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The Geometry of d2y1/dt2
= f (y, ẏ, t) and

d2y2/dt2
= g(y, ẏ, t), and Euclidean Spaces

Richard Atkins

Abstract. This paper investigates the relationship between a system of differential equations and the

underlying geometry associated with it. The geometry of a surface determines shortest paths, or

geodesics connecting nearby points, which are defined as the solutions to a pair of second-order differ-

ential equations: the Euler–Lagrange equations of the metric. We ask when the converse holds, that is,

when solutions to a system of differential equations reveals an underlying geometry. Specifically, when

may the solutions to a given pair of second order ordinary differential equations d2 y1/dt2
= f (y, ẏ, t)

and d2 y2/dt2
= g(y, ẏ, t) be reparameterized by t → T(y, t) so as to give locally the geodesics of a

Euclidean space? Our approach is based upon Cartan’s method of equivalence. In the second part of

the paper, the equivalence problem is solved for a generic pair of second order ordinary differential

equations of the above form revealing the existence of 24 invariant functions.

1 Introduction

The geometry of a manifold is given by a metric, which defines a notion of distance

between points. Paths of shortest length connecting points are obtained as the crit-

ical curves of the functional variation of the integral defining arclength. Functional

variation of this integral yields Euler–Lagrange equations which are a system of ordi-

nary differential equations of second order, whose solutions are the geodesics. Thus

associated with geometry is a system of ODEs. This paper seeks to answer the inverse

problem: when does a system of ODEs represent the paths of shortest length of a

metric? That is, we wish to establish when ordinary differential equations exhibit an

underlying geometry. We shall not be so ambitious as to attempt a solution on man-

ifolds of arbitrary dimension and endowed with a general metric but shall restrict

ourselves to the case of a pair of second order ODEs on a (two-dimensional) surface

and ask when the underlying geometry is flat, that is a Euclidean space. We are con-

cerned only with the solutions of the ODEs up to reparameterization since they serve

merely to describe paths of shortest length on the surface. Geodesics however, are

not invariant with respect to general changes of parameter, so it shall be necessary

to incorporate reparmeterization in the precise definition of the problem. The for-

mulation of the equivalence problem is the contents of sections 1 and 2. In section 3

Cartan’s method of equivalence is employed up to the level of the first normaliza-

tion for generic ODEs. In section 4 we obtain the solution in the Euclidean case.

The equivalence method is carried through in section 5, for generic pairs of second

order ODEs with the result that the symmetry of the system produces 24 invariant

functions.
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Before proceeding, it is instructive to consider the simpler problem without con-

siderations of parameterization: when are the solutions to a pair of second order

ordinary differential equations,

(1) d2 y1/dt2
= f (y, ẏ, t) and d2 y2/dt2

= g(y, ẏ, t),

locally the geodesics of some Euclidean metric on the plane? The geodesics of a Eu-

clidean metric are the straight lines with respect to some coordinate system. Thus

the problem may be formulated as follows: when does there exist a coordinate sys-

tem Y = Y (y) such that the solutions y = y(t) of (1) correspond to straight lines

Y = Y (y(t)) = at + b, a, b ∈ R? We therefore seek to determine the existence of a

transformation Ψ : R2 × R → R2 × R of the form

Ψ(y, t) = (Y (y), t)

such that Ψ transforms the equations

(2) d2Y 1/dt2
= 0 and d2Y 2/dt2

= 0

into the equations (1). Any transformation of the form Ψ above transforms (2) into

equations of the form

d2 yi/dt2 + Γ
i
jk(y)ẏ j ẏk

= 0.

Consequently, (1) must necessarily be of this form. The terms Γ
i
jk(y) define a con-

nection ∇ on the surface, hence the solutions to (1) are locally the geodesics of a

Euclidean space if and only if ∇ is flat.

The problem above requires that the solutions to (1) already be parameterized

in such a fashion that only a change in the coordinates of the surface is sufficient

to straighten them out into lines. This paper is interested in whether the solutions

to (1) may be reparameterized so as to be straight lines in some coordinate system.

