
TPLP 21 (5): 663–679, 2021. c© The Author(s), 2021. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribu-

tion, and reproduction in any medium, provided the original work is properly cited.

doi:10.1017/S1471068421000259 First published online 24 September 2021

663

Planning with Incomplete Information
in Quantified Answer Set Programming

JORGE FANDINNO
Omaha State University, USA

University of Potsdam, Germany
(e-mail: jfandinno@unomaha.edu)

FRANCOIS LAFERRIERE, JAVIER ROMERO and TORSTEN SCHAUB
University of Potsdam, Germany

(e-mails: francois@cs.uni-potsdam.de, javier@cs.uni-potsdam.de, torsten@cs.uni-potsdam.de)

TRAN CAO SON
New Mexico State University, USA

(e-mail: tson@cs.nmsu.edu)

submitted 13 August 2021; accepted 21 August 2021

Abstract

We present a general approach to planning with incomplete information in Answer Set Pro-
gramming (ASP). More precisely, we consider the problems of conformant and conditional
planning with sensing actions and assumptions. We represent planning problems using a sim-
ple formalism where logic programs describe the transition function between states, the ini-
tial states and the goal states. For solving planning problems, we use Quantified Answer
Set Programming (QASP), an extension of ASP with existential and universal quantifiers
over atoms that is analogous to Quantified Boolean Formulas (QBFs). We define the lan-
guage of quantified logic programs and use it to represent the solutions different variants of
conformant and conditional planning. On the practical side, we present a translation-based
QASP solver that converts quantified logic programs into QBFs and then executes a QBF
solver, and we evaluate experimentally the approach on conformant and conditional planning
benchmarks.

KEYWORDS: answer set programming, planning, quantified logics

1 Introduction

We propose a general and uniform framework for planning in Answer Set Programming

(ASP; Lifschitz 2002). Apart from classical planning, referring to planning with deter-

ministic actions and complete initial states, our focus lies on conformant and conditional

planning. While the former extends the classical setting by incomplete initial states, the

latter adds sensing actions and conditional plans. Moreover, we allow for making assump-

tions to counterbalance missing information.

https://doi.org/10.1017/S1471068421000259 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068421000259
https://orcid.org/0000-0002-3917-8717
mailto:jfandinno@unomaha.edu
https://orcid.org/0000-0001-5546-9939
https://orcid.org/0000-0002-7456-041X
mailto:francois@cs.uni-potsdam.de
mailto:javier@cs.uni-potsdam.de
mailto:torsten@cs.uni-potsdam.de
https://orcid.org/0000-0003-3689-8433
mailto:tson@cs.nmsu.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068421000259&domain=pdf
https://doi.org/10.1017/S1471068421000259

664 J. Fandinno et al.

To illustrate this, let us consider the following example. There is a cleaning robot in a

corridor going through adjacent rooms that may be occupied by people. The robot can

go to the next room and can sweep its current room to clean it, but it should not sweep

a room if it is occupied. We assume that nothing changes if the robot tries to go further

than the last room, or if it sweeps a room that is already clean. The goal of the robot is

to clean all rooms that are not occupied by people. We present a solution for any number

of rooms, but in our examples we consider only two.

Classical planning. Consider an initial situation where the robot is in the first room,

only the first room is clean, and no room is occupied. In this case, the classical planning

problem is to find a plan that, applied to the initial situation, achieves the goal. The

plan, where the robot goes to the second room and then sweeps it, solves this problem.

Conformant planning. Consider now that the robot initially does not know whether

the rooms are clean or not. There are four possible initial situations, depending on the

state of cleanliness of the two rooms. In this case, the conformant planning problem is

to find a plan that, applied to all possible initial situations, achieves the goal. The plan,

where the robot sweeps, goes to the second room and sweeps it, solves that problem.

So far rooms were unoccupied. Now consider that initially the robot knows that exactly

one of the rooms is occupied, but does not know which. Combining the previous four

options about cleanliness with the two new options about occupancy, there are eight

possible initial situations. It turns out that there is no conformant plan for this problem.

The robot would have to leave the occupied room as it is and sweep the other, but there

is no way of doing that without knowing which is the occupied room.

Assumption-based planning. At this point, the robot can try to make assumptions

about the unknown initial situation, and find a plan that at least works under these

assumptions, hoping that they will indeed hold in reality. In this case, a conformant

planning problem with assumptions is to find a plan and a set of assumptions such

that the assumptions hold in some possible initial situation, and the plan, applied to all

possible initial situations satisfying the assumptions, achieves the goal. Assuming that

room one is occupied, the plan where the robot goes to room two and then sweeps it,

solves the problem. Another solution is to assume that the second room is occupied and

simply sweep the first room.

Conditional planning. The robot has a safer approach, if it can observe the occupancy

of a room and prepare a different subplan for each possible observation. This is similar

to conformant planning, but now plans have actions to observe the world and different

subplans for different observations. In our example, there is a conditional plan where the

robot first observes if the first room is occupied, and if so, goes to the second room and

sweeps it, otherwise it simply sweeps the first room. The robot could also make some

assumptions about the initial situation, but this is not needed in our example.

Unfortunately, the expressiveness of regular ASP is insufficient to capture this variety of

planning problems. While bounded classical and conformant planning are still expressible

since their corresponding decision problems are still at the first and second level of the

polynomial hierarchy, bounded conditional planning is Pspace-complete (Turner 2002).

To match this level of complexity, we introduce a quantified extension of ASP, called

Quantified Answer Set Programming (QASP), in analogy to Quantified Boolean Formu-

las (QBFs). More precisely, we start by capturing the various planning problems within

a simple uniform framework centered on the concept of transition functions, mainly by

https://doi.org/10.1017/S1471068421000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000259

Planning with Incomplete Information in Quantified Answer Set Programming 665

retracing the work of Son et al . (2005; 2007; 2011). The core of this framework consists of

a general yet simplified fragment of logic programs that aims at representing transition

systems, similar to action languages (Gelfond and Lifschitz 1998) and (present-centered)

temporal logic programs (Cabalar et al . 2018), We then extend the basic setting of ASP

with quantifiers and define quantified logic programs, in analogy to QBFs. Although we

apply QASP to planning problems, it is of general nature. This is just the same with

its implementation, obtained via a translation of quantified logic programs to QBFs.

This allows us to represent the above spectrum of planning problems by quantified logic

programs and to compute their solutions with our QASP solver. Interestingly, the core

planning problems are described by means of the aforementioned simple language frag-

ment, while the actual type of planning problem is more or less expressed via quantifica-

tion. Finally, we empirically evaluate our solver on conformant and conditional planning

benchmarks.

2 Background

We consider normal logic programs over a set A of atoms with choice rules and integrity

constraints. A rule r has the form H ← B where B is a set of literals, and H is either an

atom p, and we call r a normal rule, or {p} for some atom p, making r a choice rule, or ⊥,
so that r an integrity constraint. We usually drop braces from rule bodies B, and also use

l, B instead of {l}∪B for a literal l. We also abuse notation and identify sets of atoms X

with sets of facts {p← | p ∈ X}. A (normal) logic program is a set of (normal) rules. As

usual, rules with variables are viewed as shorthands for the set of their ground instances.

