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NOVA LINCS, Departamento de Informática, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, Portugal

(e-mails: rjrg@fct.unl.pt, mkn@fct.unl.pt, jleite@fct.unl.pt)

submitted 1 August 2020; revised 7 November 2021; accepted 1 December 2021

Abstract

Forgetting – or variable elimination – is an operation that allows the removal, from a knowledge
base, of middle variables no longer deemed relevant. In recent years, many different approaches
for forgetting in Answer Set Programming have been proposed, in the form of specific
operators, or classes of such operators, commonly following different principles and obeying
different properties. Each such approach was developed to address some particular view on
forgetting, aimed at obeying a specific set of properties deemed desirable in such view, but a
comprehensive and uniform overview of all the existing operators and properties is missing. In
this article, we thoroughly examine existing properties and (classes of) operators for forgetting
in Answer Set Programming, drawing a complete picture of the landscape of these classes of
forgetting operators, which includes many novel results on relations between properties and
operators, including considerations on concrete operators to compute results of forgetting
and computational complexity. Our goal is to provide guidance to help users in choosing the
operator most adequate for their application requirements.
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1 Introduction

Forgetting is part of the human nature, often with negative connotations, and investiga-

tion for its causes started in Cognitive Psychology in the late 19th century (Ebbinghaus

1885). Studies show that forgetting can be caused, among others, by the interference in

between new and previously learned information, by decay over time, or because cer-

tain links, called cues, used to retrieve a specific memory are not (any longer) available

(Shrestha 2017). In fact, recent experiments in Neuroscience reveal that part of this for-

getting appears to be done actively, in the sense that the human brain seems to be able

to remove information no longer deemed necessary (Davis and Zhong 2017). This enables

humans to distinguish important memories among the huge amount of memories they

acquire, while abstracting irrelevant details, which allows for making better decisions

under varying conditions (Richards and Frankland 2017).

In organizations, intentional forgetting plays a similar role (Kluge and Gronau 2018).

As increasing amounts of information may become difficult to process, forgetting allows

one to simplify the interpretation of the acquired knowledge which contributes to fu-

ture success of the organization. The methods of forgetting employed build on ideas of
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forgetting in Cognitive Psychology, for example, rather than unlearning organizational

routines, the retrieval cues are forgotten (Kluge and Gronau 2018).

In the same vein, huge problems appear in Computer Science, where the vastly in-

creasing amounts of data challenge the limits of space in terms of physical storage and

processing speed, in particular in situations where the exponential worst-case complexity

becomes prohibitive. At the same time, forgetting has become increasingly important

to properly deal with legal and privacy issues, such as, for example, the elimination of

illegally acquired information to implement a court order, or enforcing the right to be

forgotten, that is, the right of the eliminination of private data on a person’s request,

following the EU General Data Protection Regulation (European Parliament 2016).

Thus, forgetting has received increasing attention in Computer Science aiming at the

elimination of irrelevant information for improved decision processes and tools (Beierle

and Timm 2019). In Artificial Intelligence and Knowledge Representation and Reasoning

in particular, the ideas of forgetting can be traced back to Boole’s variable marginaliza-

tion (1854), also called the elimination of middle terms. These notions raised interest

when Lin and Reiter (1994) considered forgetting about a fact or a relation in a first-

order logic for Cognitive Robotics. This subsequently triggered research into forgetting

and closely related notion such as uniform interpolation (Visser 1996), variable elimina-

tion (Lang et al . 2003), or ignorance (Baral and Zhang 2005), being extended for example

to Description Logics (Ghilardi et al . 2006; Wang et al . 2010; Lutz and Wolter 2011),

Planning (Erdem and Ferraris 2007), and Modal Logic (Zhang and Zhou 2009). Com-

monly two kinds of forgetting can be found in the literature (Eiter and Kern-Isberner

2019). One of them eliminates some formula from a given knowledge base, in a way

that closely resembles the operation of contraction in belief revision. The other, more

common one, views forgetting as an operation that omits part of the vocabulary of the

knowledge base, including possible adjustments on formulas to accommodate some no-

tion of preservation of information (for the remaining vocabulary). This is the kind of

forgetting we consider here and particularly useful when we want to eliminate elements

representing auxiliary concepts, with the aim to simplify a knowledge base or improve

its declarativity, or related to data protection issues. The importance of forgetting in

Knowledge Representation and Reasoning is also witnessed by applications in cognitive

robotics (Lin and Reiter 1997; Liu and Wen 2011; Rajaratnam et al . 2014), for resolving

conflicts (Lang et al . 2003; Zhang and Foo 2006; Eiter and Wang 2008; Lang and Marquis

2010; Delgrande and Wang 2015), and ontology abstraction and comparison (Wang et al .

2010; Kontchakov et al . 2010; Konev et al . 2012; 2013).

While forgetting has been extensively studied in the context of classical logic (Bledsoe

and Hines 1980; Lang et al . 2003; Larrosa 2000; Larrosa et al . 2005; Middeldorp et al .

1996; Moinard 2007; Weber 1986; Gabbay et al . 2008), it only recently gathered wider at-

tention in Answer Set Programming (cf. the overview by Eiter and Kern-Isberner (2019)).

Answer Set Programming (ASP) (Gelfond and Lifschitz 1988; 1991) provides a declara-

tive rule-based language for knowledge representation and reasoning accompanied with

efficient implementations such as CLASP (Gebser et al . 2011), DLV (Leone et al . 2006;

Alviano et al . 2017), and Smodels (Simons et al . 2002). Its non-monotonic rule-based

nature required the development of specific methods and techniques – similar to what

happened with other belief change operations such as revision and update (Alferes et al .

2000; Eiter et al . 2002; Sakama and Inoue 2003; Slota and Leite 2012a;b; Delgrande et al .
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2013; Slota and Leite 2014). The result is a significant number of different approaches

on forgetting (Zhang and Foo 2006; Eiter and Wang 2008; Wong 2009; Wang et al . 2012;

2013; Knorr and Alferes 2014; Wang et al . 2014; Delgrande and Wang 2015; Gonçalves

et al . 2016c; 2017; 2019; Berthold et al . 2019b;a; Gonçalves et al . 2021), some present-

ing single operators, others semantic characterizations of classes of operators, usually

with different sets of properties deemed desirable, some adapted from the literature on

classical forgetting (Zhang and Zhou 2009; Wang et al . 2012; 2014), others introduced

for the case of ASP (Eiter and Wang 2008; Wong 2009; Wang et al . 2012; 2013; Knorr

and Alferes 2014; Delgrande and Wang 2015; Gonçalves et al . 2017; 2019), and often

defined for different classes of answer set programs (details on the individual motiva-

tions for introducing these approaches and their distinct characteristics can be found in

Section 5).

The result is a complex landscape filled with classes of operators and properties, with

very little effort put into drawing a map that could help us to better understand the

relationships between properties and operators. Whereas, in principle, having an operator

that obeys all of the properties would be desirable, it turns out that any such operator

cannot be defined for any class that includes the standard class of normal logic programs

(Ji et al . 2015). In fact, one of the properties arguably best captures the essence of

forgetting, however, there cannot exist an operator that always satisfies it (Gonçalves

et al . 2016c; Gonçalves et al . 2020). This strengthens the idea that there cannot be a one-

size-fits-all forgetting operator for ASP, but rather a variety of approaches, each obeying

a specific set of properties. The choice of operator will then depend on which properties

are deemed more important for the specific application in hand, for which it is important

to understand: (a) the relationships between different properties, (b) which properties

are obeyed by which (classes of) operators, and even (c) whether some sets of properties

make more sense than others. To this end, we present a systematic, comprehensive and

thorough survey of forgetting in ASP, including many novel results and insights that help

answering the raised questions and provide guidelines to users which operators are most

suited in which applications.

After a brief section with preliminaries and a section where the common notion of

forgetting in ASP is defined, the article is divided into three main sections. The first

one contains a comprehensive account of the properties found in the literature, together

with an investigation into the relationships between them, including several novel results.

The subsequent section is devoted to describing the operators defined in the literature,

and establishing some results on their relationships, including an equivalence between

two of these operators, as well as considerations on proposed concrete operators, and the

computational complexity of problems related to forgetting. Then, we devote our final

major section to present a comprehensive account of which properties are satisfied by

which operators, some of the results to be found scattered in the literature, but more than

half being novel. This section also provides a detailed discussion of the suitability of these

classes with respect to their characteristics, and establishes precisely the relationship to

uniform interpolation. Finally, the suitability of the classes of operators w.r.t. several

applications considered in the context of forgetting is discussed.