Specifically, do there exist coordinates Y = Y (y) and a reparameterization of time

T = T(y, t) such that the solutions y = y(t) of (1) correspond to straight lines

Y = Y (T) = aT + b, a, b ∈ R? We therefore seek to determine the existence of a

transformation Φ : R2 × R → R2 × R of the form

Φ(y, t) = (Y (y), T(y, t))

such that Φ transforms the equations

d2Y 1/dT2
= 0 and d2Y 2/dT2

= 0

into the equations (1).

Conceivably, other reparameterization criteria could be considered as well. For

instance, one might investigate the more restricted transformations T = T(t) where

time is reparameterized in a manner independent of the point on the surface or the

more general T = T(y, ẏ, t). Here, we shall content ourselves with spacetime repa-

rameterizations only and defer the other cases to another time and place.
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It is convenient to place the problem in a more general setting: we consider the

equivalence of two pairs of ordinary differential equations

(3)
d2 y1

dt2
= f (y, ẏ, t)

d2 y2

dt2
= g(y, ẏ, t)

and

(4)
d2Y 1

dT2
= F(Y, Ẏ , T)

d2Y 2

dT2
= G(Y, Ẏ , T).

under transformations of the form

Φ(y, t) = (Y (y), T(y, t)).

The case F = G = 0 is solved in section 4. We obtain an e-structure on a 12-

dimensional space with constant torsion. The solutions to a pair of ODE’s belonging

to this equivalence class have symmetries given by the group of fractal-linear trans-

formations on the plane. In section 5 we make no restrictions on F, G, f and g and

carry the equivalence through for the generic case.

A similar problem was studied by S. S. Chern [2]. He has considered the geometry

of a system of second order ODEs

d2 yi

dt2
= f i(y, ẏ, t) i = 1, . . . , n,

under transformations of the form
{

Y = Y (y, t),

T = t.

Prior to Chern, the local behaviour of systems of second order ODEs has been studied

by M. D. D. Kosambi [4] and by E. Cartan [1].

2 The Equivalence Problem Formulated

The equations (3) may be represented by the Pfaffian system

I =



















dy1 − p1dt = 0,

dy2 − p2dt = 0,

dp1 − f dt = 0,

dp2 − gdt = 0.

on U ⊆ R5. Similarly the equations (4) may be represented by the Pfaffian system

J =



















dY 1 − P1dT = 0,

dY 2 − P2dT = 0,

dP1 − FdT = 0,

dP2 − GdT = 0.
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on V ⊆ R5.

Form the coframes

ω =































ω1
= dy1,

ω2
= dy1 + pdy2,

ω3
= dy2 + qdt,

ω4
= dp + hdt,

ω5
= dq + gdt,

and Ω =































Ω
1
= dY 1,

Ω
2
= dY 1 + PdY 2,

Ω
3
= dY 2 + QdT,

Ω
4
= dP + HdT,

Ω
5
= dQ + GdT,

where











p = −p1(p2)−1,

h = (p2)−2(p2 f − p1g),

q = −p2,

and











P = −P1(P2)−1,

H = (P2)−2(P2F − P1G),

Q = −P2.

Observe that I (resp., J) is spanned by ω2, . . . , ω5 (resp., Ω2, . . . , Ω5).

Consider those transformations

Φ : U → V

such that

(∗)

{

(1) Φ
∗( J) = I, and

(2) Φ(y, p, t) = (Y (y), P(y, p, t), T(y, t)).

This is an overdetermined equivalence problem (cf. [3]). Nevertheless the approach

given in the above reference shall not be followed in that all the information con-

tained in (∗) may be encoded by an appropriately chosen coframe and group, as

follows.

Let G be the subgroup of GL(5, R) whose elements are represented by









a b 0 0

0 c 0
0

0 e f

0 M N









.