We explain further practical extensions of ASP, like conditional literals and cardinality

constraints, in passing. Semantically, we identify a body B with the conjunction of its

literals, the head of a choice rule {p} with the disjunction p ∨ ¬p, a rule H ← B with

the implication B → H, and a program with the conjunction of its rules. A set of atoms

X ⊆ A is a stable model of a logic program P if it is a subset-minimal model of the

formula that results from replacing in P any literal by ⊥ if it is not satisfied by X. We

let SM (P) stand for the set of stable models of P .

The dependency graph of a logic program P has nodes A, an edge p
+→ q if there is

a rule whose head is either q or {q} and whose body contains p, and an edge p
−→ q if

there is a rule with head q or {q}, and ¬p in its body. A logic program is stratified if

its dependency graph has no cycle involving a negative edge (
−→). Note that stratified

normal programs have exactly one stable model, unlike more general stratified programs.

ASP rests on a Generate-define-test (GDT) methodology (Lifschitz 2002). Accordingly,

we say that a logic program P is in GDT form if it is stratified and all choice rules in P

are of form {p} ← such that p does not occur in the head of any other rule in P . In fact,

GDT programs constitute a normal form because every logic program can be translated

into GDT form by using auxiliary atoms (Niemelä 2008; Fandinno et al . 2020).

QBFs (Giunchiglia et al . 2009) extend propositional formulas by existential (∃) and

universal (∀) quantification over atoms. We consider QBFs over A of the form

Q0X0 . . . QnXnφ (1)

where n ≥ 0, X0, . . . , Xn are pairwise disjoint subsets of A, every Qi is either ∃ or

∀, and φ is a propositional formula over A in conjunctive normal form (CNF). QBFs

https://doi.org/10.1017/S1471068421000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000259

666 J. Fandinno et al.

as in (1) are in prenex CNF. More general QBFs can be transformed to this form in

a satisfiability-preserving way (Giunchiglia et al . 2009). Atoms in Xi are existentially

(universally) quantified if Qi is ∃ (∀). Sequences of quantifiers and sets Q0X0 . . . QnXn

are called prefixes, and abbreviated by Q. With it, a QBF as in (1) can be written as Qφ.
As usual, we represent CNF formulas as sets of clauses, and clauses as sets of literals.

For sets X and Y of atoms such that X ⊆ Y , we define fixbf (X,Y) as the set of clauses

{{p} | p ∈ X} ∪ {{¬p} | p ∈ Y \X} that selects models containing the atoms in X and

no other atom from Y . That is, if φ is a formula then the models of φ ∪ fixbf (X,Y) are

{M | M is a model of φ and M ∩ Y = X}. Given that a CNF formula is satisfiable if it

has some model, the satisfiability of a QBF can be defined as follows:

• ∃Xφ is satisfiable if φ ∪ fixbf (Y,X) is satisfiable for some Y ⊆ X.

• ∀Xφ is satisfiable if φ ∪ fixbf (Y,X) is satisfiable for all Y ⊆ X.

• ∃XQφ is satisfiable if Q(φ ∪ fixbf (Y,X)
)
is satisfiable for some Y ⊆ X.

• ∀XQφ is satisfiable if Q(φ ∪ fixbf (Y,X)
)
is satisfiable for all Y ⊆ X.

The formula φ in Qφ generates a set of models, while the prefix Q can be inter-

preted as a kind of query over them. Consider φ1 = {{a, b,¬c}, {c}} and its models

{{a, c}, {a, b, c}, {b, c}}. Adding the prefix Q1 = ∃{a}∀{b} amounts to querying if there

is some subset Y1 of {a} such that for all subsets Y2 of {b} there is some model of φ1

that contains the atoms in Y1 ∪ Y2 and no other atoms from {a, b}. The answer is yes,

for Y1 = {a}, hence Q1φ1 is satisfiable. One can check that letting Q2 be ∃{b, c}∀{a} it
holds that Q2φ1 is satisfiable, while letting Q3 be ∃{a}∀{b, c} we have that Q3φ1 is not.

3 Planning problems

In this section, we define different planning problems with deterministic and non-

concurrent actions using a transition function approach building on the work of Tu et al .

(2007).

The domain of a planning problem is described in terms of fluents, i.e. properties

changing over time, normal actions, and sensing actions for observing fluent values. We

represent them by disjoint sets F , An, and As of atoms, respectively, let A be the set

An∪As of actions, and assume that F and A are non-empty. For clarity, we denote sensing

actions in As by af for some f ∈ F , indicating that af observes fluent f . To simplify

the presentation, we assume that sets F , An, As and A are fixed. A state s is a set of

fluents, s ⊆ F , that represents a snapshot of the domain. To describe planning domains,

we have to specify what is the next state after the application of actions. Technically,

this is done by a transition function Φ, that is, a function that takes as arguments a

state and an action, and returns either one state or the bottom symbol ⊥. Formally,

Φ: P(F) × A → P(F) ∪ {⊥}, where P(F) denotes the power set of F . The case where

Φ(s, a) = ⊥ represents that action a is not executable in state s.

Example. Let R be the set of rooms {1, . . . , r}. We represent our example domain with

the fluents F = {at(x), clean(x), occupied(x) | x ∈ R}, normal actions An = {go, sweep},
and sensing actions As = {sense(occupied(x)) | x ∈ R}. For r = 2, s1 = {at(1), clean(1)}
is the state representing the initial situation of our classical planning example. The

transition function Φe can be defined as follows: Φe(s, go) is (s\{at(x) | x ∈ R})∪{at(x+
1) | at(x) ∈ s, x < r} ∪ {at(r) | at(r) ∈ s}, Φe(s, sweep) is s ∪ {clean(x) | at(x) ∈ s} if,

https://doi.org/10.1017/S1471068421000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000259

Planning with Incomplete Information in Quantified Answer Set Programming 667

for all x ∈ R, at(x) ∈ s implies occupied(x) /∈ s, and is ⊥ otherwise; and, for all x ∈ R,

Φe(s, sense(occupied(x))) is s if at(x) ∈ s and is ⊥ otherwise.

Once we have fixed the domain, we can define a planning problem as a tuple 〈Φ, I, G〉
where Φ is a transition function, and I,G ⊆ P(F) are non-empty sets of initial and goal

states. A conformant planning problem is a planning problem with no sensing actions,

viz. As = ∅, and a classical planning problem is a conformant planning problem where I

is a singleton. A planning problem with assumptions is then a tuple 〈Φ, I, G,As〉 where
〈Φ, I, G〉 is a planning problem and As ⊆ F is a set of possible assumptions.

Example. The initial situation is I1 = {s1} for our classical planning problem, I2 =

{{at(1)} ∪ X | X ⊆ {clean(1), clean(2)}} for the first conformant planning problem

and I3 = {X ∪ Y | X ∈ I2, Y ∈ {{occupied(1)}, {occupied(2)}}} for the second one.

All problems share the goal states Ge = {s ⊆ F | for all x ∈ R either occupied(x) ∈
s or clean(x) ∈ s}. Let PP1 be 〈Φe, I1, Ge〉, PP2 be 〈Φe, I2, Ge〉, and PP3 be 〈Φe, I3, Ge〉.
If we disregard sensing actions (and adapt Φe consequently) these problems correspond to

our examples of classical and conformant planning, respectively. The one of assumption-

based planning is given by PP4 = 〈Φe, I3, Ge, {occupied(1), occupied(2)}〉, and the one

of conditional planning by PP3 with sensing actions.

