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1. Introduction

A system or family (4,: y € N) of sets 4,, indexed by the elements of a set N,
is called an (a, b)-system if |N| = a and |Ay| = b for ye N. Expressions such
as ‘“(a, < b)-system” are self-explanatory. The system (4,:yeN) is called a
A-system [1]if A, N A, = A, N A, whenever p,y,p,0€N; t # y; p # 0. If we
want to indicate the cardinality |N | of the index set N then we speak of a A(|N I)-
system. In [1] conditions on cardinals a, b, ¢ were obtained which imply that
every (a, b)-system contains a A(c)-subsystem. In [2], for every choice of cardinals
b, ¢ such that

bz22,c23;b+c=2N,
the least cardinal a = f,(b,c) was determined which has the property that
every (a, < b)-system contains a A(c)-subsystem.

Let b* be the least cardinal greater than b. It is easy to see that the following
two statements are equivalent:

every (a, < b*)-system contains a A(c)-subsystem,
every (a, b)-system contains a A(c)-subsystem.

In the present note we prove a best possible theorem (Theorem 1) on the
size of the largest A-subsystem that can be found in every (m*, m)-system (4,:
y € N) which satisfies |AuﬂAy| <nforpuyeN; u+#7y.Here m = Ny, and n is
a given cardinal, n < m. In proving this theorem the authors have received valu-
able help from A. Hajnal.

We now introduce a condition on systems of sets which is less exacting than
that of being a A-system. The system (4,:y€ N) is called a weak A-system (wk
22
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A-system) if
4,04, =|4,n4,]

whenever u,y,p,6eN; u# v, p # o.

To avoid misunderstandings we shall henceforth replace the term “‘A-system’’
by ‘“‘strong A-system (st A-system).Clearly, every st A-system is also a wk A-sys-
tem, and the system ({1,2}, {1,3}, {2, 3}) is weak but not strong. In Theorem 2
we give an implication in the opposite direction. For cardinals a, b, c, let the relation

¢)) (a,b) > wk A(c)

mean that every (a, b)-system contains a wk A(c)-subsystem, and similarly for the
relation

3] (a, b) - st Ac).

The negation of a relation involving an arrow — is obtained by writing + instead
of —. The symbol wkA by itself denotes the class of all wk A-systems, and
similarly in other cases, such as st A(c).

In Section 5 we prove a number of results on A-systems. In Section 7 we
give a complete discussion of the relation (1) for a, b = N, . In this discussion, as
well as in some of our theorems, we shall assume the generalised continuum
hypothesis (GCH).

2. Terminology and notation

Roman capitals denote sets, and 4 = B denotes inclusion in the wide sense.
For every system (4,: ye N) and M = N, we put Ay = |J (ye M)A4,. The system
(4,:y€ N) is called an (a, b)-system if [N| = a and |A,| = b for all ye N. The
class of all (a, b)-systems is denoted by Q(a, b). For every set 4 and every cardinal
r we put

[A={XcA:|X]|=r}.
For cardinals a, c,d, r the partition relation

a— ()

means that whenever A and D are sets; IA] = a; ID' =d;[A] = v (AeD)I,;
then there is a set A’e[A] and an element 2 of D such that [4']"<I;. For
every cardinal m we put m* = min{n: n > m}. If m has the form p* then we
put m~ = p, and in all other cases m~ = m. By w(m) we denote the least ordinal
A such that|l| = m. For every ordinal a, put & = {A: A <a}, and for every
cardinal m put m = w(m). If m = N,, then the symbol cf(m) denotes the least
cardinal ¢ such that m = X(ye ©ym, for some cardinals m, < m. The function
cf is the cofinality function. Instead of (cf(m))* we write cf+(m), and similarly
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in other cases. For objects x, y the symbol {x, y}. denotes the set {x, y} and at
the same time expresses the condition that x # y. If d is a cardinal then the
symbol (4,:ye N), denotes the system (A4,:ye N) and expresses the condition
that ]A” ('\A,/| = d for {u,y}+ = N. Symbols like (4,: y € N) ., have the obvious
meaning.

We use the obliterator * ; its effect consists in deleting from a well-ordered
sequence the element above which it is placed. Other uses of * will be self-explan-
atory. If x = (xq,++, %) and y=(yq, -, §) are sequences of the same length k,
and x#y, then there is an ordinal i <k, denoted by xo y, such that x;=y;
(j<i); x; # y;. We shall occasionally use that

{J< k: (XO,"'ﬂ)ej) = (yO""’j)j)} =Xx0y+ la
{] <k: (x09"' sxj) = (,Vo,"'s,Vj)} = iCO y-

If (S, =) is an ordered set and n is an ordinal; x,, -+, X, € S, then the sym-
bol {x,,:+,%,} < denotes the set {xo,---,%,} and expresses the condition that
x,<x, for p<y<n.A set AcS is said to be cofinal in (S, <) if U (xeA)
{yeS:y<x}=S.Itis well known that if @ 2 N, and tp(S, <) = w(a), then
cf (a) is the minimum of the cardinals of the sets 4 which are cofinal in (S, <).

Finally, a symbol such as ((4,),.y,B) denotes the family (D;: AeL), where
L=NuU{p}; p¢N; D, = A, for AeN, and D, = B.

3.

THEOREM 1. Let m,n be cardinals; m ZNo;n<m. Let #=(4,:yeN),€
Q (m*,m).

(i) If m" = mthen the system & has a st A(m*)-subsystem;

@ii) If m" > m and GCH holds, then F has a st A(p)-subsystem for every
p<m;

(iil) the proposition (ii) becomes false if the hypothesis p < m is replaced
by p<m.