It is easily shown that a diffeomorphism Φ : U → V satisfies (∗) if and only if

Φ
∗(Ω) = γω

for some γ : U → G. In order to avoid the awkward presence of the map γ form the

lifted coframe η (resp., H) on the the G-bundle G ×U (resp., G ×V ):

η := Sω, (resp., H := SΩ),
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where S : G → GL(5, R) is the natural injection. It can be shown that

Φ
∗(Ω) = γω

if and only if

Φ̄
∗(H) = η,

for some Φ̄(g, u) : G × U → G × V . Φ̄ is related to Φ and γ by Φ̄(g, u) :=

(gγ(u)−1, Φ(u)), for all (g, u) ∈ G × U . We arrive at the following formulation

of the equivalence problem:

The two systems of ordinary differential equations (3) and (4) are equivalent with

respect to a diffeomorphism Φ : U → V of the form Φ(y, t) = (Y (y), T(y, t)) if

and only if there exists a diffeomorphism Φ̄(g, u) : G ×U → G ×V satisfying

Φ̄
∗(H) = η.

With this characterization of equivalence we now proceed to reduce the group G.

3 The First Normalization

The structure equations, after making the obvious absorptions are

dη =











α β 0 0

0 γ 0
0

0 ǫ φ

0 µ ν











η +











0

Jη1η3 + A1η
1η4 + A2η

1η5

B1η
1η4 + B2η

1η5

0











.

The equations

(5) 0 = d2η2η2

0 = d2η3η2η3

give the following infinitesimal group action on the torsion tensor:

d J + (α − γ + φ) J + Aµ2 ≡ 0

dA + (α − γ)A + Av ≡ 0

dB + (α − φ)B + Bv − Aǫ ≡ 0







mod base.

Therefore the group action on the torsion tensor is:















J = ( J0 − A0N−1M2)a−1c f −1,

A = a−1cA0N−1,

B = a−1( f B0 + eA0)N−1,
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where J0, A0, and B0 denote the tensors J, A and B, respectively, at the group identity.

A parametric calculation shows that

J0 = −(pq)−1h, A0 = (p−1, 0), B0 = (0,−(pq)−1).

We may therefore normalize

J = 0, A = (0, 1), and B = (1, 0).

Then
µ2

2 ≡ 0

v2
1 ≡ 0

ǫ − v1
2 ≡ 0

α − γ + v2
2 ≡ 0

φ − γ − v1
1 + v2

2 ≡ 0























mod base.

Write

µ2
2 = Aiη

i , v2
1 = Biη

i , ǫ = v1
2 + Ciη

i ,

α = γ − v2
2 + Diη

i , φ = γ + v1
1 − v2

2 + Eiη
i .

Substituting these values into (5) results in

B3 = A4, D3 = A5, D4 = B5, E5 = C4 + D5.

The structure equations after absorbing the torsion become

dη =















γ − v2
2 β 0 0 0

0 γ 0 0 0

0 v1
2 γ + v1

1 − v2
2 0 0

0 µ1
1 µ1

2 v1
1 v1

2

0 µ2
1 0 0 v2

2















η +















0

η1η5

η1η4 + Aη1η2 + Bη1η3

0

Cη1η3 + Dη1η4















.

The equations

0 = d2η5η2η5,

0 = d2η3η3η4η5 + d2η4η2η3η4,

0 = d2η2η3η4η5 + d2η3η2η4η5 + d2η4η2η3η5 + d2η5η2η3η4,

give the following infinitesimal group action on the torsion tensor:

dA + A(γ − v1
1) + Bv1

2 + 2µ1
1 ≡ 0

dB + (γ − v2
2)B + 2v1

2D + 2µ1
2 − 2µ2

1 ≡ 0

dC + (2γ + v1
1 − 3v2

2)C + µ1
2D ≡ 0

dD + (γ + v1
1 − 2v2

2)D ≡ 0















mod base.
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4 Geodesics of Flat, Symmetric Connections

In this section the equivalence problem is carried through for the case F = G = 0.

This will lead to an e-structure with constant torsion on a 12-dimensional space.

The only invariants therefore are constant invariants and thus we obtain a complete

solution to the problem of equivalence.