Our next step is to define the solutions of a planning problem. For this, we specify

what is a plan and extend transitions functions to apply to plans and sets of states. A

plan and its length are defined inductively as follows:

• [] is a plan, denoting the empty plan of length 0.

• If a ∈ An is a non-sensing action and p is a plan, then [a; p] is a plan of length one

plus the length of p.

• If af ∈ As is a sensing action, and pf , pf are plans, then [af ; (pf , pf)] is a plan of

length one plus the maximum of the lengths of pf and pf .

We simplify notation and write [a; []] as [a], and [a; [σ]] as [a;σ] for any action a and plan

[σ]. For example, p1 = [go; sweep], p2 = [sweep; go; sweep], and p3 = [sense(occupied(1));

([go; clean], [clean])] are plans of length 2, 3, and 3, respectively.

We extend the transition function Φ to a set of states S as follows: Φ(S, a) is ⊥ if there

is some s ∈ S such that Φ(a, s) = ⊥, and is
⋃

s∈S Φ(s, a) otherwise. In our example,

Φe(I1, go) = {{at(2), clean(1)}}, Φe(I2, sweep) = {{at(1), clean(1)}, {at(1), clean(1),
clean(2)}}, Φe(I3, sweep) = ⊥, and Φe(Φe(I3, go), sweep) = ⊥. With this, we can ex-

tend the transition function Φ to plans as follows. Let p be a plan, and S a set of states,

then:

• If p = [] then Φ(S, p) = S.

• If p = [a; q], where a is a non-sensing action and q is a plan, then

Φ(S, p) =

{
⊥ if Φ(S, a) = ⊥
Φ(Φ(S, a), q) otherwise

.

• If p = [af ; (qf , qf)], where af is a sensing action and qf , qf are plans, then

Φ(S, p) =

{
⊥ if either Φ(S, af),Φ(Sf , qf) or Φ(S

f , qf) is ⊥
Φ(Sf , qf) ∪ Φ(Sf , qf) otherwise

,

where Sf = {s | f ∈ s, s ∈ Φ(S, af)} and Sf = {s | f /∈ s, s ∈ Φ(S, af)}.

https://doi.org/10.1017/S1471068421000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000259

668 J. Fandinno et al.

In our example, Φ(I1, p1) = {{at(2), clean(1), clean(2)}}, Φ(I2, p2) = {{at(2), clean(1),
clean(2)}}, Φ(I3, q) = ⊥ for any plan q without sensing actions that involves some sweep

action, Φ({s ∈ I3 | occupied(1) ∈ s}, p1) = {{at(2), occupied(1), clean(2)} ∪ X | X ⊆
{clean(1)}}, and Φ(I3, p3) = {{at(2), occupied(1), clean(2)} ∪ X | X ⊆ {clean(1)}} ∪
{{at(1), occupied(2), clean(1)} ∪X | X ⊆ {clean(2)}}.
We can now define the solutions of planning problems: a plan p is a solution to planning

problem 〈Φ, I, G〉 if Φ(I, p) �= ⊥ and Φ(I, p) ⊆ G. In our example, plan p1 solves PP1,

p2 solves PP2, and p3 solves PP3. There is no plan without sensing actions solving PP3.

For assumption-based planning, a tuple 〈p, T, F 〉, where p is a plan and T, F ⊆ As, is a

solution to a planning problem with assumptions 〈Φ, I, G,As〉 if (1) J = {s | s ∈ I, T ⊆
s, s ∩ F = ∅} is not empty, and (2) p solves the planning problem 〈Φ, J,G〉. Condition
(1) guarantees that the true assumptions T and the false assumptions F are consistent

with some initial state, and condition (2) checks that p achieves the goal starting from all

initial states consistent with the assumptions. For example, the planning problem with

assumptions PP4 is solved by 〈p1, {occupied(1)}, {}〉 and by 〈[sweep], {occupied(2)}, {}〉.

4 Representing planning problems in ASP

In this section we present an approach for representing planning problems using logic

programs. Let F , An, As and A be sets of atoms as before, and let F ′ = {f ′ | f ∈ F}
be a set of atoms that we assume to be disjoint from the others. We use the atoms in

F ′ to represent the value of the fluents in the previous situation. We represent planning

problems by planning descriptions, that consist of dynamic rules to represent transition

functions, initial rules to represent initial states, and goal rules to represent goal states.

Formally, a dynamic rule is a rule whose head atoms belong to F and whose body atoms

belong to A ∪ F ∪ F ′, an initial rule is a rule whose atoms belong to F , and a goal rule

is an integrity constraint whose atoms belong to F . Then a planning description D is a

tuple 〈DR, IR,GR〉 of dynamic rules DR, initial rules IR, and goal rules GR. By D(D),
I(D) and G(D) we refer to the elements DR, IR and GR, respectively.

Example. We represent the transition function Φe by the following dynamic rules DRe:

at(R) ← go, at(R− 1)′, R ≤ r clean(R) ← sweep, at(R)′

at(r) ← go, at(r)′ clean(R) ← clean(R)′

at(R) ← ¬go, at(R)′ occupied(R) ← occupied(R)′

⊥ ← sweep, at(R)′, occupied(R)′ ⊥ ← sense(occupied(R)),¬at(R)′

On the left column, the normal rules describe the position of the robot depending on its

previous position and the action go, while the integrity constraint below forbids the robot

to sweep if it is in a room that is occupied. On the right column, the first two rules state

when a room is clean, the third one expresses that rooms remain occupied if they were

before, and the last integrity constraint forbids the robot to observe a room if it is not at it.

For the initial states, I1 is represented by the initial rules IR1 = {at(1)←; clean(1)←},
I2 is represented by IR2:

at(1) ← {clean(R)} ← R = 1..r,

and I3 by IR3, that contains the rules in IR2 and also these ones:

{occupied(R)} ← R = 1..r ⊥ ← {occupied(R)} �= 1.

https://doi.org/10.1017/S1471068421000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000259

Planning with Incomplete Information in Quantified Answer Set Programming 669

The choice rules generate the different possible initial states, and the integrity constraint

inforces that exactly one room is occupied. The goal states G are represented by GRe =

{⊥ ← ¬occupied(R),¬clean(R), R = 1..n} that forbids states where some room is not

occupied and not clean.

Next we specify formally the relation between planning descriptions and planning

problems. We extract a transition function Φ(s, a) from a set of dynamic rules DR by

looking at the stable models of the program s′∪{a←}∪DR for every state s and action

a, where s′ is {f ′ | f ∈ s}. The state s is represented as s′ to stand for the previous

situation, and the action and the dynamic rules generate the next states. Given that

we consider only deterministic transition functions, we restrict ourselves to deterministic

problem descriptions, where we say that a set of dynamic rules DR is deterministic if

for every state s ⊆ F and action a ∈ A, the program s′ ∪ {a ←} ∪ DR has zero or one

stable model, and a planning description D is deterministic if D(D) is deterministic. A

deterministic set of dynamic rules DR defines the transition function

ΦDR(s, a) =

{
M ∩ F if s′ ∪ {a} ∪DR has a single stable model M

⊥ otherwise
,

defined for every state s ⊆ F and action a ∈ A. Note that given that DR is deterministic,

the second condition only holds when the program s′ ∪ {a} ∪ DR has no stable models.