REMARKS. (a) A. Hajnal made valuable contributions towards proving
Theorem 1.

(b) It is well known that, for every m = N, the relation m" = m holds if
and only if 1 £ n < cf(m) (assuming GCH).

4. Discretization sequences

Let # = (A,:yeN) be a given system. A discretization sequence (d-se-
quence) of & is any sequence (N, -+, V) such that k = w(| N |*) and, for each
A <k, the set N, is maximal with the properties

NZCN_Ni; (Ay_AN_;.:'YENZ.)O'
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Thus N, is maximal such that Ny = N; (4,: 7€ Ny),. Next,
N, is maximal such that N; © N — Ng; (4, — Ayt PENy)os
N, is maximal such that N, « N — (Ny UN,); (4, — Ay, U .1 YEN,)o,

and so on. Let us put Ay, = S, for every ordinal A < k, and Ay, = S, for every
cardinal p < |k|. -

Lemma 1. Let (Ng,---,N,) be a d-sequence of (4,:7€N).

(€)] There is ko < k such that {L<k:N, # &} = ko;
©) if A<k; {u,7}+ = N,, then A,NA, c8S;;

) ifl<k;yeN—N,1_+l, then Ay, NA, ¢ S;;

(6) if A<k; peN —N,, then |S, N 4,| 2 |4].

ProOFOF (3). Let A < pu < k; N, = J. Then, by definition of N,, we have
N, = . Also, |k|>|N]|.

PROOF OF (4). A, N A, — S, = (4,— S;) N (4, — S;) = & by definition of N.

ProoF OF (5). The relation (4, — S;: ye N, U {u}), is false by the maximality

of N,. Hence there is y e N, such that (4, - S,) N (4, - S)) # &. Then 4, N
NA, &S A,NAy; DA, NA, &S,

PrROOF OF (6). Let k <A. Then uye N — N, « N —N, ., and, by (5), there
isx,eAy NA,—S,.Ifx’ <xthenx, e Ay — A_Nk, c Ay — {x.-}. Hence
|S,l r\AuI = ]{xo,n-,f,l}#l = |ﬂ| This proves Lemma 1.

PROOF OF THEOREM 1.
Proof of (i). Let (No, -+, N,) be a d-sequence of # . Then k = w(m**).

Case 1. There is k € n with |NK| = m*. Then there is k, = min{k € n: |NK|
=m*}. Then|S, | < nmm = m. Put P = {yeN,:|A4, NS, | Zn}; Q=N
—P.

Cast la. |[P| = m*. Then, for yeP, there is B,e[4,NS,]. Then
I{By:yeP}I =< |[S« ]"I Sm=m< IP[, and there is {, y}, = P such that
B,=B,. Then |A4,NA,| 2 |B,NB,| = |B,| = n>|4, N A4,|which is a con-
tradiction.

CasE 1b. |P| < m.Then |Q| =m*; |4, NS, | <n(yeQ). Since |[S,<0]<"|
< Xt <mm' £ nm" = m, thereis De[S, ] "and Q' e [Q]"* such that 4,N S,
= D for all ye Q'. Then, by Lemma 1(4), A, N A, = D for {u,y}, = Q' and so

(4,:7€Q)estA(m™).

https://doi.org/10.1017/51446788700019091 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700019091

26 P. Erdos, E. C. Milner and R. Rado [5]

CASE 2. 'NK|§m ken). Then lN,,Ig.nm=m;
Lemma 1(6), C
Then

N—N"| =m*. By

(
4,NnS,| Z2n(yeN—N,).Choose B,e[4,NS,]"forye N —N,.

s

|{By:yeN—N,,_}

< |(S.'] < mm)y = m<|N - N,

and there is {y,y}. < N — N, such that B, = B,. Then
|4,04,| 2 |B,NB,| =|B,| =n>|4,n4,|

which is a contradiction. This proves (i).
Before proving (ii) we establish a lemma.

LEmMMA 2. Let
n<mzNy; m">m; ]S| = m; 'Nl =m"*;
X,e[S]" (yeN).
Assume GCH. T hen there is {u,y}, < N such that |Xu ('\X,| >n.
PROOF OF LEMMA 2.1 = cf(m). There is a respresentation S = ToU--- UT,

such that t = w(cf(m)); [ Tzl =m;<m(i<t). Let ye N. Then there is 4, <t
such that | X, N T, | > n. For otherwise we obtain the contradiction

m=|X,] S ZGA<)|X,nT,|<|t|n<m.
Now there is M e[N]™" and 2’ such that A, = A’ (ye M). Then
| X,NTy|>n (yeM).
Since |[T,]7"| £ 2™ < m*, there is {#,y}, =M with X, N T; = X,NT,.
Then | X, NX,| 2 |X,nX,nT,|=|X,NT,|>n.

PROOF OF THEOREM 1 (ii). Let (Ny,---,N,) be a d-sequence of (A4,:yeN).
Then k = o(m™*™*). Let S, and S, have their previous meaning.

|SsNA4,| 2 m (yeN —N,). By Lemma 2, there is {u,7}» =N —N,, such
that

Cast 1. |[N,| S m. Then |[N—N, | = m*; |S,| < m. By Lemma 1(6),

|4, NA4,| Z|(SaNA) NS, NAY|>n>|4,nA4,]
which is false.
CasE 2. |N,| = m*. Then there is 4o = min{Ae m:|N,| = m*}. Then
|4, NS, | £|Si| = m (veN).

Cast 2a. There is M €[N, ]™" such that |4, NS, | = m (yeM). Then, by
Lemma 2, there is {u,7}. < M such that
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[(4, 0 S;) N4, NS )| >n>]4,04,].
This is a contradiction.
Case 2b. There is M €[N, J™" such that |Ay N Szol <m(yeM).

