification, biases,
and gaps associated with suicide observations.

For many diseases, the risk factors for non-fatal v. fatal out-
comes depend on the virulence and pathogenicity of the agent,
as well as demographic risk factors. For suicide, there are several
risk factors that distinguish non-fatal and fatal suicidal behavior,
such as sex (Callanan & Davis, 2012), and suicide method (Fowler
et al, 2015; Gunnell, Bennewith, Hawton, Simkin, & Kapur,
2005). Further, local suicide clusters are primarily limited to ado-
lescents and young adults (Gould et al, 1990; Johansson,
Lindqvist, & Eriksson, 2006; Joiner, 1999), underscoring the
importance of separately modeling different developmental stages.
Increases in suicide after the death of Robin Williams, in contrast
primarily affected middle-aged men (Fink et al., 2018). Suicide is
not unique, as many communicable diseases are also strongly pat-
terned by age, and models have been well-developed to represent
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age-related variation. Further, suicide is an outcome that is
strongly determined from within-person change, sometimes
over a short period of time as an individual enters a suicidal crisis.
Existing agent-based models to examine suicide risk factors
(Keyes et al., 2019) are highly tuned to such individual changes,
and can simultaneously model within-person mood and agitation
changes, using within-period data for calibration, with between-
person risk factor distributions.

Mathematical models of communicable diseases regularly han-
dle variations in the lethality of agents. For example, seasonal
influenza has 3-4 strains circulating in any particular year,
some of which are relatively mild and others that have increased
risk of serious complications and death. Identifying the lethality
of agent strains and incorporating these features into the model
building is thus another strength of the mathematical modeling
approach. Further, by including variation in the dynamics of sui-
cide by the method of lethality, it may be possible to improve pro-
jections when the availability of an attempt method changes. For
example, changes to firearm availability affect suicide rates (Brent
et al, 1991; Kposowa, Hamilton, & Wang, 2016; Miller et al,
2013), and simulations can incorporate these changing dynamics
in mathematical models.

A unique feature of suicide is that designation of death by suicide
requires subjective assessment regarding intentionality of the act.
While in some cases the intention is clear (e.g. when a suicide note
is recovered), other deaths are more difficult to adjudicate, and
often survivors of serious suicide attempt even report that their
level of intentionality was not clear even to them. For example, in
2016, drug poisoning was used in an estimated 14.7% of suicide
deaths (Stone et al, 2018), but certification of ‘unintentional’ drug
poisoning deaths (especially using opioids) is much more common
even when the intentionality may be ambiguous (Maloney,
Degenhardt, Darke, & Nelson, 2009). Certification practices for deter-
mining intentionality may also differ across states and jurisdictions.

Further, most individuals who contemplate or attempt suicide
do not come to clinical attention (Centers for Disease Control and
Prevention, 2018b; Olfson et al., 2017a) and thus are not captured
in clinical databases. Community samples estimate the annual
prevalence of suicide attempts is ~7% among adolescents and
0.8% among adults (Olfson et al., 2017a). Yet estimated rates of
suicide attempts in hospital settings is 0.32% among adolescents
and 0.15% among adults (Centers for Disease Control and
Prevention, 2020b), suggesting that population rates of suicide
attempts based on hospital records may be underestimated 10-
20-fold, especially for less medically severe attempts. However,
these data gaps are not unique or particularly problematic com-
pared to other health outcomes with informative modeled sys-
tems. For example, an estimated 90% of influenza cases do not
come to clinical attention, yet mathematical systems for predicting
flu are sophisticated, accurate, and useful. Further, data on sui-
cidal behavior are quite well-characterized compared to many dis-
eases for which mathematical models are applied. Nevertheless,
significant data gaps remain. Warning signs for suicide (e.g. agi-
tation, making a plan, acute life events) provide critical informa-
tion for prediction, yet few data sources are available to capture
such information, which also hinders progress.

Novel sources of surveillance hold promise to augment
existing sources

A central challenge to mathematical modeling, and to the under-
standing of health processes in general, is the quality and
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completeness of surveillance data sources, as well as the timeliness
of data. Just as in most areas of epidemiological surveillance, there
is incomplete ascertainment of suicidal behavior in data capture
systems, and misclassification. Furthermore, hospitalization and
death data are often released months or years after occurrences,
making real-time or near real-time assessments difficult. Yet
novel sources of data are continuously being developed and eval-
uated for validation of suicidal behavior, with substantial potential.

Novel sources of data collection for self-harm and suicide
includes social media and search term analyses. With billions of
social media users and daily internet searches, social media and
search terms have emerged as a reliable albeit noisy indicator of
population mental health, including suicidal behavior (Homan,
Johar, Liu, Sllenzio, & Ovesdotter Alm, 2014; Reece et al., 2017).
For example, Eichstaedt et al. (2018) established that Facebook sta-
tus updates predict medical-record-documented depression up to
three months before diagnosis with fair accuracy (Eichstaedt et al.,
2018). Online sources such as Twitter (Fahey, Boo, & Ueda, 2020;
Roy et al, 2020) and Reddit (De Choudhury, Kiciman, Dredze,
Coppersmith, & Kumar, 2016) have been leveraged for content
and shifts in writing style, word choice, and other natural language
indicators that could serve as sentinel signals of an emerging suicidal
crisis, and could be used in epidemiological surveillance moving
forward as the field and methods become more sophisticated.
However, concerns about intrusion and privacy require careful
ethical assessment as this field moves forward.

The most well-researched area of novel data collection is
Google. More than 20 studies across the world have examined
Google search terms related to suicide as a potential indicator
of suicidal behavior as reviewed by Lee, 2020; Tran et al., 2017.
These studies have documented some evidence for face-validity
of search terms as data collection tools, including that Google
search terms related to depression and suicide exhibit seasonal
variation that is similar in correlation to seasonal variation in
recorded depression and suicide. In terms of correlation with sui-
cidal behavior, there is substantial heterogeneity in the strength of
the relationship. Tran et al. (2017) documented that many Google
search terms were too broad to reliably capture underlying signals
of suicidal behavior, but that validity improves with search terms
for more specific behaviors, indicative of a trade-off between sen-
sitivity and specificity (Tran et al,, 2017).

Figure 4 documents the query frequency (Zepecki,
Guendelman, DeNero, & Prata, 2020) of the US Google searches
for ‘depression’ and ‘how to kill yourself, two search terms that
have been demonstrated to capture mental health and suicidal
behavior, from January 2004 to August 2020. Searches for ‘depres-
sion” exhibit a seasonal trend, with annual increases in winter
months and decreases in summer months, consistent with
known seasonality of depression diagnoses, providing face valid-
ity. Further, searches for ‘how to kill yourself, while less seasonal,
exhibit a clear upward trend since approximately 2010-2011,
which is consistent with the time period in which suicide deaths
exhibited sharp upward trends.

Summary

Suicide in the US continues to be an urgent public health issue.
The collateral effects of the COVID-19 pandemic (e.g. economic
hardship, social disruption) will unfold in ways that will likely
accelerate these increases, especially among the most vulnerable
populations (Reger, Stanley, & Joiner, 2020). Suicide shares
many processes and underlying dynamics with communicable
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diseases and should be studied with the same tools. This begins
with basic epidemiological activities such as estimating the repro-
ductive rate and modeling the dynamics of transmission in ways
that enable inferences about who, when and where outbreaks will
occur. Robust suicide surveillance information, coupled with new
and novel sources of data provide a solid foundation for such
models. The results could help anticipate and focus screening
and other preventative efforts on emerging high-risk populations
and thus deter additional outbreaks from occurring.
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