For the case where no action occurs, we require dynamic rules to make the previous

state persist. This condition is not strictly needed, but it makes the formulation of the

solutions to planning problems in Section 6 easier. Formally, we say that a set of dynamic

rules DR is inertial if for every state s ⊆ F it holds that SM(s′∪DR) = {s′∪ s}, and we

say that a planning description D is inertial if D(D) is inertial. From now on, we restrict

ourselves to deterministic and inertial planning descriptions.

Coming back to the initial and goal rules of a planning description D, the first ones

represent the initial states SM(I(D)), while the second ones represent the goal states

SM({{f} ←| f ∈ F} ∪G(D)). In the latter case, the choice rules generate all possible

states while the integrity constraints in G(D) eliminate those that are not goal states.

Given that we consider only non-empty subsets of initial and goal states, we require

the programs I(D) and {{f} ←| f ∈ F} ∪G(D) to have at least one stable model. Fi-

nally, putting all together, we say that a deterministic and inertial planning description

D represents the planning problem 〈ΦD(D), SM(I(D)), SM({{f} ←| f ∈ F} ∪G(D))〉.
Moreover, the planning description D together with a set of atoms As represent the plan-

ning problem with assumptions 〈ΦD(D), SM(I(D)), SM({{f} ←| f ∈ F} ∪G(D)), As〉.
Example. One can check that the dynamic rules DRe are deterministic, inertial, and

define the transition function Φe of the example. Moreover, D1 = 〈DRe, IR1,GRe〉 rep-
resents PP1, D2 = 〈DRe, IR2,GRe〉 represents PP2, D3 = 〈DRe, IR3,GRe〉 represents
PP3, and D3 with the set of atoms {occupied(1), occupied(2)} represents PP4.

5 Quantified answer set programming

QASP is an extension of ASP to quantified logic programs (QLPs), analogous to the

extension of propositional formulas by QBFs. A quantified logic program over A has the

form

https://doi.org/10.1017/S1471068421000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000259

670 J. Fandinno et al.

Q0X0 . . . QnXnP, (2)

where n ≥ 0, X0, . . . , Xn are pairwise disjoint subsets of A, every Qi is either ∃ or ∀, and
P is a logic program over A. Prefixes are the same as in QBFs, and we may refer to a QLP

as in (2) by QP . For sets X and Y of atoms such that X ⊆ Y , we define fixcons(X,Y)

as the set of rules {⊥ ← ¬x | x ∈ X} ∪ {⊥ ← x | x ∈ Y \X} that selects stable models

containing the atoms inX and no other atom from Y . That is, if P is a logic program then

the stable models of P ∪ fixcons(X,Y) are {M |M is a stable model of P and M ∩ Y =

X}. Given that a logic program is satisfiable if it has a stable model, the satisfiability of

a QLP is defined as follows:

• ∃XP is satisfiable if program P ∪ fixcons(Y,X) is satisfiable for some Y ⊆ X.

• ∀XP is satisfiable if program P ∪ fixcons(Y,X) is satisfiable for all Y ⊆ X.

• ∃XQP is satisfiable if program Q(P ∪fixcons(Y,X)
)
is satisfiable for some Y ⊆ X.

• ∀XQP is satisfiable if program Q(P ∪ fixcons(Y,X)
)
is satisfiable for all Y ⊆ X.

As with QBFs, program P in QP generates a set of stable models, while its prefix Q can

be seen as a kind of query on it. Consider P1 = {{a} ← ; {b} ← ; c← a; c← b;⊥ ← ¬c}
and its stable models {a, c}, {a, b, c}, {b, c}. The prefixes of Q1P1, Q2P1 and Q3P1 pose

the same queries over the stable models of P than those posed in Q1φ1, Q2φ1 and Q3φ1

over the models of φ1. Given that the stable models of P1 and the models of φ1 coincide,

the satisfiability of the QiP1’s is the same as that of the corresponding Qiφ1’s. This

result is generalized by the following theorem that relates QLPs and QBFs.

Theorem 5.1

Let P be a logic program over A and φ be a CNF formula over A∪B such that SM(P) =

{M ∩ A | M is a model of φ}. For every prefix Q whose sets belong to A, the QLP QP
is satisfiable if and only if the QBF Qφ is satisfiable.

The proof is by induction on the number of quantifiers in Q. The condition SM(P) =

{M ∩ A | M is a model of φ} of Theorem 5.1 is satisfied by existing polynomial-time

translations from logic programs P over A to CNF formulas φ over A ∪ B, and from

CNF formulas φ over A to logic programs P over A (Janhunen 2004). Using these

translations, Theorem 5.1, and the fact that deciding whether a QBF is satisfiable is

PSPACE-complete, we can prove the following complexity result about QASP.

Theorem 5.2

The problem of deciding whether a given QLP QP is satisfiable is PSPACE-complete.

The implementation of our system qasp2qbf
1 relies on the previous results. The input

is a QLP QP that is specified by putting together the rules of P with facts over the pred-

icates exists/2 and forall/2 describing the prefix Q, where exists(i, a) (forall(i, a),

respectively) asserts that the atom a is existentially (universally, respectively) quantified

at position i of Q. The system first translates P into a CNF formula φ that satisfies the

condition of Theorem 5.1 using the tools lp2normal, lp2acyc, and lp2sat,2 and then

uses a QBF solver to decide the satisfiability of Qφ. If Qφ is satisfiable and the outermost

1 https://github.com/potassco/qasp2qbf
2 http://research.ics.aalto.fi/software/asp

https://doi.org/10.1017/S1471068421000259 Published online by Cambridge University Press

https://github.com/potassco/qasp2qbf
http://research.ics.aalto.fi/software/asp
https://doi.org/10.1017/S1471068421000259

Planning with Incomplete Information in Quantified Answer Set Programming 671

quantifier is existential, then the system returns an assignment to the atoms occurring

in the scope of that quantifier.

6 Solving planning problems in QASP

In this section, we describe how to solve planning problems represented by a planning

description using QASP.

Classical planning. We start with a planning description D that represents a classical

planning problem PP = 〈Φ, {s0}, G〉. Our task, given a positive integer n, is to find a

plan [a1; . . . ; an] of length n such that Φ({s0}, p) ⊆ G. This can be solved as usual in

answer set planning (Lifschitz 2002), using choice rules to generate possible plans, initial

rules to define the initial state of the problem, dynamic rules replicated n times to define

the next n steps, and goal rules to check the goal conditions at the last step. To do that

in this context, we first let Domain be the union of the following sets of facts asserting

the time steps of the problem, the actions, and the fluents that are sensed by each sensing

action: {t(T) | t ∈ {1, . . . , n}}, {action(a) | a ∈ A}, and {senses(af , f) | af ∈ As}. The
last set is only needed for conditional planning, but we already add it here for simplicity.