Then there is M’ e [M]"" such that the cardinal [Ayﬁ S,lol is constant for
yeM’, say |4, NS, |=q (ye M’). There are sets X,, B, such that ((X,),cpr» An)o
and |B,| = p+4q = po, say (ye M), where B, = (4,n S;)U X, (ye M’). Then
(B,:7eM")eQ(2pg *, po), and by [1], Theorem 1, there is M” = M’ such that
(By,sye MM est A(pg ™). Then (4, NS;,:ye M")est A(py*) and, by Lemma 1,
(A,:yeM")est A(p§ ™). This proves Theorem 1 (ii).

ProOF OF THEOREM 1 (iii). It suffices to find a system
A, 7eEN) cpmy EQ(m™, m)

which has no st A(m)-subsystem. Put k = w(cf(m)). There are cardinals m; such
that mg, .-, M, <m = my + -+ + my,. Put

N ={y = (yo, -, D) memuh < K},
B‘f = {(’yO""3?l):l< k} (y = (‘yO"",?k)GN).

Then (By:yeN)eQ(Hml,lkD. We have IIm, = m™*; !k| = cf(m) <m. Let
|Xy| =m (yeN) and ((X,),en,Bn)o, and put A, = B,UX, (yeN). Then
(4,:yeN)eQ(m*,m). Let {u,y}, = N. Then there is Ao = o y, and we have

4,04, = |(B,UX,)N(B,UX)| =|B,NB,| = || <|k| = cf(m).

Now let M = N and (4,: ye M)est A. Then (B,: ye M) est A. But then there is
Ay < ksuchthatpo y = A, and B, B, = {(po, -+, p,): A < A} forall {u,v} . = M.
Here p;em; (A < 1)), and py,---,p;, are independent of u,y. Therefore

IM| = Hhﬁ()’o"",?k)EM}’ é m;, <m,

and the proof of Theorem 1 is completed.

5. Some special Theorems

THEOREM 2. Let (A,: ye N)ewk A. Assume that
@) lAvl S n<¥, for yeN,

() |A,04,|=k for {uy}. <N,

@ii)) |N|>1+ n().

Then (A,:yeN)estA.

ProOF. Let yo,€ N. By (i) and (ii),

{4, N 4,:7eN = {3}}]| £ .
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Hence, by (iii), there are sets M, D with M e [N — {y,}]"*! and De[4,,]* such
that A,NA, = D for uyeM.

Case 1. There is y, € N — {yo} with D¢ A, . Then, for every peM, we
have 4, N A4, # D, and there is x,€ 4, N4, — D. Then

I{xu:yeM}|§|A,‘| < n<|M|,

and there is {p, 6}, = M with x, = x,. Then x,€ 4, N A, = D which is a contra-
diction.

Case 2. Dc A, for all yeN — {yo}. Then 4,NA4, =D for {g,y},cN
and the theorem follows.

Definitions: (4,: y€ N) is called a system without repetition if A, # 4, for
{u,7}+ = N.For n < N,, denote by g(n) the largest integer such that there exists
a (g(n),n)-system without repetition which has no wk A(3)-subsystem. Let h(n)
be defined similarly but with repetitions allowed.

It is easy to see that g(1) = 1; g(2) = 5; g(3) = 10. D. Hanson proved that
g(3) = 10.

THEOREM 3. ForallnwithO< n < N,

(i) h(n) =2g9(m), (i) gn +1) 2 29(n).

COROLLARY. g(n) = 52" % for n = 2.

PRrOOF OF (). If (44,45, -+, 4,) is a(g(n), n)-system without repetition which
has no wk A(3)-subsystem, then (4,, -+, A, 4y, -+, A,) is a (2g(n), n)-system, with
repetition, and again without wk A(3)-subsystem. Hence h(n) = 2g(n). If, for
some n, we have h(n) > 2g(n) then there is a ( > 2g(n), n)-system without wk A(3)-

subsystem. Such a system contains at least g(n) + 1 distinct members, and these
form a system whose existence contradicts the definition of g(n). Hence (i).

PRrOOF OF (ii). There is a (g(n), n)-system (4,: y € N) without repetition and
without wk A(3)-subsystem. Let x,, be any 2g(n) distinct objects, forye Nand A€2
which do not belongto Ay. Then it is easily verified that

(4,9 {x,,}:yeN; 1€2)

disa(2g(n),n + 1)-system without repetition and without wk A(3)-subsystem. This
proves (ii). :

THEOREM 4. Let a>0 and 1 £ n £ N,. Then there is an (a", n)-system
(A,: x € X) ., which has no wk A(a*)-subsystem.

PrROOF. Put X = {x = (x();"'a)en):xO"";-’eneg};

A, = {(an"'3x7):ye'_l} (xeX).
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Then (A,;: x€X),€Q(a" n). If {x,y}, = X then
|4, N4, ] = |[{(x0,+,x):y<x0y}| =x0y<n.

Let X' < X and (A4,: xe X")ewk A. Then there is m < n such that xo y = m
for {x, y}. = X’, and hence |X’] = |{x,,,: xeX’}I < a. The theorem follows.

THEOREM 5. Let a be a non-zero ordinal, and put d, = 21°l. Then there
is a (d,, N,)-system (A,: y€ N).y, without wk A(3)-subsystem. In particular, we
have (d,,R,)+wk AQ3). If (i) 21 < R, for B<a, (i) W, = |«|, then we can
stipulate that, in addition, IANI =¥N,.