4.1 The Second Normalization

A parametric calculation will show that at the identity, A0 = B0 = C0 = D0 = 0,

hence D ≡ C ≡ 0. This leaves the following two equations:

dA + A(γ − v1
1) + Bv1

2 + 2µ1
1 ≡ 0

dB + (γ − v2
2)B + 2µ1

2 − 2µ2
1 ≡ 0

}

mod base.

Normalize A ≡ B ≡ 0. We then have

µ1
1 ≡ 0

µ1
2 ≡ µ2

1

}

mod base.

This produces new torsion by

µ1
1 = Aiη

i

µ1
2 = µ2

1 + Biη
i.

After absorbing torsion the structure equations are

dη =















γ − v2
2 β 0 0 0

0 γ 0 0 0

0 v1
2 γ + v1

1 − v2
2 0 0

0 0 µ2
1 v1

1 v1
2

0 µ2
1 0 0 v2

2















η +















0

η1η5

η1η4

Aη1η2 + Bη1η3

0















.

The equations

0 = d2η4η3η4η5 0 = d2η4η2η4η5 + d2η5η3η4η5

give
dA + (2γ − v1

1 − v2
2)A + Bv1

2 ≡ 0

dB + (2γ − 2v2
2)B ≡ 0

}

mod base.

Now at the identity A0 = B0 = 0. Thus A = B = 0, and hence

dη =















γ − v2
2 β 0 0 0

0 γ 0 0 0

0 v1
2 γ + v1

1 − v2
2 0 0

0 0 µ2
1 v1

1 v1
2

0 µ2
1 0 0 v2

2















η +















0

η1η5

η1η4

0

0















.

Only constant torsion remains so the system must be prolonged.
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4.2 Prolongation

Now, dim G(1)
= 2. The first prolongation corresponds to the following arbitrariness

in the tableau:

θ1 := v1
1

θ2 := v1
2 + aη3

θ3 := v2
2 + aη2

θ4 := γ + 2aη2

θ5 := β + aη1 + bη2

θ6 := µ2
1 + aη5

where a, b ∈ R are arbitrary. The structure equations for η may be written,

dη =















θ4 − θ3 θ5 0 0 0

0 θ4 0 0 0

0 θ2 θ4 + θ1 − θ3 0 0

0 0 θ6 θ1 θ1

0 θ6 0 0 θ3















η +















0

η1η5

η1η4

0

0















.

Taking d2 of the above structure equations we obtain the following

0 = −dθ3η1 + dθ4η1 + dθ5η2 + θ3θ5η2 − θ5η1η5,

0 = dθ4η2 + θ5η2η5 + θ6η1η2,

0 = dθ1η3 + dθ2η2 − dθ3η3 + dθ4η3 − θ1θ2η2 + θ3θ2η2 + θ5η2η4 + θ6η1η3,

0 = dθ1η4 + dθ2η5 + dθ6η3 − θ2θ3η5 + θ6θ3η3 + θ4θ6η3 − θ6η1η4 − θ1θ2η5,

0 = dθ3η5 + dθ6η2 − θ3θ6η2 + θ4θ6η2 − θ6η1η5.

It follows from a somewhat lengthy but straightforward calculation that the structure

equations for θ are given by

dθ1
= A1η

5η2 + A2η
3η2 + A3η

4η2 + A4η
4η3 + A5η

5η3 + θ5η5 + θ6η1,

dθ2
= Φ

1η3 + A1η
4η2 + Bη5η2 + A5η

4η3 + θ1θ2 − θ3θ2 + θ5η4,

dθ3
= Φ

1η2 + Cη5η2 + 2θ5η5 + θ6η1,

dθ4
= 2Φ

1η2 + D1η
3η2 + D2η

4η2 + (C − A1)η5η2 + θ5η5 − θ6η1,

dθ5
= Φ

1η1 + Φ
2η2 + D1η

3η1 + D2η
4η1 − A1η

5η1 − θ3θ5,

dθ6
= Φ

1η5 + Fη3η2 + A2η
4η2 + θ3θ6 − θ4θ6,
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where Φ
1 and Φ