Given these facts, the following choice rule generates the possible plans of the problem:

{occ(A, T) : action(A)} = 1← t(T). (3)

Additionally, by D◦
I (D◦

G, respectively) we denote the set of rules that results from replac-

ing in I(D) (G(D), respectively) the atoms f ∈ F by h(f, 0) (by h(f, n), respectively); by

D◦
D we denote the set of rules that results from replacing in D(D) the atoms f ∈ F by

h(f, T), the atoms f ′ ∈ F ′ by h(f, T − 1), the atoms a ∈ A by occ(a, T) and adding the

atom t(T) to the body of every rule; and by D◦ we denote the program D◦
I ∪ D◦

D ∪ D◦
G.

Putting all together, the program Domain ∪ (3) ∪ D◦ represents the solutions to the

planning problem PP. The choice rule (3) guesses plans [a1; . . . ; an] using atoms of the

form occ(a1, 1), . . . , occ(an, n), the rules of D◦
I define the initial state s0 using atoms of

the form h(·, 0), the rules of D◦
D define the next states si = Φ(si−1, ai) for i ∈ {1, . . . , n}

using atoms of the form h(·, i) while at the same time check that the actions ai are

executable in si−1, and the rules of D◦
G check that the last state sn belongs to G. Of

course, all this works only because D represents PP and therefore Φ, {s0} and G are

defined by D(D), I(D) and G(D), respectively. Finally, letting Occ be the set of atoms

{occ(a, t) | a ∈ A, t ∈ {1, . . . , n}}, we can represent the solutions to PP by the quantified

logic program

∃Occ
(
Domain ∪ (3) ∪ D◦), (4)

where the atoms selected by the existential quantifier correspond to solutions to

PP. Going back to our example, where D1 represents the problem PP1, we have

that for n = 2 the program (4) (adapted to D1) is satisfiable selecting the atoms

{occ(go, 1), occ(sweep, 2)} that represent the solution p1.

Conformant planning. When D represents a conformant planning problem PP =

〈Φ, I, G〉 our task is to find a plan p such that Φ(I, p) ⊆ G, or, alternatively, p must

be such that for all s ∈ I it holds that Φ({s}, p) ⊆ G. This formulation of the problem

suggests to use a prefix ∃∀ where the existential quantifier guesses a plan p and the uni-

versal quantifier considers all initial states. Let us make this more concrete. From now on

https://doi.org/10.1017/S1471068421000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000259

672 J. Fandinno et al.

we assume that I(D) is in GDT form.3 If that is not the case then we can translate the

program into GDT form using the method mentioned in the Background section, and we

continue from there. Let Gen, Def and Test be the choice rules, normal rules and integrity

constraints of D◦
I , respectively, and let Open be the set {h(f, 0) | {h(f, 0)} ←∈ Gen} of

possible guesses of the choice rules of D◦
I . Observe that for every possible set X ⊆ Open

the program X ∪ Def has a unique stable model M , and if M is also a model of Test

then M is a stable model of D◦
I . Moreover, note that all stable models of D◦

I can be

constructed in this manner. Given this, we say that the sets X ⊆ Open that lead to a

stable model M of D◦
I are relevant, because they can be used as representatives of the

initial states, and the other sets in Open are irrelevant. Back to our quantified logic pro-

gram, we are going to use the prefix ∃Occ∀Open. This works well with the logic program

Domain ∪ (3) ∪ D◦ whenever all choices X ⊆ Open are relevant. But it fails as soon as

there are irrelevant sets because, when we select them as subsets of Open in the universal

quantifier, the resulting program becomes unsatisfiable. To fix this, we can modify our

logic program so that for the irrelevant sets the resulting program becomes always satis-

fiable. We do that in two steps. First, we modify D◦
I so that the irrelevant sets lead to a

unique stable model that contains the special atom α(0). This is done by the program D•
I

that results from replacing in D◦
I the symbol ⊥ in the head of the integrity constraints

by α(0). Additionally, we consider the rule

α(T)← t(T), α(T−1), (5)

that derives α(1), . . . , α(n) for the irrelevant sets. Second, we modify D◦
D and D◦

G so

that whenever those special atoms are derived, these programs are inmediately satisfied.

This is done by the programs D•
D and D•

G that result from adding the literal ¬α(T) to
the bodies of the rules in D◦

D and D◦
G, respectively. Whenever the special atoms α(0),

. . . , α(n) are derived, they deactivate the rules in D•
D and D•

G and make the program

satisfiable. We denote by D• the program D•
I ∪ D•

D ∪ D•
G. Then the following theorem

establishes the correctness and completeness of the approach.

Theorem 6.1

Let D be a planning description that represents a conformant planning problem PP, and
n be a positive integer. If I(P) is in GDT form, then there is a plan of length n that

solves PP if and only if the following quantified logic program is satisfiable:

∃Occ∀Open
(
Domain ∪ D• ∪ (3) ∪ (5)

)
(6)

In our example, where D2 represents the problem PP2, for n = 3 the program (6)

(adapted to D2) is satisfiable selecting the atoms {occ(sweep, 1), occ(go, 2), occ(sweep, 3)}
that represent the solution p2, while for D3, that represents PP3, the corresponding

program is unsatisfiable for any integer n.

Assumption-based planning. Let D, together with a set of atoms As ⊆ F , represent

a conformant planning problem with assumptions PP = 〈Φ, I, G,As〉. To solve this

problem we have to find a plan p = [a1; . . . ; an] and a set of assumptions T, F ⊆ As

such that (1) the set J = {s | s ∈ I, T ⊆ s, s ∩ F = ∅} is not empty, and (2) p solves

the conformant planning problem 〈Φ, J,G〉. The formulation of the problem suggests

3 Note that this implies that D◦
I is also in GDT form.

https://doi.org/10.1017/S1471068421000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000259

Planning with Incomplete Information in Quantified Answer Set Programming 673

that first we can guess the set of assumptions T and F , and then check (1) and (2)

separately. The guess can be represented by the set of rules Guess that consists of the

facts {assumable(f) | f ∈ As} and the choice rule

{assume(F, true); assume(F, false)} ≤ 1← assumable(F),

that generates all possible sets of assumptions using the predicate assume/2. Moreover,

we add the set of atoms Assume = {assume(f, v) | f ∈ As, v ∈ {true, false}} to Occ at

the outermost existential quantifier of our program. Condition (1) can be checked by the

set of rules C1 that can be divided in two parts. The first part is a copy of the initial

rules, that consists of the rules that result from replacing in I(P) every atom f ∈ F

by init(f), and in this way generates all possible initial states in I using the predicate

init/1. The second part contains the integrity constraints

⊥ ← ¬init(F), assume(F, true) ⊥ ← init(F), assume(F, false),

that guarantee that the guessed assumptions represented by assume/2 hold in some ini-

tial state represented by init/1. Condition (2) can be represented extending the program

for conformant planning with the following additional rules C2 , stating that the initial

states that do not agree with the guessed assumptions are irrelevant:

α(0) ← ¬h(F, 0), assume(F, true) α(0) ← h(F, 0), assume(F, false).

With these rules, the plans only have to succeed starting from the initial states that agree

with the assumptions, and condition (2) is satisfied.