ReMARK. The condition (i) is a weak version of the generalized continuum
hypothesis, and the condition (ii) is equivalent to w, = « and is known to hold
for some «.

Proor. Let the letter A denote elements of 2, and the letters 8,7, d elements
of a. Let | X(4o,+,A9)| = gy for all B, g, -, 4, and

(X(Aoy =5 4p): Bea; Agyorr A5€2).

Put N = {(Ag,+, A0 Ag, s A, €2} and A(dg,+,4) = U (B<®) X (Ao, -+, 4p)
for (Ag, -+, 4)€ N. Then |N| = 2¥l; lA(,lo,u-,i,)[ = L(B<aNy, = N,.
Now suppose that {(Ag,+,4,), (44,40, (Ao, A} = N. Put p =410 A"
Then IA(A) nA(/l‘)l =2Z(@<pN, 1 EX,<N,. Putg=401";t=4101"

Change the notation, if necessary, so that p < ¢ < t. Then
p<t | AN NAL) | SN, <R, SN = B <N, = [40) A

Hence the (21, X )-system (A(1): ¢ N) .y, has no wk A(3)-subsystem. Now sup-
pose that (i) and (ii) hold. Then

|UGeNyA@)| = | U B <a; i, 462 X (Ao, Ap)|

ZB<a2P R, =N, |[N| =21 = 2%,

Hence, on changing the notation slightly, we obtain a (2%, &,)-system (4,,: u € M)
without wk A(3)-subsystem, and now IAM| =N,.

THEOREM 6. Let a = R,,. Then (i) assuming GCH, there is an (a*,Ng)-
system (A;: A€ L) .y, With |AL| < a; (ii) no (a*,Rg)-system (B;: A€ L) . with
|B.| < a has a wk A(a*)-subsystem; (iii) if GCH holds then

Mo+, R) WKk AR, ,y).
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REMARKS. The result (i) is due to A. Tarski. For the convenience of the
reader we give a proof. In Section 7,Case 1 b2al, we prove (X, ; 1, Ng) + wkA(N,),
a relation which is stronger than (iii).

PRrOOF OF (i). Let L be the set of all sequences 2 = (lo, -, [,,) such that I, € o,
for y<w.Put 4, = {(ly,-,1): u < w} for Ae L. Then (4,: Ae L) Q(a*,Ny);
|4, = |{(lo,-~-,l;,): p<w;lew,fory<p}| = X@<o)[[(r<pR,=a.
If {4,A'}, < L then there is y, = A0 4’,and we have|A,1 nAA,| =7, + 1 <N,.

PrOOF OF (ii). Let the (a*,N,)-system (B,: A€ L)y, satisfy IBLI < a. Let
(B,: Ae 'yewk A for some L'e[L]*". Choose {A’,A"}, < L. Then |B,1/ hBA,,|

= p<¥N,. Choose D;e[B;]?* for Ac L'. Then|{D;: Ac L'}| < |B,| <|L'| and
therefore there is {p, 0}, = L’ such that D, = D,. Then

p=|B,NB,|2|D,|=p+1

which is the required contradiction.

6. Some Lemmas

It is convenient to use the function Y(a) = |{x: x < a}
over cardinals. Thus, y(,) = Ry + chl.

Throughout the rest of this paper we use the following notation for two
fixed cardinals:

, where a ranges

a = Na; b = &ﬁ.
Furthermore, GCH is assumed without reference being made to this fact.
LemMMA 3. Let a > cf(a). Then (a, b)+> wk A(a).

ProoF. If n = w(cf(a)) then there are cardinals a, with
g, ,d,<a=ag+ -+ d,.

Choose sets B, with |Bvl = b(y <n) and (By,+,8B,)s, and put D,; = B, for
y<nand Aea,. Then (D,;:y<n;Aea)eQa,b). Let D, = a,(y <n);

(Dy;:y<n; AeD,)yewk Alc).

Cask 1. There is yo < n such that [D, | = 2. Choose {s,7}, = D,,. Then
D,,ND,. |=b>0. Hence D, = & for yen — {yo}, and so

700 Yot

¢ =X(y<m|D,| =|Dy| S a,<a.
Cast 2. |D,| <2 for y<n. Then X (y<n)|D,| £ |n|=cf(a)<a.
LEMMA 4. Let b < cf(¢). Then (c¢*, b)— st A(c*).
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Proor. In [2], p. 471, the function s(x,y) was defined for all cardinals x, y
such that x = 2; y = 3; x + y = ¥§,, by putting
s(x, ) = sup{ L (Y€X)¥o P, Vo, "> un) < ¥} -
We have
s(b*,c*) = Z(yeb*)cM £ T (yeb*)e = btc = ¢ < s(b*,c™).
Here, the first inequality follows from ly | =< b < cf(c), and the second inequality
from b > 0. By [2], Theorem 1V,

Sa(b*,ct) = sT(b*,c?),
and therefore

(st(b*,c*), £ by st A(c*); (¢*, £ b)—>stA(c*);
(c*,b) > st A(c™).

LEMMA 5. Let a = a~ = cf(a) > b. Then (a, b) — st A(a).

PROOF. s(b*,a) < L (yeb*)a' < T (yeb*)a = b*a = a;
s(b*,a) = sup {ap: ap < a} = a.

Hence s(b*,a) = a. We now prove fy(b*,a) = s(b*,a). We want to apply [2]
Theorem IV (a) (iii). To do this we must prove

() N, < b+ <cf(@) < a- = a;
(i) if sup {a¢: ap < a} = d then d = cf(d) > a for a; < a.
Now, (i) is true. Also,
sup {a%:a, <a} Ssup{aghb*:a,<a} <a
< sup {a}: ao < a}; sup {ah: ap < a} = a = cf(a).
Finally, let @, <a. Then a% < a/b* < a. This proves (ii), and we have, by (2],

fa(b*,a) = s(b*,a) = a; (a, < b*) - st A(a); (a,b) > st A(a).