This paper is a considerable extension of a previous conference publication (Gonçalves

et al . 2016b). The material has been extended to incorporate novel approaches in the

literature and revised to accommodate these new results and provide a more complete
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picture of the existing properties and classes of forgetting operators, and their relations.

The new detailed material on concrete forgetting operators, computational complexity,

the relation to uniform interpolation, and suitability of classes of operators for certain

applications help shed further light on these relations, and provide more guidance for

the reader. This is complemented with an appendix, available as supplementary material

to this paper, that contains all the proofs of the novel results, as well as those in the

previous publication, and pointers for all those results spread out over the literature.

2 Answer set programming

In this section, we recall the necessary notions and notation on logic programs under the

answer set semantics.

We assume a propositional signature A, that is, a finite set of (propositional) atoms,

also termed propositional variables synonymously. An (extended) logic program P over

A is a finite set of (extended) rules of the form

a1 ∨ . . . ∨ ak ← b1, ..., bl, not c1, ..., not cm, not not d1, ..., not not dn , (1)

where all a1, . . . , ak, b1, . . . , bl, c1, . . . , cm, and d1, . . . , dn are atoms of A. Such rules r are

also commonly written in a more succinct way as

A← B,notC, not notD , (2)

where A = {a1, . . . , ak}, B = {b1, . . . , bl}, C = {c1, . . . , cm}, and D = {d1, . . . , dn}, and
we use both forms interchangeably. For each rule r, we distinguish the head, head(r) = A,

and its body, body(r) = B ∪ notC ∪ not notD , where notC and not notD represent

{not p | p ∈ C} and {not not p | p ∈ D}, respectively. We write the set of atoms appearing

in P as A(P ) and the class of (extended) logic programs as Ce. Such extended logic

programs are actually equivalent to an even more expressive syntax (Lifschitz et al .

1999), but the more concise syntax used here suffices. Also note that double negation

is commonly required in the context of forgetting in ASP and commonly supported by

answer set solvers such as clingo (Gebser et al . 2018).

The class of extended programs includes a number of special kinds of rules r: if n = 0,

then we call r disjunctive; if, in addition, k ≤ 1, then r is normal ; if on top of that m = 0,

then we call r Horn; if moreover l = 0, then we call r a fact. We also admit constraints,

which are (extended) rules where k = 0. The classes of disjunctive, normal, and Horn

programs, Cd, Cn, and CH , are defined as a finite set of disjunctive, normal, and Horn

rules, respectively. We have CH ⊂ Cn ⊂ Cd ⊂ Ce.
We now define the answer sets (Gelfond and Lifschitz 1991) of a program, that is, its

models, and we recall this notion based on HT-models as defined in the context of the

logic of here-and-there (Heyting 1930), the monotonic logic underpinning ASP (Pearce

1999). We start with the notion of reduct (Gelfond and Lifschitz 1991) of a program P

with respect to a set I of atoms:

P I = {A← B : r of the form (2) in P such that C ∩ I = ∅ and D ⊆ I}.

An HT-interpretation is a pair 〈X,Y 〉 s.t. X ⊆ Y ⊆ A. Note that we follow a common

convention and usually abbreviate sets in HT-interpretations such as {a, b} with the

sequence of its elements, ab. Given a program P , an HT-interpretation 〈X,Y 〉 is an
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HT-model of P if Y |= P and X |= PY , where |= is the standard consequence relation for

classical logic and where programs are interpreted as conjunctions of classical implications

b1 ∧ ... ∧ bl ∧ ¬c1 ∧ ... ∧ ¬cm ∧ ¬¬d1 ∧ ... ∧ ¬¬dn → a1 ∨ . . . ∨ ak,

corresponding to its rules r of the form (1) where ¬, ∧, and ∨ denote classical negation,

conjunction and disjunction, respectively. We occasionally admit for the sake of read-

ability that the HT-models of a program P are restricted to A(P ) even if A(P ) ⊂ A.
The set of all HT-models of P is written HT (P ). Given two programs P1 and P2, if

HT (P1) ⊆ HT (P2), then P1 entails P2 in HT, written P1 |=HT P2. Also, P1 and P2 are

HT-equivalent, written P1 ≡HT P2, if HT (P1) = HT (P2).

A set of atoms Y is an answer set of P if 〈Y, Y 〉 ∈ HT (P ), and there is no X ⊂ Y

such that 〈X,Y 〉 ∈ HT (P ). We denote by AS(P ) the set of all answer sets of P . For Cd
and its subclasses, all I ∈ AS(P ) are pairwise incomparable. A program P is consistent

if AS(P ) is not empty.

Example 1

Consider the following program P :

a← not b b← not c e← d d← a.

We can show that 〈b, bde〉 is an HT-model of P because {b, d, e} |= P and {b} |= P {b,d,e}

where P {b,d,e} is as follows:

b← e← d d← a.

It is then easy to see that {b, d, e} is not an answer set of P (given that 〈b, bde〉 is an

HT-model). Similarly, {b, d} is not an answer set of P because {b, d} �|= P . In fact, we

can verify that {b} is the only answer set of P , and that P is therefore consistent.

Different notions of equivalence between programs have been established (Eiter et al .

2007), essentially based on comparing their answer sets in different ways. Namely, we say

that two programs P1, P2 are equivalent, written P1 ≡ P2, if AS(P1) = AS(P2), that is,

their answer sets coincide. Uniform equivalence strengthens this condition by imposing

that the equality of answer sets should hold even if a set of facts is added to both

programs. Formally, two programs P1, P2 are uniformly equivalent, written P1 ≡u P2, if

AS(P1∪R) = AS(P2∪R) for every set R of facts. Strong equivalence further strengthens

the condition by imposing equality of answer sets under the addition of any set of rules.

Formally, two programs P1, P2 are strongly equivalent if AS(P1 ∪ R) = AS(P2 ∪ R)

for every R ∈ Ce. It is well-known that two programs P1, P2 are strongly equivalent

exactly when P1 ≡HT P2 (Lifschitz et al . 2001), and we therefore use ≡HT to denote

both equivalences. Relativized equivalence relaxes the condition of strong equivalence by

allowing to vary the language of the additional programs. Formally, two programs P1, P2

are relativized equivalent w.r.t. V ⊆ A, written P1 ≡V P2, if AS(P1 ∪R) = AS(P2 ∪R)

for every R ∈ Ce s.t. A(R) ⊆ A\V . Thus, strong equivalence and equivalence can be

considered special cases of relativized equivalence, where the considered set V is empty

and identical to A, respectively.

Example 2

Consider P1 = {b ←}. Then P1 and P from Example 1 are equivalent, but neither

strongly nor uniformly equivalent, for example, because adding R = {c ←} to both
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programs yields different answer sets, namely {b, c} and {a, c, d, e}, respectively. Also,
neither is an HT-consequence of the other, since 〈∅, bc〉 ∈ HT (P ), but not in HT (P1),

and 〈b, bd〉 ∈ HT (P1), but not in HT (P ).

On the other hand, P2 = {a ∨ b} and P3 = {a ← not b; b ← not a}, are well-known to

be uniformly equivalent (Eiter and Fink 2003), but not strongly equivalent, for example,

for R = {a ← b; b ← a}. We have that P2 |=HT P3, but not P3 |=HT P2, because of, for

example, 〈∅, ab〉.

Occasionally, we want to omit certain elements of the signature from sets of inter-

pretations and HT-models. Given a set of atoms V , the V -exclusion of a set of an-

swer sets (resp. a set of HT-interpretations) M, written M‖V , is {X\V | X ∈ M}
(resp. {〈X\V, Y \V 〉 | 〈X,Y 〉 ∈ M}). Also, given two sets of atoms X,X ′ ⊆ A, we

write X ∼V X ′ whenever X\V = X ′\V . For HT -interpretations 〈H,T 〉 and 〈X,Y 〉,
〈H,T 〉 ∼V 〈X,Y 〉 denotes that H ∼V X and T ∼V Y . Then, for a set M of HT -

interpretations,M†V denotes the set {〈X,Y 〉 | 〈H,T 〉 ∈ M and 〈X,Y 〉 ∼V 〈H,T 〉}.

3 Forgetting

In this section, we formally introduce the notion of forgetting in answer set programming.

More precisely, we define operators of forgetting and classes of these in a general way

that aligns with all the different approaches presented in the literature. We note that

our account is on forgetting propositional atoms, just as all the literature on forgetting

in answer set programming. This also allows us to capture forgetting atoms from ground

programs obtained from programs built over predicate symbols, constants, and variables,

simply by considering a one-to-one mapping of such ground atoms to a propositional

alphabet. To keep the exposition simple, we here consider forgetting in the propositional

setting.