Theorem 6.2

Let D, PP, and As be as specified before, and n be a positive integer. If I(D) is in GDT

form, then there is a plan with assumptions of length n that solves PP if and only if the

following quantified logic program is satisfiable:

∃(Occ ∪ Assume)∀Open
(
Domain ∪ D• ∪ (3) ∪ (5) ∪Guess ∪ C1 ∪ C2

)
. (7)

In our example, where D3 together with the set of atoms {occupied(1), occupied(2)}
represents PP4, we have that for n = 2 the program (7) (adapted to D3) is satisfiable

selecting the atoms {occ(go, 1), occ(sweep, 2), assume(occupied(1), true)} that represent
the solution 〈p1, {occupied(1)}, {}〉, and for n = 1 selecting the atoms {occ(sweep, 1),
assume(occupied(2), true)} that represent the solution 〈[sweep], {occupied(2)}, {}〉.

Conditional planning. Consider the case where D represents a planning problem with

sensing actions PP = 〈Φ, I, G〉. Again, we have to find a plan p such that Φ(I, p) ⊆ G,

but this time p has the form of a tree where sensing actions can be followed by different

actions depending on sensing results. This suggests a formulation where we represent the

sensing result at time point T by the truth value of an atom obs(true, T), we guess those

possible observations with a choice rule:

{obs(true, T)} ← t(T), T < n, (8)

and, letting Obst be {obs(true, t)} and Occt be {occ(a, t) | a ∈ A} for t ∈ {1, . . . , n}, we
consider a QLP of the form

∃Occ1∀Obs1 . . . ∃Occn−1∀Obsn−1∃Occn∀Open
(
Domain ∪ D• ∪ (3) ∪ (5) ∪ (8)

)
.

https://doi.org/10.1017/S1471068421000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000259

674 J. Fandinno et al.

This formulation nicely allows for a different plan [a1; . . . ; an] for every sequence [O1; . . . ;

On−1] of observations Oi ⊆ Obsi. But at the same time it requires that each such plan

achieves the goal for all possible initial situations, and this requirement is too strong.

Actually, we only want the plans to work for those cases where, at every time step T , the

result of a sensing action af , represented by obs(true, T), coincides with the value of the

sensed fluent represented by h(f, T). We can achieve this by signaling the other cases as

irrelevant with the following rule:

α(T)← t(T), occ(A, T−1), senses(A,F), {h(F, T−1); obs(true, T−1)} = 1, (9)

where the cardinality constraint {h(F, T−1); obs(true, T−1)} = 1 holds if the truth value

of obs(true, T−1) and h(F, T−1) is not the same. Another issue with the previous QLP

is that it allows normal actions at every time point T to be followed by different actions

at T+1 for each value of obs(true, T). This is not a problem for the correctness of the ap-

proach, but it is not a natural representation. To fix this, we can consider that, whenever

a normal action occurs at time point T , the case where obs(true, T) holds is irrelevant:

α(T)← t(T), occ(A, T), {senses(A,F)} = 0, obs(true, T). (10)

Appart from this, note that in conditional planning the different subplans may have

different lengths. For this reason, in the choice rule (3) we have to replace the symbol

“=” by “≤”. We denote the new rule by (3)≤.

Theorem 6.3

Let D and PP be as specified before, and n be a positive integer. If I(D) is in GDT

form, then there is a plan of length less or equal than n that solves PP if and only if the

following quantified logic program is satisfiable:

∃Occ1∀Obs1 . . . ∃Occn−1∀Obsn−1∃Occn∀Open
(
Domain∪P •∪(3)≤∪(5)∪(8−10)). (11)

For D3, that represents the problem PP3, and n = 3, the program (11) (adapted to D3)

is satisfiable selecting first {occ(sense(occupied(1)))} at Occ1, then at Occ2 selecting

{occ(clean, 2)} for the subset {} ⊆ Obs1 and {occ(go, 2)} for the subset Obs1 ⊆ Obs1,

and finally at Occ3 selecting {} in all cases except for the subsets Obs1 ⊆ Obs1 and

{} ⊆ Obs2 that we select {occ(clean, 3)}. This assignment corresponds to plan p3.

7 Experiments

We evaluate the performance of qasp2qbf in conformant and conditional planning bench-

marks. We consider the problem opt of computing a plan of optimal length. To solve it

we first run the solver for length 1, and successively increment the length by 1 until an

optimal plan is found. The solving times of this procedure are usually dominated by the

unsatisfiable runs. To complement this, we also consider the problem sat of computing

a plan of a fixed given length, for which we know that a solution exists.

We evaluate qasp2qbf 1.0 and combine it with 4 differents QBF solvers:4 caqe

4.0.1 (Rabe and Tentrup 2015), depqbf 6.03 (Lonsing and Egly 2017), qesto 1.0 (Jan-

ota and Marques-Silva 2015) and qute 1.1 (Peitl et al . 2019); and either none or one

4 We follow the selection of QBF solvers and preprocessors of Mayer-Eichberger and Saffidine (2020).

https://doi.org/10.1017/S1471068421000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000259

Planning with Incomplete Information in Quantified Answer Set Programming 675

of 3 preprocessors: bloqqer v37 (b; Biere et al . 2011), hqspre 1.4 (h; Wimmer et al .

2017), and qratpre+ 2.0 (q; Lonsing and Egly 2019); for a total of 16 configurations. By

caqe
◦ we refer to the combination of qasp2qbf with caqe without preprocessor, and

by caqe
b to qasp2qbf with caqe and the preprocessor bloqqer. We proceed similarly

for other QBF solvers and preprocessors. We compare qasp2qbf with the incomplete

planner CPasp (Tu et al . 2007), that translates a planning description into a normal logic

program that is fed to an ASP solver. In the experiments we have used the ASP solver

clingo (version 5.5)5 and evaluated its 6 basic configurations (crafty (c), frumpy

(f), handy (h), jumpy (j), trendy (r), and tweety (t)). We refer to CPasp with

clingo and configuration crafty by clingo
c, and similarly with the others.

We use the benchmark set from Tu et al . (2007), but we have increased the size

of the instances of some domains if they were too easy. The conformant domains are

six variants of Bomb in the Toilet (Bt, Bmt, Btc, Bmtc, Btuc, Bmtuc), Domino and

Ring. We have also added a small variation of the Ring domain, called Ringu, where the

room of the agent is unknown, and the planner CPasp cannot find any plan due to its

incompleteness. The conditional domains are four variations of Bomb in the Toilet with

Sensing Actions (Bts1, Bts2, Bts3 and Bts4), Domino, Medical Problem (Med), Ring and

Sick. All domains have 5 instances of increasing difficulty, except Domino in conformant

planning that has 6, and Ring in conditional planning that has 4. For the problem sat,

the fixed plan length is always the minimal plan length for CPasp.

All experiments ran on an Intel Xeon 2.20GHz processor under Linux. Each run was

limited to 30 minutes runtime and 16 GB of memory. We report the aggregated results

per domain: average runtime in seconds and number of timeouts in parentheses for opt,

next to the average runtime in seconds for sat, for which there were very few timeouts. To

calculate the averages, we add 1800 s for every timeout. In the supplementary material

corresponding to this paper at the TPLP archives, we report these results for every

solver and configuration, and provide further details. Here, we show and discuss the best

configuration for each solver, separately for conformant planning in Table 1, and for

conditional planning in Table 2.