LEMMA 6. Let a = cf(a); f(u,y)e 2 for p <yea™. Then there is an (a+,a)
system (F,:yea*) such that, for p<yeat,

|F,OF,| <a if flu,y) =0
=a if fwy) =1.

ProoF. 1. We begin by showing that, given any (a,a)-system (4,:ye N)_,,
there is a set T (called a (< a)-transversal of the system) such that
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Tel[Ay]%; 1 =2 |ThAu| < a (ueN).

We may assume N = a. Then there are elements x,, for y ea, such that
x, €4, ~ (4y U {xo,+,%,}) (y€a). Wemay put T = {x,:y€a}, . For, let pea.
If (e T N A,, then there is y € a such that { = x, €4, — 4,. Also, € 4,. Hence
uéy; u=7y,sothat 1 £ ]TnA“I = I{xo,.-~,x,,}| = I,u_+1|<a.

2. Choose a system (S,5:aea*:fea),€Q(at,a). We now choose sets B,
for uea*, by the following procedure. Let po € a™, and suppose that By, -, B,
have already been defined in such a way that

*

{ B, is a (< a)-transversal of the family
((Sep: < p3 Bea), By, -, B, for p < pig.

We show that
(**) ((Suﬂ: o —S— Hos Be_a_)’ BO, T aBpo)<a .

Let pu<py. Then
B, c U@ g p; Bea) S,BUBEL- SLtl‘EUBﬁ’ say.

By induction over u, we deduce that B, < Su+ 1.0 (1 < o).

(1) Let o < pg; Pea; y<pp. If 2 £y, then |SaﬁnBY|<a by (*) with
pu=7y.Ifa>y, then S,ﬁr\By| < |SaﬁﬂSlL1,a| = Osince a¢gy+ 1.

(ii) Let p < 6 < piy. Then | B, N B,| < a by (¥) with p = . This proves (**).
Now let B,, be a (< a)-transversal of the family (**). Put S, = U (Be a)S,p
(xea™);

A, =S5,NB, (¢« < pea*).
Then it follows, by induction on p, that
B,c U(x < p; fea) S, = U= S,
B,= U@z wS,NnB, = U(a= w4, (nea*). Since |S;;NB,| 21 (@< p
ea*; Bea), we have |Aau| =a(x=peca*).Put F,=5,0 U @<y; fn,9)
= 1)A,, (yea*). Then S,c F,c S,:_l_ (yea™);
(F,ryeat)eNat,a).
Now let y <y ea*. If f(u,y) = 1, then 4,, c F,; A,, =S, < F,; |F,NF,]

| A,»] = a. Now suppose f(1,7) = 0. Then F,n F, = (S, U U (& < p; f(ot,1)
DAY N S, v UB<y; f(B,7) = 1A4,). We note that S,NS, = &F; if

IV
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f(B,y) =1 then B3 pu and hence S, NA;, =S, NS;=F. If a<pu, then
A, NS, e85, NS, = F;ifa # B,then A,, N Ay, = S, NSy = & . All this shows
that F, NF, < U (« < p)4,,NA4,,=B,NB,; |F,NF,| <|B,NB,| <a. This
proves Lemma 6.

LEMMA 7. Let a = cf(a). Then (a*,a) +» wk A(at).

PrOOF. By [3], a* +(a*)3. Hence there is a function f: [a*]?+2 suchthat,
whenever M < a* and f is constant on [M]?, then IM l <a*.By Lemma 6, there
are sets F, such that |F,| = a for yea* and, for p<yea*, |F,NF,|<a if
flu,y) = 0; ]F,, nFYI = aif f(u,y) = 1.Then the (a*, a)-system (F,: yea*) has
no wk A(a*)-subsystem.

LemMA 8. Let a—(c)yyy. Then (a,b) > wk A (c).

PROOF. Let (A4,: ye N)eQ(a, b). Then

[N = U =D){{n,v}+ =N:|4,Nn4,] = by}.

By Hypothesis there are M and b, such that M € [N]; b, < b; lAun Avl = b,
for {u,7}+ =< M. Then '

(4,: ye M),, e wk A(c).

LeMMAa 9. Let a > a~. Then (a*,a) » wkA(a).
PROOF. ¥(a) = Y(a~) £ a~ < a. Hence, clearly, a — (a)y, and therefore, by
the “‘stepping-up lemma’’ of [3], a* — (@)}, Now Lemma 8 yields (a*,a) »

wk A(a).

LemMMA 10. Let (a,b)+>wkA(c). Then (a’,b’) + wkA(c) ifaza’; b b';
cLc.

ReMARK. This lemma will be applied without reference.

Proor. There is an (a, b)-system (A4,:ye€N) without wk A(c)-subsystem.
Choose sets B, such that 4, < B, and ]Byl = b'foryeN, and ((B, ~ 4,),en>»
Ax)-LetN'e [N]“' .Then the (a’, b’)-system (B,:y € N’) has no wk A(c’)-subsystem.

LemMa 11. (y(b), b)+> wk A(3).

Proor. Put N = o U {wg, -+, d};

A, =yU{lay S E<ayy +1)} (PeN).
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Then -the (Y(b), b)-system (A y€N) has no wkA(3)-subsystem. For if
{#,9,A}« = N then

[ 4,04,] = [u] <]3] =] 4,04,).
LemMA 12. Let b = b~. Then (b*, b) +» wk A(b).