The principal idea of forgetting in ASP is to remove certain atoms from a given pro-

gram, while preserving its semantics for the remaining atoms.

Example 3

Consider program P from Example 1:

a← not b b← not c e← d d← a.

If we want to forget about some atom, then we expect all rules that do not mention

this atom to persist, while rules that mention it to no longer occur. For example, when

forgetting about d from P , the first two rules should be contained in a result of forgetting,

while the latter two should not. At the same time, implicit dependencies, such as e

depending on a via d, should be preserved. Hence, we would expect the following result:

a← not b b← not c e← a.

In addition, if the atom to be forgotten does not appear at the same time in some rule

body and some rule head, usually no dependencies need to be preserved. Alternatively,

consider forgetting about c from P . Then, since c only appears negated in the body of

the rule with head b, c is false. Thus, b becomes unconditionally true when forgetting,

and the expected result would be:

a← not b b← e← d d← a.
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Of course, with a fact for b present, the body of the first rule can never be true and,

alternatively, we may consider the following program as result of forgetting:

b← e← d d← a.

It can be verified that both programs are in fact strongly equivalent, that is, both equally

preserve the semantics for the remaining atoms.

Thus, forgetting can be viewed as returning a set of programs, which are equivalent in

some way, for example, according to one of the notions presented in the previous section,

that only mention the remaining atoms and preserve the semantics of the given program

over these remaining atoms. In the literature, concrete operators have been defined that,

similar to a function, provide one unique such representative for each program P and set

of atoms V to be forgotten. We formalize this central idea with the notion of a forgetting

operator.

Definition 1

Given a class of logic programs C over A, a forgetting operator (over C) is defined as a

function f : C×2A → C where, for each P ∈ C and V ⊆ A, f(P, V ), the result of forgetting

about V from P ,

• is a program over A(P )\V ; and

• preserves the semantic relations between atoms in A(P )\V from P .

We denote the domain of f by C(f). A forgetting operator f is called closed for C′ ⊆ C(f)
if, for every P ∈ C′ and V ⊆ A, we have f(P, V ) ∈ C′.

Our definition establishes that forgetting can be understood as a reduction of the

language preserving the semantic relations for the remaining atoms in P . The latter is

in line with the argument in Example 3 and requires that these semantic relations be

established based on some semantic notion such as answer sets or one of the established

equivalence notions, though, for the sake of generality, no concrete notion is fixed.

This condition allows us to exclude nonsensical functions, such as, for example simply

always deleting the entire program or replacing it by arbitrary rules over the remaining

atoms, but we do not specify precisely how these semantic relations are established.

In the literature, more precise notions for such semantic relations have been defined.

For example, Delgrande (2017) defined for arbitrary logics that the result of forgetting

corresponds to all the consequences of the given formulas over the remaining language.

As we will see in Section 5, this aligns with some of the approaches in the literature of

forgetting in ASP, but many others rather rely on for example preserving some notion

of models (answer sets or HT-models) in some way, which in fact often turns out to be

closely connected to the properties of forgetting in ASP we present in Section 4. For this

reason, we abstain here from specifying how these semantic relations are determined

specifically and refer to Section 5 for the details for each of the existing approaches.

We point out that the notion of closed operators allows us to indicate whether an

operator, when applied to a (sub-)class of programs for which it is defined, does return a

program in that same class. This is important, since based on this we are able to answer

the question whether such operator can be iterated on such (sub-)class. Naturally, by

Definition 1, any forgetting operator is closed for the most general class for which it is

defined.
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It is worth noting that some notions of forgetting do not explicitly require that atoms

to be forgotten be absent from the result of forgetting, but instead that they be irrele-

vant, that is, the result of forgetting is strongly equivalent to a program that does not

mention the atoms to be forgotten. In our view, this is not aligned with the conceptual

idea of forgetting itself. However, since such (irrelevant) occurrences of atoms in a re-

sult of forgetting are commonly assumed to be not occurring in the result, the required

strong equivalence naturally holds. Hence, requiring that forgetting operators yield pro-

grams without the atoms to be forgotten does not prevent coverage of these particular

approaches.

Now, as Example 3 indicates, preserving the semantics for the remaining atoms is not

necessarily tied to one unique program. In fact, in the literature, usually, a represen-

tative up to some notion of equivalence between programs is considered, which is also

why, in this case, we often refer to a result of forgetting (in indefinite terms) as opposed

to the result. In this sense, many notions of forgetting for logic programs are defined

semantically, that is, they introduce a class of operators that satisfy a certain seman-

tic characterization. To capture this, we introduce the notion of a class of forgetting

operators.

Definition 2

A class F of forgetting operators (over C) is a set of forgetting operators f, with C(f) ⊆ C,
that satisfy the semantic characterization of that class.

In this sense, the notion of a class of operators is used as an easy way of referring to

all concrete operators that satisfy its semantic characterization, which is also useful in

the cases in the literature where only the semantic characterization is presented and

no concrete operator is defined. To remain as general and uniform as possible, in this

paper, we focus on classes of operators. Whenever a notion of forgetting in the literature

is defined through a concrete forgetting operator only, we consider the class containing

that single operator.

The subset inclusion for the domain of operators in the previous definition is justified

by the fact that there are classes of operators in the literature that include concrete

operators only defined for a subclass of the programs considered by the class of operators.

Finally, with respect to uniform interpolation, we note that it is indeed closely con-

nected to the concept of forgetting (Gabbay et al . 2011). However, it does not exactly

correspond to the notion of forgetting in ASP in the broad sense as considered here. We

will discuss this in more detail in Section 6.4 and establish a precise relationship after

we have properly presented properties of forgetting, classes of forgetting operators and

their relations.

4 Properties of forgetting

In the literature of forgetting in answer set programming, commonly one central focus has

been the investigation of guiding principles that would provide desirable characteristics of

classes of operators of forgetting, often called properties of forgetting. In this section, we

recall these properties found in the literature and investigate existing relations between

them.
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In the course of this presentation, we opt for following a historical order without any

considerations on their importance or preference among each other. In terms of technical

notation, unless otherwise stated, F represents a class of forgetting operators, C(f) the

class of programs over A of a given f ∈ F, and whenever we write that a single operator

f obeys some property, we mean that the singleton class composed of that operator, {f},
obeys such property.

The first three properties, named Strengthened Consequence, Weak Equivalence, and

Strong Equivalence, were proposed by Eiter and Wang (2008), though not formally in-

troduced as such. The first two were in fact guiding principles for defining their notion of

forgetting, and formalized later (Gonçalves et al . 2016b), while the third was frequently

considered in the literature in terms of formal results, but only formalized as a property

by Wang et al . (2013).

Strengthened Consequence requires that the answer sets of a result of forgetting be

answer sets of the original program, ignoring the atoms to be forgotten.

(sC) F satisfies Strengthened Consequence if, for each f ∈ F, P ∈ C(f) and V ⊆ A, we
have AS(f(P, V )) ⊆ AS(P )‖V .

In other words, forgetting does not admit the introduction of new answer sets, it may

only remove some in the course of forgetting.

The other two properties focus on the preservation of some notion of equivalence during

forgetting, that is, if two programs are equivalent (w.r.t. some notion of equivalence of

programs), then the respective results are as well.

(wE) F satisfies Weak Equivalence if, for each f ∈ F, P, P ′ ∈ C(f) and V ⊆ A: if P ≡ P ′,
then f(P, V ) ≡ f(P ′, V ).

(SE) F satisfies Strong Equivalence if, for each f ∈ F, P, P ′ ∈ C(f) and V ⊆ A: if

P ≡HT P ′, then f(P, V ) ≡HT f(P ′, V ).

Weak Equivalence and Strong Equivalence require that forgetting preserves equivalence

and strong equivalence of programs, respectively. For other notions of equivalence, no

corresponding property has been considered in the literature.

The next four properties, called Irrelevance, Weakening, Positive Persistence, and Neg-

ative Persistence, were introduced by Zhang and Zhou (2009) as postulates of knowledge

forgetting in the context of modal logics, and later adopted by Wang et al . (2012; 2014)

for forgetting in ASP.

Irrelevance requires that a result of forgetting be strongly equivalent to a program that

does not mention the atoms to be forgotten.

(IR) F satisfies Irrelevance if, for each f ∈ F, P ∈ C(f) and V ⊆ A, f(P, V ) ≡HT P ′ for
some P ′ not containing any v ∈ V .