2 are 1-forms in the new tableau. The equations

0 = d2θ1,

0 = d2θ2η3,

0 = d2θ2η2 + d2θ3η3,

0 = 2d2θ3 − d2θ4,

0 = d2θ6η5,

give the following infinitesimal action on the torsion tensor

dA1 − Φ
2 ≡ 0

dA2 ≡ 0

dA3 ≡ 0

dA4 ≡ 0

dA5 ≡ 0

dB ≡ 0

dC − 2Φ
2 ≡ 0

dD1 ≡ 0

dD2 ≡ 0

dF ≡ 0































































mod base.

At the group identity,

A2 = A3 = A4 = A5 = B = D1 = D2 = F = 0,

therefore these terms are identically zero. Thus,

(dA1 + A1(θ3 + θ4) − Φ
2)η4η2η3 + (2A1 −C)θ2η5η2η3

= 0.

Consequently,

C = 2A1.

We also have

dA1 + A1(θ3 + θ4) − Φ
2 ≡ 0 mod η2, η5.

Therefore,

dA1 + A1(θ3 + θ4) − Φ
2 + lη2

= 0

for some function l. We obtain the following structure equations

dθ1
= Aη5η2 + θ5η5 + θ6η1,

dθ2
= Φ

1η3 + Aη4η2 + θ1θ2 − θ3θ2 + θ5η4,

dθ3
= Φ

1η2 + 2Aη5η2 + 2θ5η5 + θ6η1,

dθ4
= 2Φ

1η2 + Aη5η2 + θ5η5 − θ6η1,

dθ5
= Φ

1η1 + Φ
2η2 − Aη5η1 − θ3θ5,

dθ6
= Φ

1η5 + θ3θ6 − θ4θ6,

where A has been written for A1.

https://doi.org/10.4153/CMB-2006-018-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-018-7


The Geometry of d2 y1/dt2
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4.3 The Third Normalization

The infinitesimal group action on the torsion is given by

dA1 + A1(θ3 + θ4) − Φ
2 ≡ 0 mod base.

Normalize A = 0. Then Φ
2
= lη2 and hence

dθ1
= θ5η5 + θ6η1,

dθ2
= Φ

1η3 + θ1θ2 − θ3θ2 + θ5η4,

dθ3
= Φ

1η2 + 2θ5η5 + θ6η1,

dθ4
= 2Φ

1η2 + θ5η5 − θ6η1,

dθ5
= Φ

1η1 − θ3θ5,

dθ6
= Φ

1η5 + θ3θ6 − θ4θ6.

We have constant torsion and an e-structure. Thus (η1, . . . , η5, θ1, . . . , θ6, Φ) is an

invariant coframe (here Φ is written for Φ
1.) The equations

(dΦ − Φθ4 − θ5θ6)ηi
= 0

for i = 1, 2, 3 and 5 give

dΦ = Φθ4 + θ5η6.

Thus the structure equations are

(6) dη1
= (θ4 − θ3)η1 + θ5η2,

dη2
= θ4η2 + η1η5,

dη3
= θ2η2 + (θ4 + θ1 − θ3)η3 + η1η4,

dη4
= θ6η3 + θ1η4 + θ2η5,

dη5
= θ6η2 + θ3η5,

dθ1
= θ5η5 + θ6η1,

dθ2
= Φη3 + (θ1 − θ3)θ2 + θ5η4,

dθ3
= Φη2 + 2θ5η5 + θ6η1,

dθ4
= 2Φη2 + θ5η5 − θ6η1,

dθ5
= Φη1 − θ3θ5,

dθ6
= Φη5 + (θ3 − θ4)θ6,

dΦ = Φθ4 + θ5θ6.

We have shown the following:
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Theorem 1 The solutions y(t) of

(7) d2 y1/dt2
= f (y, ẏ, t) and d2 y2/dt2

= g(y, ẏ, t)

are the geodesics of a Euclidean space with respect to a transformation of the form

(Y, T) = (Y (y), T(y, t)) if and only if equations (7) yield the structure equations (6).