PROOF. Put N = {y = (70, **» 1) Y0 "> Yy € 2}
Ay = {(yo,+,7): Aeb} (yeN).

Then (A,:ye N)eQ(b*, b). Assume that there is M € [N]® such that (4,:ye M),
for some p. Let {#,7}. = M.Then p = |4, NA,|=|poy|<b;puoyep*. Put

o= (D(p+) Then l{(?o: ”’?a) (}’o" ' 9?w;)€M for some Yas** ?a)p}l s 216'
= p** <b = |M|, and there is {u,y} » = M such that (uo, -, 2,) = (Vo =**»0)-
On the other hand, if A = poy then 1 < a; u; # y;, which is a contradiction.

LEMMA 13. Let b = y(b). Then (b*,b)+> Wk AQ3).

ProOF. Case 1. f = 0. The conclusion follows from the case a = 2;n = N,
of Theotem. 4.

CasE 2. > 0. For A< f and yg,--+,9,€2, choose a set X(7o,---,%,;) with
,X(YO"' ’?l)' = Nl+l’ such that (X(YO,"',?A):A<ﬂ' Yos ’?}.ez)o Put A
= U@ <P XGo 0 for 7= (o595 Yoo »9€2. Then |4, |=

Z(A< ) Nywy =Ny = b. We have | {yo,,99): 0.+, fp€2}| = 2"1=[B[*
= b*, Let (i,y,p) and (4,,4,,4,)ewkA(3). Put poy = .
" We note that {A: (pos 5 82) = (vorr «,9)} =1+ 1. Hence IA NA l
IU (A <7+ DX(yo, - ’?A) ' = XA <t+ DNy = Nt‘f’l = N,oy+1. There-
fore t=poy=pop=yop, and (4,7, p,)+ Which is impossible. This proves
Lemma 13.

LEMMA 14. Let cf(d) = Ny. Then (d*,Ny)+ wkA(d).

PRrOOF. There are cardinals d, such that dg,---,d, <d = dog + --- + d,,. Put
= {X = (xo, sx‘a)): x}.egl (A < CO)},

A,; - {(xg5 -+, %) A< @} (xeX). Then (4,: xe X) e Qd*,N;). Let L = X and

(A,: xe Lye wkA. Then there is o< w such that |Axr\Ay| =o+1;x0y=0

for {x,y}, = L. Then |L| = |{x,: xeL}| £ d, < d which proves Lemma 14.
LemMma 15. Let cf(d) = X,. Then (d*,N,,)+ wkA(d).

Proor. There are cardinals d, such that dg,»,d,,, <d = do + +-- +d,,,. Let
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X = {x = (xg,""",%p,): X,€d, (y <®,)}. For xeX and A < o, let [ B(x,,
---,)El)] = Ni4+1, and (B(xg, -+, %): A< w,; x, €d, (y < A)y. Put

Ax = U ()u< w‘)B(Xo, ,fl)

for xe X. Then |X| =dy- de =dt; |Ax| = Z2(A<w)N;4; = N,,, so that
(A;:xeX)eQd*,N,,). Let L < X and (4,: xe L)e wkA. Then there is ¢ < o,
such that x oy = o for {x, y} . = L. Hence IL] = I{x,: oeL}| < d, < d, which
completes the proof.

LeMMA 16. Let 0 <d = d~ <N, . Then cf(d) < N,.

Proor. We have d = N, for some J < w,. Since d = d~ we conclude that
d=X(r<N,; cf(d) < |6[<X,.

For the last two lemmas we need the following definitions: Consider a sys-
tem # = (4,:y€eN). We call & an (a,b, £ d)-system if F€Q(a,b) and (4,:
y€N)<, . An (a,b, < d)-system is defined similarly. For every set 4 and every
cardinal d we put

F(4,d) = {yeN:|An4,| = d}.

Lemva 17. Let & be an (a,b, < d)-system; a = cf(a) > b*; |A| = b;
| #(4,d)| = a. Then F has a wkA(a)-subsystem.

Proor. We have I[A]"I = b% < a = cf(a). Hence there is an (a, b)-subsystem
F' =(A,;yeN’)of # and a set X such that [ X| =dand 4N 4, =X (yeN').
Then, for {§,7}» € N’, wehaved = | X| < |4, N 4,| < d, and F* is a wkA(a)-
system.

LeMMA 18. Let & = (A,:yeN) be an (a, b, < d)-system, such that
| #(4,,d)| <a
for every ye N. Suppose that a = cf(a). Then & has an (a,b, < d)-subsystem.

PrOOF. Assume N = a. We can construct inductively ordinals y, for pea
such that, for each pea, y,€(N— U (o < p)#(4, ,d)) — {yo,**»9,}. Then
(4,,:pea) is an (a,b, < d)-system.

7. Discussion of the wk A-relation

We consider two fixed infinite cardinals a, b, where

a=N,; b=1N,,
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and we shall determine all cardinals ¢ such that the wk A-relation
(7 - (a,b) > wk A(c)

is true. There is a least cardinal ¢(a,b) in 3 = ¢(a,b) £ a* such that (7) holds
if and only if c¢< ¢(a,b). We shall determine ¢(a,b). If ¢(a,b) = 3 then (7)
only holds completely trivially, i.e. for ¢ £ 2, whereas ¢(a, b) = a™ means that
(7) bolds for all values of ¢ which are at all admissible, which are the cardinals
c=a. , ‘

Our results show that, for all a, b.

¢(a, bye (3,a",a,a*}.

In our discussion we shall write ¢ instead of ¢(a, b). We remind the reader that
throughout this section we assume GCH.

Casg 1. a>bt.