This property corresponds to the concept of being irrelevant discussed in the end of the

previous section. Thus, satisfaction of this property is an integral part of the definitions

of forgetting operators and classes (cf. Definitions 1 and 2).

The other three properties focus on HT-consequences. Namely, Weakening requires

that the HT-models of P also be HT-models of a result of forgetting.

(W) F satisfies Weakening if, for each f ∈ F, P ∈ C(f) and V ⊆ A, we have P |=HT

f(P, V ).
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This means that a result of forgetting, f(P, V ), has at most the same consequences as

the program P itself.

Positive and negative persistence concern preserving the HT-consequences of P and

not introducing new ones, respectively.

(PP) F satisfies Positive Persistence if, for each f ∈ F, P ∈ C(f) and V ⊆ A: if P |=HT P ′,
with P ′ ∈ C(f) and A(P ′) ⊆ A\V , then f(P, V ) |=HT P ′.

(NP) F satisfies Negative Persistence if, for each f ∈ F, P ∈ C(f) and V ⊆ A: if P �|=HT P ′,
with P ′ ∈ C(f) and A(P ′) ⊆ A \ V , then f(P, V ) �|=HT P ′.

Thus, Positive Persistence requires that the HT-consequences of P not containing atoms

to be forgotten be preserved in a result of forgetting, while Negative Persistence requires

that a program not containing atoms to be forgotten not be an HT-consequence of

f(P, V ), unless it was already a HT-consequence of P .

Essentially in parallel to the appearance of the previous set of properties, Wong intro-

duced a set of properties in his PhD dissertation (2009). They were defined for forgetting

a single atom from a given disjunctive program, and did not gather much attention in

the literature, possibly due to the form of publication. These properties were generalized

to extended programs and to forgetting sets of atoms and assigned a more descriptive

name (as Wong simply used alphanumeric identifiers) (Gonçalves et al . 2016b;a; 2017).

In the course of this generalization, it turned out that two of the resulting properties

would precisely coincide with (SE) and (PP). Thus, in the following, we will present

those generalizations of Wong’s properties that are distinct from the previous ones, using

the descriptive names for the ease of readability. Namely, we recall, Strong Invariance,

Strong Consequence, Rule Consequence, Non-contradictory Consequence, and Permuta-

tion Invariance.

Strong Invariance requires that it be (strongly) equivalent to add a program without

the atoms to be forgotten before or after forgetting.

(SI) F satisfies Strong (addition) Invariance if, for each f ∈ F, P ∈ C(f) and V ⊆ A, we
have f(P, V ) ∪R ≡HT f(P ∪R, V ) for all programs R ∈ C(f) with A(R) ⊆ A\V .

In particular, this means that when computing a forgetting result using an operator from

a class that satisfies this property, we can ignore the rules that do not mention the atoms

to be forgotten while forgetting, and only add them in the end to this result.

The next three properties are related to HT-consequences. Namely, Strong Conse-

quence requires that HT-consequences be preserved when forgetting.

(SC) F satisfies Strong Consequence if, for each f ∈ F, P, P ′ ∈ C(f) and V ⊆ A, if

P |=HT P ′, then f(P, V ) |=HT f(P ′, V ).

This is similar in spirit to properties (wE) and (SE), only here the HT-consequence is

preserved while forgetting.

Rule Consequence requires that any rule which is a consequence of a result of forgetting

about V from P be a consequence of a result of forgetting about V from a single rule

among the HT-consequences of P .

(RC) F satisfies Rule Consequence if, for each f ∈ F, P ∈ C(f) and V ⊆ A, if f(P, V ) |=HT

r, then f({r′}, V ) |=HT r for some rule r′ such that {r′} ∈ C(f), and P |=HT r′.
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In particular, since any rule r in a result of forgetting is an HT-consequence of it, for

each such rule, there is a rule r′ in the original program that gives rise to r (in terms of

HT-consequence).

Non-contradictory Consequence requires that whenever a rule r is an HT-consequence

of a forgetting result f(P, V ), then the rule obtained by adding the default negation of

the atoms of V to the body of r should be an HT-consequence of P .

(NC) F satisfies Non-contradictory Consequence if, for each f ∈ F, P ∈ C(f) and V ⊆ A,
if f(P, V ) |=HT A← B ∪ notC ∪ not notD , then P |=HT A← B ∪ notC ∪ not V ∪
not notD .

Again, since any rule r in a result of forgetting is an HT-consequence of it, the original

program P has such a non-contradictory HT-consequence.

The final property by Wong, Permutation Invariance, requires that the order not be

relevant when sequentially forgetting atoms.

(PI) F satisfies Permutation Invariance if, for each f ∈ F, P ∈ C(f), and V ⊆ A, we have
that f(P, V ) ≡HT f(...f(P, V1), ..., Vn) for every partition {V1, ..., Vn} of V .

In fact, such iteration of forgetting had been considered before in a similar manner in a

result by Eiter and Wang (2008), but based on an already given sequence of atoms to be

forgotten instead of a set. Thus, (PI) is slightly more general (Gonçalves et al . 2017).

Also, independently, a variant of (PI) was introduced by Wang et al . (2013), but shown

to be equivalent (Gonçalves et al . 2017). Therefore, in the following, we only use (PI) as

a representative of these properties of invariance for different orders of forgetting a set

of atoms.

The next property, called Existence, was first discussed by Wang et al . (2012) and

formalized by Wang et al . (2013). It requires that a result of forgetting for P in C be

again in the class C. This is important to determine if class of forgetting operators is

suitably well-defined for the class of programs it is intended for, as well for iteration

on subclasses of programs for which it is defined. We follow the notation introduced in

(Gonçalves et al . 2016b) which formalizes this property s.t. it be explicitly tied to a class

C, thus allowing to speak about a class of forgetting operators F being closed for different

classes C.

(EC) F satisfies Existence for C, that is, F is closed for a class of programs C if there

exists f ∈ F s.t. f is closed for C.

Thus, class F being closed for some C requires that there exist some “witness in favor

of it”. This also means that if a class F of operators does not satisfy this property for

some class C of programs, no operator of F can be found that is closed for that class of

programs.

The next property, called Consequence Persistence, was introduced by Wang et al .

(2013) building on the ideas behind (sC) by Eiter and Wang (2008). Consequence per-

sistence requires that the answer sets of a result of forgetting correspond exactly to the

answer sets of the original program, ignoring the atoms to be forgotten.

(CP) F satisfies Consequence Persistence if, for each f ∈ F, P ∈ C(f) and V ⊆ A, we have
AS(f(P, V )) = AS(P )‖V .

In other words, forgetting cannot introduce new answer sets nor remove existing ones.
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The following property, called Strong Persistence, was introduced by Knorr and Alferes

(2014) with the aim of imposing the preservation of all dependencies contained in the

original program building on ideas of strong equivalence between the original program

and a result of forgetting (modulo the atoms to be forgotten).

(SP) F satisfies Strong Persistence if, for each f ∈ F, P ∈ C(f) and V ⊆ A, we have

AS(f(P, V ) ∪R) = AS(P ∪R)‖V , for all programs R ∈ C(f) with A(R) ⊆ A\V .

This strengthens (CP) considerably by imposing that the correspondence between an-

swer sets of the result of forgetting and those of the original program be preserved in the

presence of any additional set of rules not containing the atoms to be forgotten.

A further property, Weakened Consequence, is due to results by Delgrande and Wang

(2015). It requires that the answer sets of the original program be preserved while for-

getting, ignoring the atoms to be forgotten.

(wC) F satisfies weakened Consequence if, for each f ∈ F, P ∈ C(f) and V ⊆ A, we have

AS(P )‖V ⊆ AS(f(P, V )).

This property can thus also be understood as being the counterpart to (sC): one does

prevent the introduction of new answer sets, the other the loss of existing ones. One can

also observe that they correspond to the two inclusions of (CP).

The following two properties, weakened and strengthened Strong Persistence, are sim-

iliar in spirit, as they are generalizations of (wC) and (sC) that correspond to the two

inclusions of (SP) (Gonçalves et al . 2017).

(wSP) F satisfies weakened Strong Persistence if, for each f ∈ F, P ∈ C(f) and V ⊆ A, we
have AS(P ∪R)‖V ⊆ AS(f(P, V ) ∪R), for all R ∈ C(f) with A(R) ⊆ A\V .