The structure equations (6) are the Maurer–Cartan equations for a Lie-group: the

group of fractal-linear transformations F on the plane. Recall that the fractal-linear

transformations of the plane are those transformations A of the form

A = (ȳ, t̄) = (ȳ(y), t̄(y, t))

where

ȳ1(y) =
b1

0 + b1
1 y1 + b1

2 y2

a0 + a1 y1 + a2 y2
ȳ2(y) =

b2
0 + b2

1 y1 + b2
2 y2

a0 + a1 y1 + a2 y2

t̄(y, t) =
t + c0 + c1 y1 + c2 y2

a0 + a1 y1 + a2 y2
,

where ai, ai
j , bi

j ∈ R are constants. Let G denote the subgroup of GL(4, R) consisting

of those invertible matrices M whose first column is t (1, 0, 0, 0). We may identify the

transformation A with the element φ(A) in G by

φ(A) :=











1 c0 c1 c2

0 a0 a1 a2

0 b1
0 b1

1 b1
2

0 b2
0 b2

1 b2
2











.

The map φ : F → G is a group isomorphism and so the fractal-linear transformations

may be identified with G.

5 The Generic Case

In this section we continue the equivalence problem from the end of the first nor-

malization (§3).

5.1 Thye Second Normalization

Recall that after the first normalization we have the structure equations

dη =















γ − v2
2 β 0 0 0

0 γ 0 0 0

0 v1
2 γ + v1

1 − v2
2 0 0

0 µ1
1 µ1

2 v1
1 v1

2

0 µ2
1 0 0 v2

2















η +















0

η1η5

η1η4 + Aη1η2 + Bη1η3

0

Cη1η3 + Dη1η4














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with infinitesimal group action on the torsion tensor given by

dA + A(γ − v1
1) + Bv1

2 + 2µ1
1 ≡ 0

dB + (γ − v2
2)B + 2v1

2D + 2µ1
2 − 2µ2

1 ≡ 0

dC + (2γ + v1
1 − 3v2

2)C + µ1
2D ≡ 0

dD + (γ + v1
1 − 2v2

2)D ≡ 0















mod base.

In the generic case, D 6= 0. We thus normalize

A = 0, B = 0, C = 0, D = 1.

This gives us

µ1
1 ≡ 0

µ1
2 ≡ 0

µ2
1 ≡ v1

2

γ ≡ 2v2
2 − v1

1















mod base.

Let

µ1
1 = Aiη

i , µ1
2 = Biη

i , µ2
1 = v1

2 + Ciη
i , γ = 2v2

2 − v1
1 + Diη

i .

It follows that

B4 = D3.

The new structure equations are:

dη =















v2
2 − v1

1 β 0 0 0

0 2v2
2 − v1

1 0 0 0

0 v1
2 v2

2 0 0

0 0 0 v1
1 v1

2

0 v1
2 0 0 v2

2















η +















0

η1η5

η1η4

0

η1η4















+ T,

where

T =

















B4η
3η1 + D4η

4η1 + D5η
5η1 + D2η

2η1

D1η
1η2 + B4η

3η2 + D4η
4η2 + D5η

5η2

D1η
1η3 + D2η

2η3 + D4η
4η3 + D5η

5η3

A1η
1η2 + A3η

3η2 + A4η
4η2 + A5η

5η2 + B1η
1η3 + B2η

2η3

+B4η
4η3 + B5η

5η3

C1η
1η2 + C3η

3η2 + C4η
4η2 + C5η

5η2

















.
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After absorbing the torsion the structure equations are

dη =















v2
2 − v1

1 β 0 0 0

0 2v2
2 − v1

1 0 0 0

0 v1
2 v2

2 0 0

0 0 0 v1
1 v1

2

0 v1
2 0 0 v2

2















η

+















Aη5η1

η1η5 + Bη1η2 + Aη5η2

η1η4 + Bη1η3 + Cη4η3 + Aη5η3

Dη1η2 + Eη3η2 + Fη1η3 + Gη5η3

η1η4 + Hη1η2 + Iη4η2 + Jη5η2















.