CASE 1a. a >a~ > a~ . We prove that ¢ = a*. We can write a = a,* ™,
and then we have ag ™ = a = b**; ao, = b. By [2], Theorem 1 (ii), with a, b
in [2] replaced by ag, a, respectively, we have (a5 *,a,) - st A(ag *). Hence
(a,b) > st Aa). ' '

CasE lb.a>a~ =a™ .
Case 1bl. b<cf(a™). Then ¢ = a*. Indeed, by Lemma 4, (a, b) - st A(a).

CASE 1b2. b = cf(a”). Let ag < a~. Put a, = max{a,b}. Then (a;*,a,)
—stA(ay *) by [2]. Hence (a,b) - stA(a,) (ag < a™).

CASE 1b2a, cf(a™) = cf~(a™).

Caste 1b2al. cf(a™) = N,. Then ¢ =a~. For, by Lemma 14, (a, 8;)
+ wk A(a~) and therefore (a,b)+>wkA(a™).

Cask 1b2a2. cf(a”) > N,. Then ¢ = a-. For, we have, by Lemma 15,
(a,cf(a™))+wkA(a™).
_ To see this, put cf(a™) = R;. Then ¢ is a positive limit ordinal; X, = cf(%;).
If §<w, then N, = Z(d; < ON;,; cf(®¥;) S|8]| <N, which is false. Hence
0 = w;. By Lemma 15, withd = a~, we have (a,¥,,, )+ wkA(a™),i.e. (a, cf(a™))
+>wk A(a™). This implies (a, b)+>wkA(a™).

CasE 1b2b. cf(a™) > cf~(a~). Then cf(a™) has the form ¥,, ;.

CASE 1b2bl. R £ b. Then ¢ =a~. For, by Lemma 15, (a,N

Wiy =

+wkA(a™), which implies (a, b)+ wkA(a™).

Wa 4+ 1)
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Case 1b2b2. X,,,,, > b. We show that ¢=a*. We use the notation F(4, d)
introduced before the statement of Lemma 17. We assume that the (a, b)-system
& has no wk A(a)-subsystem, and we have to deduce a contradiction. Since & is
an (a, b, < b)-system, it follows that there is a least cardinal d such that # has
an (a,b, £ d)-subsystem. We have 0 <d £ b. We may assume that & itself is
an (a, b, < d)-system. Then & has no (a, b, < e)-subsystem, for every e < d. Let
F = (A,:yeN)g,. Let yo€ N and |F(A4,,,d)| = a. Since b’ < b* = b* <a,
it follows from Lemma 17 that % has a wk A(a)-subsystem, which is a contra-
diction. Hence [ﬂ(Ay, d) I < aforye N.Then, by Lemma 18, # has an (a, b, < d)-
subsystem. We may assume that & = (A,:ye N)., isitself an (a, b, < d)-system.
If d = e*, then & is an (a, b, £ e)-system, which contradicts the minimality of d.
Hence 0 <d = d- < b<¥,,,, and, by Lemma 16, cf(d) < ¥, .

We shall now construct a modified d-sequence. There is a maximal set No= N
such that (4,:y€ Ny)o. Then 0 < |N0| <a. Let 0 <oea. Suppose that, for
each p < ¢, we have already defined a set N,e[N]<%, where N, # ¢, such
that, putting S, = Ay,, we have IA, ﬁSpl <dforyeN,;A,Nn A, S, for {u,y} » = N,.
Suppose, furthermore, that, for each p < o, the set N, is maximal such that the
above stated conditions hold, i.e.: if ye N — N,, then either 4, < S,, or there
is peN, ~ {y} with 4,n A, ¢ S,. We shall now define N,, and in such a way
that all these conditions hold for p = . Put S, = Ay,. Then [S,| < |o|a-be
= a~. Well-order S, by a relation <, so that tp(S,, <) < w(a”). Put N*
= {yeN:|4,nS,| = d}. We now prove |N*| < a. Assume |N*| = a. For
each ye N*, denote by g(y) the initial section of (4,N S,, =) of type w(d). If
{#,7}+ = N* then, by (4,:y€N),, we have |4, N A4,| <d, and hence g(u)
# g(y). There is an initial section T of (S,, <) such that [ Tl < a~ and ]{yneN*:
g(») <:T}| = a. For: if IS,I < a~ then we put T = S,. Now let IS,,] =a".
We have c¢f(d) < ¥, = cf(a™). For each ye N*, the set (g9(y), <) has a cofinal
subset of cardinal cf(d). This subset is not cofinal in (S,,—<). Hence g(y) is not
cofinal in (S,, <), and there is x, € S, such that g(y) = {x€ S,: x <x,}. In view
of a = cf(a), there is x* € S, such that l{yeN*: x, = x*}l = a. Then we may
put T = {xeS,: x<x*}. This completes the definition of T. Now we have
'[T]“I < 21Tl < g-. Hence there is X = T such that l{yeN*:,g(y) = X}] =a.
But then (4,:ye N*; g(y) = X),,, which contradicts the relation (4,:y€N).,.