(sSP) F satisfies strengthened Strong Persistence if, for each f ∈ F, P ∈ C(f) and V ⊆ A,
we have AS(f(P, V ) ∪R) ⊆ AS(P ∪R)‖V , for all R ∈ C(f) with A(R) ⊆ A\V .

Weakened Strong Persistence guarantees that all answer sets of P are preserved when

forgetting, no matter which rules R over A\V are added to P , while strengthened Strong

Persistence ensures that all answer sets of a result of forgetting indeed correspond to

answer sets of P , independently of the added set of rules R.

Finally, Uniform Persistence was introduced by Gonçalves et al . (2019) in the context

of forgetting in modular answer set programming. Uniform Persistence requires that the

correspondence between answer sets of a result of forgetting and those of the original

program be preserved in the presence of any additional set of facts not containing the

atoms to be forgotten.

(UP) F satisfies Uniform Persistence if, for each f ∈ F, P ∈ C(f) and V ⊆ A, we have

AS(f(P, V ) ∪R) = AS(P ∪R)‖V , for all sets of facts R with A(R) ⊆ A\V .

Hence, (UP) can be seen as a variant of (SP) under uniform equivalence. Since this is

the only property in the literature related to uniform equivalence, we complement with

one further property to complete the picture in that regard. It is a variant of a property

already presented, namely (SI), but directed towards uniform equivalence.

(UI) F satisfies Uniform (addition) Invariance if, for each f ∈ F, P ∈ C(f) and V ⊆ A,
we have f(P, V ) ∪R ≡HT f(P ∪R, V ) for all sets of facts R with A(R) ⊆ A\V .
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Thus, Uniform Invariance requires that it be (strongly) equivalent to add a set of facts

without the atoms to be forgotten before or after forgetting.

Recently, a different relaxation has of (SI) has been introduced by Gonçalves et al .

(2021) when investigating syntactic operators under uniform equivalence.

(SIu) F satisfies Strong Invariance with respect to uniform equivalence if, for each f ∈ F,

P ∈ C(f) and V ⊆ A, we have f(P, V )∪R ≡u f(P ∪R, V ), for all programs R ∈ C(f)
with A(R) ⊆ A\V .

This property relaxes strong invariance by allowing that rules not mentioning the

atoms to be forgotten can be ignored and be added to the result still preserving uniform

equivalence (and not strong equivalence as (SI)). The difference to (UI) is that (UI)

allows us to ignore facts over the remaining language while forgetting (under strong

equivalence) whereas (SIu) allows us to ignore rules over the remaining language under

uniform equivalence. The latter is arguably more useful when forgetting from a program

that contains general rules not mentioning the atoms to be forgotten.

All these properties are not orthogonal to one another, and in what follows we join

the results established in the literature on the relations that exist between them. In

particular, we opt for presenting these results in a concise way, trying to avoid repetition

of results that are implicitly obtained from others.

To ease the reading, for a property (P), we represent with “(P)” that “F satisfies (P)”.

Theorem 1

The following relations hold for all F:

1. (W) is equivalent to (NP);

2. (SP) implies (SE);

3. (CP) and (SI) together are equivalent to (SP);

4. (sC) and (wC) together are equivalent to (CP);

5. (CP) implies (wE);

6. (SE) and (SI) together imply (PP);

7. (wSP) and (sSP) together are equivalent to (SP);

8. (sC) and (SI) together imply (sSP);

9. (wC) and (SI) together imply (wSP);

10. (W) and (PP) together imply (SC);

11. (SC) implies (SE);

12. (W) implies (NC);

13. (wC) is incompatible with (W) for F over C such that Cn ⊆ C;
14. (wC) and (UI) together are incompatible with (RC) for F over C such that Cn ⊆ C.
15. (SI) implies (UI);

16. (CP) and (UI) together are equivalent to (UP);

17. (SI) implies (SIu);

18. (UP) is incompatible with (SIu).

Note first, that 1., as proven in by Ji et al . (2015), also relies on (IR) in its original

formulation, in particular, (W) is equivalent to (NP) and (IR). However, as (IR) is an

integral part of our definition of forgetting operators, this reliance is ensured implicitly.

This means that, by 1., the four properties, originally proposed by Zhang and Zhou
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(2009), in the context of forgetting in ASP actually reduce to two distinct ones, namely

(W) and (PP).

The following results, 2.–9., show that (SP) is an expressive property, where 2. was

shown by Knorr and Alferes (2014) 3.–6. by Gonçalves et al . (2016b), and 7.–9. are new.

In fact, 3. provides a non-trivial decomposition of (SP) into (SI) and (CP). These two

are themselves expressive, as witnessed by other results. Namely, 4. shows that (CP)

in turn is the combination of (sC) and (wC), and 5. that it implies preservation of

equivalence, while 6. provides the non-trivial result that Strong Equivalence and Strong

Invariance imply Positive Persistence. Then, 7. provides another decomposition of (SP)

into (wSP) and (sSP) which in turn, by 8. and 9., are implied by properties used in

the decompositions 3. and 4., respectively. Thus, (SP) implies (SE), (CP), (SI), (sC),

(wC), (wE), (PP), (wSP) and (sSP), where the result for (PP) has been shown

directly Ji et al . (2015).

The next three results, 10.–12., were shown by Gonçalves et al . (2017) and clarify

the relation between the properties originally proposed by Zhang and Zhou (2009) and

those by Wong (2009). Namely, the two distinct properties (W) and (PP) introduced

by Zhang and Zhou (2009) together imply (SC) which in turn implies (SE), where the

combination of these two results, that is, that (W) and (PP) together imply (SE), has

been shown directly by Gonçalves et al . (2016b). In addition, (W) alone implies (NC),

which indicates that among Wong’s properties, (SC) is stronger than (NC).

The following two results establish incompatibility results for classes of operators de-

fined over (at least) normal programs. Both results are new, though 13. is a revised result

by Wang et al . (2013) where incompatibility of (W) with (CP) is established. In this

sense, this new result makes the incompatibility more precise. In comparison to 14., we

can also observe that, though no formal relation exists between (W) and (RC), (W) is

stronger than (RC) in the sense that it is incompatible with (wC), whereas, in the case

of (RC), an additional property is necessary, namely (UI), to establish incompatibility

with (wC).

The two new results 15.–16., establish relations between the new properties introduced

here w.r.t. uniform equivalence and their correspondents based on strong equivalence. In

fact, 15. establishes that Strong Invariance implies Uniform Invariance. The second result

provides a decomposition of (UP), and it is interesting as it, together with 3., allows

us to trace the difference between (UP) and (SP) to the different considered form of

invariance. This strengthens previous results by Gonçalves et al . (2019) that positioned

(UP) in between (CP) and (SP). However, unlike (SP), (UP) is incompatible with

any property that allows to ignore the remaining arbitrary rules (beyond facts). This

is naturally the case for (SI), as (SI) relies on strong equivalence whereas (UP) relies

on uniform equivalence, but, by 18., even the relaxation of (SI) to uniform equivalence,

(SIu) (17.), is incompatible with (UP) (Gonçalves et al . 2021).

To gain a better overview on the results in Theorem 1, Figure 1 summarizes the

positive results (all but the incompatibility results) in graphical form, representing

equivalences and implications between (compositions of) properties. We can observe

that (SP) is indeed important as the vast majority of properties is implied by it,

further strengthening our view that this property is central as it arguably best captures

preserving all the relations between the remaining atoms. Though (SP) can in general

not be satisfied for classes of programs containing normal programs (Gonçalves et al .
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Fig. 1. Relations between properties according to Theorem1: curved lines without arrows join
properties and arcs indicate directions of implication.

2016c; Gonçalves et al . 2020), in our view, it ideally corresponds to what forgetting in

ASP should amount to whenever possible. Now, among the pairs of properties equivalent

to (SP), (SI) and (CP) are arguably more important: the former allows one to focus

on the rules containing the atoms to be forgotten when forgetting, which is beneficial for

computation and amenable to syntactic forgetting, and the latter captures (the baseline

in comparison to (SP)) that the answer sets be preserved. While (SP) is in general not

satisfiable, its relaxation to uniform equivalence, (UP), is (Gonçalves et al . 2019). In

fact, (UP) is the strongest relaxation of (SP) w.r.t. programs R such that there is a

forgetting operator over a class including normal programs that satisfies it (Gonçalves

et al . 2021). This makes this property an important alternative, well-suited in the setting

of ASP, where problem solutions are often encoded as rules with varying sets of facts.