5.2 The Third Normalization

The equations

(8) 0 = d2η1η2η3 + d2η2η1η3 + d2η3η1η2,

0 = d2η3η2η5 + d2η5η2η3,

0 = d2η4η4η5,

0 = d2η4η2η4 − d2η5η4η5,

0 = d2η3η3η5 − d2η5η3η5,

0 = −d2η3η4η5 − d2η3η3η4 + d2η4η2η4 + d2η5η3η4,

give us the following infinitesimal group action on the torsion tensor:

dA + Av2
2 + Cv1

2 + 2β ≡ 0

dB + B(v2
2 − v1

1) ≡ 0

dC + Cv1
1 ≡ 0

dD + 3D(v2
2 − v1

1) + Fv1
2 − Hv1

2 ≡ 0

dE + E(3v2
2 − 2v1

1) − Fβ − Gv1
2 ≡ 0

dF + 2F(v2
2 − v1

1) ≡ 0

dG + G(2v2
2 − v1

1) ≡ 0

dH + 2H(v2
2 − v1

1) − Bv1
2 ≡ 0

dI + Iv2
2 −Cv1

2 ≡ 0

d J + J(2v2
2 − v1

1) + Bβ + Iv1
2 ≡ 0























































































mod base .

https://doi.org/10.4153/CMB-2006-018-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-018-7


The Geometry of d2 y1/dt2
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At this point, the group is the subgroup of GL(5, R) whose elenents are of the form















ca−1 e 0 0 0

0 c2a−1 0 0 0

0 a−1bc c 0 0

0 0 0 a b

0 a−1bc 0 0 c















.

The group action on the torsion is then given by

A = A0c−1 −C0a−1bc−1 − 2ac−2e,

B = B0ac−1,

C = C0a−1,

D = D0a3c−3 + (1/2)B0ab2c−3 + (H0 − F0)a2bc−3,

E = E0a2c−3 + F0a3c−4e + G0abc−3,

F = F0a2c−2,

G = G0ac−2,

H = H0a2c−2 + B0abc−2,

I = I0c−1 + C0a−1bc−1,

J = J0ac−2 − B0a2c−3e − (1/2)C0a−1b2c−2 − I0bc−2.

We may then normalize

A = 0, B = 1, C = 1, I = 0.

It follows that

v1
1 ≡ v2

2 ≡ v1
2 ≡ β ≡ 0 mod base.

We write

v1
1 = Aiη

i , v2
2 = Biη

i , v1
2 = Ciη

i , β = Diη
i .

Substituting these values back into the equations (8) we obtain

A5 = 2D4 + C4 and B4 = A1 + A4.
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The group has been reduced to the identity and so we have an e-structure. The struc-

ture equations are

dη1
= (D1 + A2 − B2)η1η2 + (A3 − B3)η1η3 − A1η

1η4 + (A5 − B5)η1η5 − D3η
2η3

+ (1/2)(C4 − A5)η2η4 − D5η
2η5,

dη2
= (1 + 2B1 − A1)η1η2 + η1η5 + (A3 − 2B3)η2η3 − (A1 + B4)η2η4

+ (A5 − 2B5)η2η5,

dη3
= C1η

1η2 + (1 + B1)η1η3 + η1η4 + (B2 −C3)η2η3 −C4η
2η4 −C5η

2η5

− (1 + B4)η3η4 − B5η
3η5,

dη4
= I1η

1η2 + I3η
1η3 + A1η

1η4 + C1η
1η5 − I2η

2η3 + A2η
2η4 + C2η

2η5 + A3η
3η4

+ (C3 − I4)η3η5 + (C4 − A5)η4η5,

dη5
= (C1 + I5)η1η2 + η1η4 + B1η

1η5 −C4η
2η4 + (B2 − I6 −C5)η2η5 + B3η

3η5

+ B4η
4η5 −C3η

2η3.

We obtain 24 local invariants.
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