In conformant planning, looking at the qasp2qbf configurations, for the variations of

Bt, caqeq and qesto
q perform better than depqbf

q and qute
h. Domino is solved very

quickly by all solvers, while in Ring and Ringu caqe
q clearly outperforms the others. The

planner clingoj, in the variations of Bt and Domino, in opt has a similar performance to

the best qasp2qbf solvers, while in sat it is much faster and solves the problems in less

than a second. In Ring, however, its performance is worse than that of caqeq. Finally,

in Ringu for opt, given the incompleteness of the system, it never manages to find a

plan and always times out. In conditional planning, caqeb is the best for the variations

of Bts, while clingo
h is better than the other solvers for sat but worse for opt. In

Domino, for opt, the qasp2qbf solvers perform better than clingo
h, while for sat

only qesto
b matches its performance. Finally, for Med, Ring, and Sick, all solvers yield

similar times. Summing up, we can conclude that qasp2qbf with the right QBF solver

and preprocessor compares well to CPasp, except for the sat problem in conformant

planning, while on the other hand it can solve problems, like Ringu, that are out of reach

for CPasp due to its incompleteness.

5 https://potassco.org/clingo

https://doi.org/10.1017/S1471068421000259 Published online by Cambridge University Press

https://potassco.org/clingo
https://doi.org/10.1017/S1471068421000259

676 J. Fandinno et al.

Table 1. Experimental results on conformant planning

CLINGOJ CAQEQ DEPQBFQ QESTOQ QUTEH

Bt 43 (0) 0 46 (0) 0 319 (0) 0 57 (0) 0 363 (1) 42
Bmt 50 (0) 0 155 (0) 2 367 (1) 2 76 (0) 1 382 (1) 12
Btc 258 (0) 0 413 (1) 1 566 (1) 2 394 (1) 1 729 (2) 38
Bmtc 744 (2) 0 771 (2) 9 1083 (3) 9 826 (2) 9 1082 (3) 374
Btuc 245 (0) 0 400 (1) 1 538 (1) 1 391 (1) 2 731 (2) 38
Bmtuc 739 (2) 0 780 (2) 14 1085 (3) 12 813 (2) 12 1440 (4) 378
Domino 0 (0) 0 0 (0) 0 0 (0) 0 0 (0) 0 0 (0) 0
Ring 673 (1) 416 281 (0) 40 1120 (3) 1109 790 (2) 392 1441 (4) 1440
Ringu 1800 (5) 0 246 (0) 50 1800 (5) 1800 1800 (5) 1800 1800 (5) 1800

Total 505 (10) 46 343 (6) 12 764 (17) 326 571 (13) 246 885 (22) 458

Table 2. Experimental results on conditional planning

CLINGOJ CAQEQ DEPQBFQ QESTOQ QUTEH

Bts1 795 (2) 49 14 (0) 3 364 (1) 361 102 (0) 65 365 (1) 361
Bts2 787 (2) 26 14 (0) 3 369 (1) 41 370 (1) 182 376 (1) 368
Bts3 802 (2) 82 15 (0) 4 372 (1) 10 371 (1) 364 380 (1) 370
Bts4 833 (2) 76 17 (0) 4 368 (1) 362 379 (1) 89 390 (1) 377
Domino 906 (2) 6 362 (1) 125 361 (1) 48 363 (1) 5 361 (1) 360
Med 0 (0) 0 3 (0) 1 3 (0) 1 3 (0) 1 3 (0) 1
Ring 902 (2) 900 902 (2) 640 901 (2) 900 902 (2) 900 901 (2) 900
Sick 0 (0) 0 1 (0) 0 1 (0) 0 1 (0) 1 1 (0) 0

Total 628 (12) 142 166 (3) 97 342 (7) 215 311 (6) 200 347 (7) 342

8 Related work

Conformant and conditional planning have already been addressed with ASP (Eiter et al .

2003; Son et al . 2005; Tu et al . 2007; 2011). Eiter et al . (2003) introduce the system dlvK

for planning with incomplete information. It solves a conformant planning problem by

first generating a potential plan and then verifying it, no sensing actions are considered.

Son et al . (2005; 2007; 2011) propose an approximation semantics for reasoning about

action and change in the presence of incomplete information and sensing actions. This is

then used for developing ASP-based conformant and conditional planners, like CPasp,

that are generally incomplete.

Closely related is SAT-based conformant planning: C-Plan (Castellini et al . 2003) is

similar to dlvK in identifying a potential plan before validating it. compile-project-sat

(Palacios and Geffner 2005) uses a single call to a SAT solver to compute a conformant

plan. Their validity check is doable in linear time, if the planning problem is encoded

in deterministic decomposable negation normal form. Unlike this, QBFPlan (Rintanen

1999) maps the problem into QBF and uses a QBF solver as back-end.

A more recent use of ASP for computing conditional plans is proposed by Yalciner et al .

(2017). The planner deals with sensing actions and incomplete information; it generates

multiple sequential plans before combining them in a graph representing a conditional

plan. Cardinality constraints, defaults, and choices are used to represent the execution

of sensing actions, their effects, and branches in the final conditional plan. In addition,

the system computes sequential plans in parallel and also avoids regenerating plans.

https://doi.org/10.1017/S1471068421000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000259

Planning with Incomplete Information in Quantified Answer Set Programming 677

Assumption-based planning, as considered here, is due to Davis-Mendelow et al . (2013).

In that work, the problem is solved by translating it into classical planning using an

adaptation of the translation of Palacios and Geffner (2009). To the best of our knowledge,

there exists no ASP-based planner for this type of problems.

There are a number of extensions of ASP to represent problems whose complexity lays

beyond NP in the polynomial hierarchy. A comprehensive review was made by Amendola

et al . (2019), that presents the approach that is closer to QASP, named ASP with Quan-

tifiers (ASP(Q)). Like QASP, it introduces existential and universal quantifiers, but they

range over stable models of logic programs and not over atoms. This quantification over

stable models is very useful for knowledge representation. For example, it allows us to

represent conformant planning problems without the need of additional α atoms, using

the following ASP(Q) program:

∃st(Domain ∪ (3)
) ∀stD◦

I ∃st
(D◦

D ∪ D◦
G

)
, (12)

where ∃st and ∀st are existential and universal stable model quantifiers, respectively.

The program is coherent (or satisfiable, in our terms) if there is some stable model M1 of

Domain ∪ (3) such that for all stable models M2 of M1 ∪ D◦
I there is some stable model

of M2 ∪D◦
D ∪D◦

G. Stable models M1 correspond to possible plans. They are extended in

M2 by atoms representing initial states, that are used in M2 ∪ D◦
D ∪ D◦

G to check if the

plans achieve the goal starting from all those initial states. Assumption-based planning

can be represented in a similar way, while for conditional planning we have not been able

to come up with any formulation that does not use additional α atoms.