We have thus proved ]N*I <a.Let ye N - N* If A, =S, thenwe have
b=|4,] =|4,nS,|<d < bwhichis false. Hence ye N —N* implies A, ¢ S,,.
Let N, be maximgl such that N, c N — N*and (4, — S,: 7€ N,)o. Then N, # &
It follows that if ye N, then A,¢ S,, and if {u,y}, =N, then 4, N A, <=§S,.
Also,if ye N—N,and 'A,,ﬂ S,,] <d, thenthereis pe N, with 4,N A4, ¢ S,.In order
to complete the inductive definition of Ny, N, --- we must now show that | N,,] < a.
Assume that 'N,,] = a. Corresponding to every y € N,, there is e, < d such that
|4,nS,| = e,. Then there is ¢ < d such that |{yeN,:e, = ¢}| = a. For we

https://doi.org/10.1017/51446788700019091 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700019091

38 P. Erdés, E. C. Milner and R. Rado (17}

have [{eY:yeN,}I £dsgb<a . Put N ={yeN,: [AyﬁS,[ = e}, so that
IN'[ =a. If {u,7}+ = N’, then |AunAy[ = IA,,nAynSGI =< |A‘,nS,[ =e,
Hence (4,: ye N').,€Q(a,b) which contradicts the minimum property of d.
This proves ' N,l < a, and the inductive definition of N, for p € a is accomplished.
We have b* < a, and therefore we can choose y € N, ,. For each pe b™ there
is p,e N, such that 4, N4, ¢ S, = Ay,. We can choose z,€ 4, NA,— Ay,.
If t<p then z,e 4, NA, A, < Ay,. Hence z, # z, for t<peb*; B
|Avl = l{z,,:pelz+}$| =b*>b= IAv|~

which is the required contradiction.

CASE Ic. a =a™.

Cask Icl. a = ¢f(a). Then ¢ = a*. For, by Lemma 5, (a,b) - st A(a).

Cast 1c2. a > cf(a). Then ¢ = a. For, by Lemma 3, (a,b)+ wkA(a). Let
ao < a and put a; = max{a,, b}. Then, by [2], (a;"*, a,) - stA(a; *). Hence
(a,b) = stA(ay) (ay < a).

CASE 2. a = b*.

Case 2a. b = |B|. Then ¢ = 3. For, by Theorem 5, (2'*!,b)+ wk A(3).
Hence (a, b) + wk A(3).

CASE 2b. b>|B].

Case 2bl. b> b~. Then ¢ = a. For, by Lemma 7, (a, b)+ wk A(a). Also,
by Lemma 9, (a, b) = wk A(b).

Case 2b2. b = b~.Then ¢ = a~. For, by Lemma 12, (a, b) + wk A(b) . Now,
let by < b. Then, by [3], b— (bo)ﬁ(,,), and Lemma 8 gives (b,b) — wkA(by).
Hence (a, b) - wk A(by) (bo< b).

CASE 3. a = b.
Case 3a. b = |B|. Then ¢ = 3. For, by Lemma 11, (a, b)-+wkA(3).
Cast 3b. b>|f|.

Case 3bl. b>b~. If b~ = cf(b~) then, by Lemma 7, (b,b")+ wkA(b),
and if b~ > cf(b~) then, by Lemma 12, (b, b™)+> wk A(b™). Thus, in either case,
(a.bY+wk A(b).

Cast 3bla. b~ > b~~. Then ¢ = a. For we have § = B0.+ 1 =8, +2for

some fo, B1; Y(b) = xo+|ﬁ1|; Ng, 41— (Nﬂ1+l)l}l(b) and, by [3], N, 42— (Nﬂl,,l),,z,(,,).
Now Lemma 8 gives (a, b) - wk A(b™).

CasE 3blb. b~ = b~ ~. Then, by Lemma 12, (b,b~)+>wk A(b~) and hence
(a,b)+wkA(b™).
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Case 3blbl. y(b~) = b~. Then ¢ = 3. For, by Lemma 13, (b, b")+
wk A(3). Hence (a, b)+ wk A(3).

CASE 3b1b2. Y(b~) < b~. Then ¢ =a~. For, let by<b~. Then b—
(bo)ss) and, by Lemma 8,

(a, b) - wk A(bg) (by < b).

Casg 3b2. b = b~. Then ¢ = a. For, by Lemma 12, (b*, b)+> wk A(b), and
hence (a, b)+»wk A(b). Let by < b. Then b — (bo),f(,,) and, by Lemma 8,

(a,b) > wkA(by) (bg < b).
CASE 4. a<b.

Cast 4a. b = |B|. Then ¢ = 3. For, by Lemma 11, (/(b), b)+ wk A(3) and
hence (a, b)-+ wk A(3).

Case 4b. b> |B|.

CasE 4bl. a < 2%l Then ¢ = 3. For, by Theorem 5, (2'%!, b)-wk A(3) and
therefore (a, b)+ wk A(3).

CaSE 4b2. a > 2%*Il Then || <2 <a.

Case 4b2a. a = a~. Then ¢ = a. For, by Lemma 12, (a*,a) —» wk A(a),
and therefore (a,b)+> wk A(a). Let ag < a. Then a —+(ao)§o+|ﬂ|, and Lemma 8
gives (a,b) = wk A(a,) (aq < a).

CASE 4b2b. a > a~.

CASE 4b2bl. ¢~ > a~~. Then ¢ = a. For: |/3| <2l < g; a‘4—>(a‘)§o+|ﬂl;
a~(a")iw; (a,b) > wkA(a~). By Lemma 7, (a,a~)+> wkA(a). Since a~ <a
< b, we deduce (a, b)+ wk A(a).

CASE 4b2b2. a~ = a~~. Then ¢ = a~. For, Lemma 12 yields (a,a~)+
wkA(a"), and hence (a,b)+>wkA(a~). Let ag<a~. Then a~ = (do)yo+ (a5
a— (ag)ewm; (a,b) > wk Aap) (ap < a~).

Cask 4b3. 2l%1 < g < 2%*1l Then ¢ = 3. For, we have f<wand a £ N,.
By Lemma 13, (N, o)+ wkA(3). Hence (a, b)-+>wkAQ3).

This concludes the dicsussion of the relation (a, b) » wk A(c) for infinite car-
dinals a, b.
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