There are also two properties not present in Figure 1 that we deem important, (PI) and

(EC). The former allows forgetting atoms in any order, which facilitates the usage of

forgetting and its implementation in concrete operators that may be defined forgetting

one atom at a time. The latter is crucial for guaranteeing that operators (and classes

of these) are indeed well-defined as well as permitting the iteration of these. Finally, we

note that among properties that are variants of each other with respect to equivalence

and strong equivalence, such as (wE) and (SE), we consider those based on strong

equivalence more important as it is well-known that equivalence does not preserve the

structure of rules, and this applies also in the context of forgetting. We revisit these

observations in more detail taking into consideration also the existing approaches in the

literature and which properties these satisfy (as presented in the following sections).

5 Operators of forgetting

The different properties presented in the literature have often been the driving motiva-

tion for the definition of a variety of different approaches on forgetting in answer set

programming. We now turn our attention to these classes of operators of forgetting, by

first reviewing the approaches found in the literature and then establishing non-trivial

relations between them. In the course of the exhibition, we follow a chronological order,

similar in spirit to the presentation of the properties in the previous section.
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Strong and Weak Forgetting. The first proposals are due to Zhang and Foo (2005); Zhang

et al . (2005); Zhang and Foo (2006) with the objective to apply forgetting for conflict

resolution in the case of inconsistencies as well as to capture and characterize updates

of answer set programs. The authors introduced two syntactic operators for normal logic

programs, termed Strong and Weak Forgetting. Both start with computing a reduc-

tion corresponding to the well-known weak partial evaluation (WGPPE) (Brass and Dix

1999), defined as follows: for a normal logic program P and a ∈ A, R(P, a) is the set of

all rules of the form head(r1)← body(r1) \ {a} ∪ body(r2) such that there are r1, r2 ∈ P

with a ∈ body(r1) and head(r2) = a. Then, the two operators differ on how they sub-

sequently remove rules containing a, the atom to be forgotten. In Strong Forgetting, all

rules containing a are simply removed:

fstrong(P, a) = {r ∈ R(P, a) | a �∈ A(r)}.

In Weak Forgetting, rules with occurrences of not a in the body are kept, after not a is

removed.

fweak(P, a) = {head(r)← body(r)\{not a} | r ∈ R(P, a), a �∈ head(r) ∪ body(r)}.

The motivation for this difference is whether such not a is seen as support for the rule head

(Strong) or not (Weak). In both cases, the actual operator for a set of atoms V is defined

by the sequential application of the respective operator to each a ∈ V . Both operators

are shown to be closed for Cn and thus well-defined. The corresponding singleton classes

are defined as follows.

Fstrong = {fstrong} Fweak = {fweak}.

No semantic characterization of the operators was provided, but a simplified representa-

tive was created which has the same answer sets as the corresponding forgetting results.

The authors also introduced a framework for conflict-solving in answer set programs

based on strong and weak forgetting and showed that different approaches of logic pro-

gram updates can be represented. It was also shown that forgetting does not increase the

complexity of determining inferences of logic programs under answer set semantics.

Semantic Forgetting. Building on ideas first exposed by Wang et al . (2005), Eiter and

Wang (2008) proposed Semantic Forgetting to improve on some of the shortcomings of

the two purely syntax-based operators fstrong and fweak. Semantic Forgetting introduces

a class of operators for consistent disjunctive programs1 defined as follows:

Fsem = {f | AS(f(P, V )) =MIN (AS(P )‖V ) for all P ∈ C(f) and V ⊆ A}.

The basic idea is to characterize a result of forgetting just by its answer sets, obtained

by considering only the minimal sets among the answer sets of P ignoring V . Thus, pre-

serving the semantic relations between the remaining atoms in the sense of Definition 1

is based on preserving answer sets, that is, certain atoms occur in the same answer sets.

The authors showed that their approach can be characterized by forgetting in classical

logic (using the minimal models). Three concrete algorithms were presented, two based

1 Actually, classical negation can occur in scope of not , but due to the restriction to consistent programs,
this difference is of no effect (Gelfond and Lifschitz 1991), so we ignore it here.
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on semantic considerations and one syntactic. Unlike the former two, the latter is not

closed for classes C+d and C+n (where the superscript + denotes the restriction to consis-

tent programs), since double negation is required in general. Hence, it is not a forgetting

operator according to our definition. A detailed complexity analysis was provided dis-

cussing model checking as well as credulous and skeptical reasoning under forgetting.

The authors also presented a framework for resolving conflicts in multi-agent systems

which is similar in spirit to that defined by Zhang and Foo (2006) though arguably more

general in the sense that it can be adapted more easily than the former. The authors

also characterized inheritance logic programs (Buccafurri et al . 2002) and update logic

programs (Eiter et al . 2002) using their forgetting approach.

Semantic Strong and Weak Forgetting. Wong (2009) argued that forgetting in ASP

should be characterized by a set of properties, similar as proposed by Eiter and Wang

(2008), but rather rely on strong equivalence, as answer sets alone do not contain all

the information present in a program nor do they preserve all the information that

is unrelated to the forgotten atoms. He defined two classes of forgetting operators for

disjunctive programs, building on HT-models.2 First, given a program P , we define

Cn(P ) = {r | r disjunctive, P |=HT r, A(r) ⊆ A(P )}, the set of all consequences of

P . We obtain PS(P, a) and PW (P, a), the results of strongly and weakly forgetting a

single atom a from P , as follows:

1. Consider P1 = Cn(P ).

2. Obtain P2 by removing from P1: (i) r with a ∈ body(r), (ii) a from the head of each

r with not a ∈ body(r).

3. Given P2, obtain PS(P, a) and PW (P, a) by transforming certain rules r in P2 as

follows:

r with not a in body r with a in head

S (remove) (remove)

W remove only not a remove only a

The generalization to sets of atoms V , that is, PS(P, V ) and PW (P, V ), can be obtained

by simply sequentially forgetting each a ∈ V , yielding the following classes of operators.

FS = {f | f(P, V ) ≡HT PS(P, V ) for all P ∈ C(f) and V ⊆ A}
FW = {f | f(P, V ) ≡HT PW (P, V ) for all P ∈ C(f) and V ⊆ A}

While steps 2. and 3. are syntactic, different strongly equivalent representations of Cn(P )

exist, thus providing different instances. Wong (2009) defined one construction based on

inference rules for HT-equivalence, closed for Cd. He also introduced T-equivalence which

can be characterized as a weaker form of equivalence by considering only a subset of the

inference rules for HT-equivalence, and showed that these correspond to strong and weak

forgetting. Thus, FS and FW as well as strong and weak forgetting rely on preserving

the consequences from P over the remaining atoms, in the spirit of Delgrande’s general

approach (2017), though for a varying notion of equivalence/consequence. Finally,

computational complexity of FS and FW was not considered by Wong.

2 Wong (2009) considered SE-models (Turner 2003). Without loss of generality, we consider the more
general HT-models.
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HT-Forgetting. Wang et al . (2012; 2014) introduced HT-Forgetting, also termed Knowl-

edge Forgetting (Wang et al . 2014), building on work by Zhang and Zhou (2009) in

the context of modal logics that proposed certain desirable characteristics of forgetting,

which were shown to precisely characterize forgetting in classical propositional logic and

modal logic S5. The authors showed that no existing notion would correspond to these

ideas, and proposed HT-Forgetting which was defined for extended programs and used

representations of sets of HT-models directly.

FHT = {f | HT (f(P, V )) = HT (P )†V for all P ∈ C(f) and V ⊆ A}.

Thus, in this case, the semantic relations between the remaining atoms are preserved

based on the equivalence of HT-models. A concrete operator was presented (Wang et al .

2014) that was shown to be closed for Ce and CH , and it was also shown that no operator

exists that is closed for either Cd or Cn. In addition, FLP-forgetting (Wang et al . 2014)

was considered under the FLP-stable model semantics (Truszczynski 2010), but as this

semantics differs from the answer set semantics and the results are essentially identical

for both variants considered, we only focus on the answer set semantics. The authors

also established results on computational complexity and discussed conflict solving using

HT-forgetting based on a framework similar to that used by Eiter and Wang (2008).

SM-Forgetting. Wang et al . (2013) defined a modification of HT-Forgetting, SM-

Forgetting, for extended programs, with the objective of preserving the answer sets of

the original program (modulo the forgotten atoms).

FSM={f | HT (f(P, V )) is a maximal subset of HT (P )†V s.t. AS(f(P, V )) = AS(P )‖V
for all P ∈ C(f) and V ⊆ A}.