As part of this work, we have developed translations between QASP and ASP(Q). We

leave their formal specification to the supplementary material corresponding to this paper

at the TPLP archives, and illustrate them here for conformant planning. From ASP(Q)

to QASP, we assume that D◦
I is in GDT form, and otherwise we translate it into this

form. Then, the translation of an ASP(Q) program of the form (12) yields a QLP that

is essentially the same as (6), except for some renaming of the additional α atoms and

some irrelevant changes in the prefix. In the other direction, the QLP program (6) is

translated to the ASP(Q) program

∃stP0∀stP1∃st
(
Domain ∪ D• ∪ (3) ∪ (5) ∪O

)
, (13)

where P0 is {{p′} ←| p ∈ Occ}, P1 is {{p′} ←| p ∈ Open}, and O contains the set of

rules ⊥ ← p,¬p′ and ⊥ ← ¬p, p′ for every p ∈ Occ ∪ Open. Programs P0 and P1 guess

the values of the atoms of the prefix using additional atoms p′, and the constraints in O

match those guesses to the corresponding original atoms.

9 Conclusion

We defined a general ASP language to represent a wide range of planning problems:

classical, conformant, with assumptions, and conditional with sensing actions. We then

defined a quantified extension of ASP, viz. QASP, to represent the solutions to those

planning problems. Finally, we implemented and evaluated a QASP solver, available at

potassco.org, to compute the solutions to those planning problems. Our focus lays on

the generality of the language and the tackled problems; on the formal foundations of

https://doi.org/10.1017/S1471068421000259 Published online by Cambridge University Press

potassco.org
https://doi.org/10.1017/S1471068421000259

678 J. Fandinno et al.

the approach, by relating it to simple transition functions; and on having a baseline

implementation, whose performance we expect to improve further in the future.

Supplementary material

To view supplementary material for this article, please visit http://dx.doi.org/10.

1017/S1471068421000259.

References

Amendola, G., Ricca, F. and Truszczynski, M. 2019. Beyond NP: quantifying over answer
sets. Theory and Practice of Logic Programming 19, 5–6, 705–721.

Biere, A., Lonsing, F. and Seidl, M. 2011. Blocked clause elimination for QBF. In Proceedings
of CADE’11, Lecture Notes in Computer Science, vol. 6803. Springer-Verlag, 101–115.

Cabalar, P., Kaminski, R., Schaub, T. and Schuhmann, A. 2018. Temporal answer set
programming on finite traces. Theory and Practice of Logic Programming 18, 3–4, 406–420.

Castellini, C., Giunchiglia, E. and Tacchella, A. 2003. SAT-based planning in complex
domains: Concurrency, constraints and nondeterminism. Artificial Intelligence 147, 1–2, 85–
117.

Davis-Mendelow, S., Baier, J. and McIlraith, S. 2013. Assumption-based planning: Gen-
erating plans and explanations under incomplete knowledge. In Proceedings of AAAI 2013,
M. desJardins and M. Littman, Eds. AAAI Press, 209–216.

Eiter, T., Faber, W., Leone, N., Pfeifer, G. and Polleres, A. 2003. A logic programming
approach to knowledge-state planning. Artificial Intelligence 144, 1–2, 157–211.

Fandinno, J., Mishra, S., Romero, J. and Schaub, T. 2020. Answer set programming made
easy. In Proceedings of ASPOCP 2020, M. Hecher and J. Zangari, Eds.

Gelfond, M. and Lifschitz, V. 1998. Action languages. Electronic Transactions on Artificial
Intelligence 3, 6, 193–210.

Giunchiglia, E., Marin, P. and Narizzano, M. 2009. Reasoning with quantified Boolean
formulas. In Handbook of Satisfiability, A. Biere, M. Heule, H. van Maaren and T. Walsh, Eds.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Chapter 24, 761–780.

Janhunen, T. 2004. Representing normal programs with clauses. In Proceedings of ECAI 2004,
R. López de Mántaras and L. Saitta, Eds. IOS Press, 358–362.

Janota, M. and Marques-Silva, J. 2015. Solving QBF by clause selection. In Proceedings of
IJCAI’15, Q. Yang and M. Wooldridge, Eds. AAAI Press, 325–331.

Lifschitz, V. 2002. Answer set programming and plan generation. Artificial Intelligence 138, 1–
2, 39–54.

Lifschitz, V. and Turner, H. 1994. Splitting a logic program. In Proceedings of the Eleventh
International Conference on Logic Programming. MIT Press, 23–37.

Lonsing, F. and Egly, U. 2017. DepQBF 6.0: A search-based QBF solver beyond traditional
QCDCL. In Proceedings of CADE 2017. Springer-Verlag, 371–384.

Lonsing, F. and Egly, U. 2019. QRATPre+: Effective QBF preprocessing via strong redun-
dancy properties. In Proceedings of SAT 2019. Springer-Verlag, 203–210.

Mayer-Eichberger, V. and Saffidine, A. 2020. Positional games and QBF: the corrective
encoding. In Proceedings of SAT 2020. Springer-Verlag, 447–463.

Niemelä, I. 2008. Answer set programming without unstratified negation. In Proceedings of
ICLP 2008. Springer-Verlag, 88–92.

Palacios, H. and Geffner, H. 2005. Mapping conformant planning into SAT through compi-
lation and projection. In Proceedings of CAEPIA 2005. Springer-Verlag, 311–320.

https://doi.org/10.1017/S1471068421000259 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S1471068421000259
http://dx.doi.org/10.1017/S1471068421000259
https://doi.org/10.1017/S1471068421000259

Planning with Incomplete Information in Quantified Answer Set Programming 679

Palacios, H. and Geffner, H. 2009. Compiling uncertainty away in conformant planning
problems with bounded width. Journal of Artificial Intelligence Research 35, 623–675.

Peitl, T., Slivovsky, F. and Szeider, S. 2019. Dependency learning for QBF. Journal of
Artificial Intelligence Research 65, 180–208.

Rabe, M. N. and Tentrup, L. 2015. CAQE: A certifying QBF solver. In Proceedings of
FMCAD 2015, R. Kaivola and T. Wahl, Eds. IEEE Computer Society Press, 136–143.

Rintanen, J. 1999. Constructing conditional plans by a theorem-prover. Journal of Artificial
Intelligence Research 10, 323–352.

Son, T., Tu, P., Gelfond, M. and Morales, A. 2005. An approximation of action theories
of AL and its application to conformant planning. In Proceedings of LPNMR 2005. Springer-
Verlag, 172–184.

Tu, P., Son, T. and Baral, C. 2007. Reasoning and planning with sensing actions, incomplete
information, and static causal laws using answer set programming. Theory and Practice of
Logic Programming 7, 4, 377–450.

Tu, P., Son, T., Gelfond, M. and Morales, A. 2011. Approximation of action theories and
its application to conformant planning. Artificial Intelligence 175, 1, 79–119.

Turner, H. 2002. Polynomial-length planning spans the polynomial hierarchy. In Proceedings
of JELIA 2002. Springer-Verlag, 111–124.

Wimmer, R., Reimer, S.,Marin, P. and Becker, B. 2017. HQSpre – an effective preprocessor
for QBF and DQBF. In Proceedings of TACAS 2017. Springer-Verlag, 373–390.

Yalciner, I., Nouman, A., Patoglu, V. and Erdem, E. 2017. Hybrid conditional planning
using answer set programming. Theory and Practice of Logic Programming 17, 5–6, 1027–
1047.

https://doi.org/10.1017/S1471068421000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000259

	Introduction
	Background
	Planning problems
	Representing planning problems in ASP
	Quantified answer set programming
	Solving planning problems in QASP
	Experiments
	Related work
	Conclusion
	References