Hence, in this case, though the definition is a variation of the one for FHT, the semantic

relations between the remaining atoms are preserved based on the equivalence of answer

sets (utilizing the correspondence of HT-models). A concrete operator was provided that

builds on the notion of countermodels in HT-logic (Cabalar and Ferraris 2007), a tech-

nique, in fact, also used by Wang et al . (2014) for HT-forgetting, and subsequently in

the literature. This class, similar to FHT, was shown to be closed for Ce and CH , and it

was also shown that no operator exists that is closed for either Cd or Cn. The authors

also discussed relations to forgetting in propositional logic and uniform interpolation

and considered the computational complexity of model checking, credulous and skeptical

inference.

Strong AS-Forgetting. Knorr and Alferes (2014) introduced Strong AS-Forgetting with

the aim of preserving not only the answer sets of P itself but also those of P ∪R for any R

over the signature without the atoms to be forgotten. The notion was defined abstractly

for classes of programs C.

FSas={f | AS(f(P, V ) ∪R) = AS(P ∪R)‖V for all programs R ∈ C with

A(R) ⊆ A(P ) \ V, for all P ∈ C(f) and V ⊆ A}.

The definition of this class is indeed closely aligned with property (SP) and naturally, the

semantic relations between the remaining atoms are preserved based on the equivalence of

answer sets (for varying programs). A concrete operator was presented for a non-standard
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class of programs (extended programs without disjunction), but not closed for Cn and

only defined for certain programs with double negation. It is therefore not an operator for

the class of normal programs according to Definition 1. In parallel, Strong WF-Forgetting

for normal programs under the well-founded semantics was considered with favorable re-

sults (closed and defined for the whole class), but is not further considered here. The

computational complexity was studied, but only in terms of computing a model.

SE-Forgetting. Delgrande and Wang (2015) introduced SE-Forgetting based on the idea

that forgetting an atom from program P is characterized by the set of those SE-

consequences, that is, HT-consequences, of P that do not mention the atoms to be

forgotten. The notion was defined for disjunctive programs building on an inference sys-

tem by Wong (2008) that preserves strong equivalence. Given that �s is the consequence

relation of this system, CnA(P ) is {r ∈ LA | r disjunctive, P �s r}. The class is defined

by:

FSE = {f | f(P, V ) ≡HT CnA(P ) ∩ LA(P )\V for all P ∈ C(f) and V ⊆ A}.

This notion is clearly aligned with the general notion of forgetting by Delgrande (2017)

relying on preserving the logical consequences over the remaining language. An operator

was provided, which is closed for Cd, based on computations using resolution, and a

prototype implementation was made available. It was observed that, though forgetting

a single atom results only in a quadratic blow-up in the size of the program, forgetting

several atoms yields an exponential blow-up of the resulting program (in the worst case).

Conflict solving was also revisited based on the framework presented by Eiter and Wang

(2008), aiming to provide more intuitive/better solutions, mainly due to the fact that

HT-consequences were used in opposite to Semantic Forgetting that merely relies on

preserving answer sets.

The following three classes are all based on the same idea introduced by Knorr and

Alferes (2014), that is, they aim at preserving all the dependencies between atoms not

being forgotten in the sense of property (SP), but taking into consideration that it is not

always possible to forget and satisfy (SP) (Gonçalves et al . 2016c). All three approaches

rely on the manipulation of HT-models to ensure that the semantic relations between

the remaining atoms are preserved, oriented by the idea to maintain all answer sets from

the original program whenever this is possible.

To ease the reading and to keep the material self-contained, we recall here the necessary

notions, adapted from criterion Ω (Gonçalves et al . 2016c), which allows us to determine

whether it is possible to forget a set of atoms while satisfying (SP).

Let P be a program over A, V ⊆ A, and Y ⊆ A\V . Consider the following.

RelY〈P,V 〉 = {A ⊆ V | 〈Y ∪A, Y ∪A〉 ∈ HT (P ) and �A′ ⊂ A such that

〈Y ∪A′, Y ∪A〉 ∈ HT (P )}

RY,A
〈P,V 〉 = {X\V | 〈X,Y ∪A〉 ∈ HT (P )}

RY
〈P,V 〉 = {R

Y,A
〈P,V 〉 | A ∈ RelY〈P,V 〉}

The set RelY〈P,V 〉 identifies those A ⊆ V such that Y ∪ A is a potential answer set of P ,

which are therefore relevant for Y being an answer set of the result of forgetting. For
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each such A, the set RY,A
〈P,V 〉 collects the V -reduct of the left component of the HT-models

of P with right component Y ∪A. For each Y , the set RY
〈P,V 〉 collects all such sets.

SP-Forgetting. Gonçalves et al . (2016c); Gonçalves et al . (2020) introduced SP-

Forgetting with the aim to satisfy (SP) whenever that is possible. The notion was defined

for extended logic programs, and, following criterion Ω, tied to the existence of a least

element in the set RY
〈P,V 〉, which, if it exists, coincides with the intersections over RY

〈P,V 〉.

FSP = {f | HT (f(P, V ))={〈X,Y 〉 | Y ⊆ A(P )\V ∧X∈
⋂
RY

〈P,V 〉} for all P ∈ C(f)

and V ⊆ A}.

A concrete (semantic) operator was defined by Gonçalves et al . (2020) based on coun-

termodels, as well as a syntactic operator (Berthold et al . 2019b). Both operators and

the entire class are closed for Ce and CH , and it was shown that no operator exists that

is closed for either Cd or Cn.

Relativized forgetting. Gonçalves et al . (2017); Gonçalves et al . (2020) introduced Rel-

ativized Forgetting as a solution to the fact that, in general, the result of forgetting

according to SP-Forgetting may have answer sets that do not correspond to answer sets

in the original program P . Relativized Forgetting was originally defined using V -HT-

models, an extension of HT-models closed related with relativized equivalence (Eiter

et al . 2007). An alternative characterization (Gonçalves et al . 2020), which helps clarify

its relation with SP-Forgetting, is used here.

FR = {f | HT (f(P, V ))={〈X,Y 〉 | Y ⊆ A\V ∧X∈
⋃
RY

〈P,V 〉} for all P ∈ C(f)

and V ⊆ A}.

Thus, in comparison to SP-Forgetting, a union of the elements in the sets RY
〈P,V 〉 is used.

FM -Forgetting. Gonçalves et al . (2017); Gonçalves et al . (2020) introduced FM -

Forgetting as an alternative to both SP-Forgetting and Relativized Forgetting, based

on the fact that SP-Forgetting may introduce answer sets that do not correspond to

those of the original program, while Relativized Forgetting may remove answer sets of

the original program, even in cases where it would be possible to forget and satisfy (SP).

The difference between FSP and FR lies in the usage of intersection and union in their re-

spective definitions. Whenever RY
〈P,V 〉 has more than one element union and intersection

will not coincide. Based on this, FM -Forgetting was formally defined as follows based on

a case distinction.

FM = {f | HT (f(P, V ))={〈X,Y 〉 | Y ⊆ A\V and X∈
⋃
RY

〈P,V 〉, if RY
〈P,V 〉 has no least

element, or X∈
⋂
RY

〈P,V 〉, otherwise} for all P ∈ C(f)

and V ⊆ A}.

For both of the latter classes, a concrete operator was defined based on countermodels,

and, in both cases, the operator and the class are closed for Ce and CH . Moreover, no

operator of the class exists that is closed for either Cd or Cn (Gonçalves et al . 2020). In

addition, a comparison between the three previous classes is presented, discussing when
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to prefer which class of operators, as well as an analysis of the computational complexity

(Gonçalves et al . 2020).

Uniform forgetting. Uniform Forgetting was introduced by Gonçalves et al . (2019) in the

context of forgetting in modular answer set programming. In this setting the programs

are fixed, and only the input, that is, sets of facts, varies, which is closely related with

the notion of uniform equivalence. Uniform Forgetting aims at preserving the answer

sets of P no matter what input not containing the atoms to be forgotten is added to P .

This implies a careful choice of the HT-models of a result of forgetting, and the formal

definition requires additional technical notions which we recall here for self-containedness

(in a resumed manner).

SelY〈P,V 〉 = {A ⊆ V | 〈Y ∪A, Y ∪A〉 ∈ HT (P )}
T〈P,V 〉 = {Y ⊆ A\V | there exists A ∈ SelY〈P,V 〉 s.t. 〈Y ∪A′, Y ∪A〉 /∈ HT (P )

for every A′ ⊂ A}
NY,A

〈P,V 〉 = {X \ V | 〈X,Y ∪A〉 ∈ HT (P ) and X �= Y ∪A}.

The sets SelY〈P,V 〉 characterize all the different total HT-models of P for each Y ⊆ A\V .

Among these, the ones that give rise to total HT-models of the result of forgetting are

given by the set T〈P,V 〉. For the non-total HT-models of the result of forgetting, we

consider the set NY,A
〈P,V 〉 and the indexed family of such sets SY〈P,V 〉 = {NY,i}i∈I where

I = SelY〈P,V 〉. For each tuple (Xi)i∈I such that Xi ∈ NY,i, the intersection of its sets is

denoted as
⋂

i∈I Xi, and SIntY〈P,V 〉 is the set of all such intersections. Formally, Uniform

Forgetting combines the total models from T〈P,V 〉 and the non-total from SIntY〈P,V 〉 as

folows:

FUP = {f | HT (f(P, V )) = ({〈Y, Y 〉 | Y ∈ T〈P,V 〉} ∪ {〈X,Y 〉 | Y ∈ T〈P,V 〉 and

X ∈ SIntY〈P,V 〉}), for all P ∈ C(f) and V ⊆ A}.

Again, a concrete operator was defined based on countermodels, which, just like FUP

itself, is closed for Ce and CH . A further operator was defined which combines the former

with a syntactic one whenever this is possible (Gonçalves et al . 2021). Moreover, no

operator of the class exists that is closed for either Cd or Cn. In addition, the effects

of applying forgetting to answer set programming modules were studied, as well as the

computational complexity.

While all these classes were introduced with differing motivations, they coincide under

certain conditions, for example, when restricted to specific classes of programs. This is

the case for Horn programs, where the result of forgetting according to most of the classes

of operators presented above are strongly equivalent.

Theorem 2

For all Horn programs P , every V ⊆ A(P ), and all forgetting operators f1, f2 in the

classes Fstrong, Fweak, FS , FHT, FSM, FSas, FSE, FSP, FR, FM, and FUP, it holds that

f1(P, V ) ≡HT f2(P, V ).

Notably, of the classes of operators presented in this section, Fsem and FW are the only

ones that do not coincide with all others when restricted to Horn programs.
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Example 4

Consider the following Horn program P = {a ← e, e ← b, b ←, c ← d}. Then, for
any f in any of the classes mentioned in Theorem 2, we have that f(P, {e}) is strongly

equivalent to the program {a ← b, b ←, c ← d}. None of the three concrete operators

defined for Fsem actually satisfies this condition, because the two semantic operators do

not consider c ← d as it is not relevant for the answer sets, while the syntactic one

discards this rule in its pre-processing. However, a modification of the syntactic operator

is possible such that it coincides with the result (by omitting part of the pre-processing),

that is, though Fsem does not align with Theorem 2, at least one corresponding operator

exists. For FW , the result completely differs since any operator in FW must include ← b

in its result.

Interestingly, Wang et al . (2012; 2014) additionally showed that, for CH , the result of

FHT is strongly equivalent to that of classical forgetting. We thus obtain as a corollary

that this holds for all classes of forgetting operators mentioned in Theorem 2.

Besides the coincidence when restricted to the class of Horn programs, there are two

classes of operators that turn out to coincide.

Theorem 3

Consider the class of disjunctive programs. Then, FS and FSE coincide.

This coincidence can be traced back to the fact that the inference system used for FSE

is the same as that used to define the example operator for FS . Since the two classes

coincide, in what follows, we often use FS to refer to both. This correspondence can be

extended to FHT when the result of forgetting is still in the class of disjunctive programs.

Theorem 4

Let P be a disjunctive program, V ⊆ A(P ), fS ∈ FS , fHT ∈ FHT, and fSE ∈ FSE. Then,

fS(P, V ) ≡HT fHT(P, V ) ≡HT fSE(P, V ) whenever fHT(P, V ) is strongly equivalent to a

disjunctive program.

This does not hold in general though, as the next example shows.

Example 5

Given P = {a ← not b, b ← not a, ← a, b}, consider forgetting about b from P . For any

fHT ∈ FHT, it is easy to see that fHT(P, {b}) is strongly equivalent to a← not not a, which

is not strongly equivalent to any disjunctive program. In the case of FSE and FS the result

of forgetting is, by definition, always a disjunctive program.

This also means that item 1. in Proposition 2 (Delgrande and Wang 2015), which se-

mantically characterizes FSE by asserting that it coincides with the set of HT-models

restricted to the remaining atoms, that is, that it coincides with FHT on the class of

disjunctive programs, actually does not hold.

Forgetting operators. Concrete forgetting operators have been considered in all the pre-

sented approaches, either in the form of a syntax-based operator, namely for Fstrong,

Fweak, Fsem, FSas, and FSP, or based on a semantic characterization, namely for Fsem,

FHT, FSM, FSP, FR, FM, and FUP, or one combining the latter two principles, namely for

FUP, or based on a consequence relation, namely FS , FW , and FSE.
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On closer inspection, the syntactic operators share a common basis in the form of the

principle of weak partial evaluation (WGPPE) (Brass and Dix 1999), which is present in

the construction of each of them, even in the realization of the consequence relation used

in the case of FSE. Hence, positive occurrences in the rule bodies of atoms to be forgotten

are generally treated in the same way. The difference lies in the treatment of negation

and of the rules not mentioning the atoms to be forgotten, as well as the applicability

of the operator in question. In the case of Fstrong and Fweak, the treatment of negation

is not founded on a semantic principle, which causes problems as argued by Eiter and

Wang (2008). The other three operators defined for the classes Fsem, FSas, and FSP as

well as the syntactic part of the operator defined for FUP, even share the basic ideas

for treatment of negation, inspired by the first such approach for Fsem. As argued by

Berthold et al . (2019b), they then differ in how rules not mentioning the atoms to be

forgotten are treated. Namely, the operator in Fsem often simplifies these away, as its

semantic notion is only relying on answer sets. On the other hand the operator defined

for FSas is only applicable in a very restricted setting.

For the semantic operators, two major approaches exist. The operators defined for

Fsem rely on computing the answer sets, applying the definition of forgetting and finding

a canonical program that represents the resulting set of answer sets. All the other

approaches rely on the construction based on countermodels (Cabalar and Ferraris 2007),

as first used by Wang et al . (2013). The benefit is that one can simply determine the set

of HT-models of a result of forgetting, and then provide a corresponding program based

on countermodels. The difference between these operators resides then only in the char-

acterization of the desired HT-models themselves. While this is an elegant way to obtain

a result of forgetting, that can in fact be applied to any approach based on HT-models,

the resulting program is often not in a minimal form, containing many unnecessary

rules, which requires further non-trivial considerations on minimal programs (Cabalar

et al . 2007). This also impacts on the similarity between the original program and a

result of forgetting, that is, while the semantic characterization is precisely matched,

syntactically they may be completely different, even for rules that do not mention the

atoms to be forgotten. The latter can be avoided in certain cases, as argued by Gonçalves

et al . (2020), namely if property (SI) is satisfied, as this allows us to exclude the rules

not mentioning atoms to be forgotten from the forgetting process, and simply pass them

to the result. Still, for the rules involving the atoms to be forgotten, the result may bear

no resemblance. The approaches based on a consequence relation do not suffer from

this problem, that is, the rules of the program that are not removed while forgetting do

persist, they are, however, accompanied by a huge number of additional rules that do

not add anything to the program which would require additional processing and simpli-

fication. This is what makes providing syntactic operators for classes with a well-defined

semantic characterization an important approach. It is not an easy one though.

Computational complexity. We finish the section with considerations on the compu-

tational complexity of forgetting. To begin with, all approaches showed or mentioned

that computing a concrete result of forgetting with one particular operator is in general

in EXP. In addition, many approaches provided arguments and results that show that

forgetting is a computationally expensive task, but also argued that this is not surprising

given the computational complexity of problems such as model existence in answer set
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Table 1. Known complexity results for skeptical reasoning under forgetting. All results are

completeness results. For class F (of operators) and class C (of programs), ’×’ represents
that C has not been considered for this problem for F, and ’-’ that F is not defined for C.

Cn Cd Ce

Fstrong coNP − −
Fweak coNP − −
Fsem coNP ΠP

2 −
FHT × × coNP

FSM × × ΠP
2

programming (Dantsin et al . 2001). A general comparison is however not straightforward

as several approaches are quite distinct, which impacts on the kind of complexity results

that are presented. In the following, we therefore focus on the results presented in the

literature, in particular on two problems whose complexity is considered in several ap-

proaches, as this makes them suitable for such a comparison. In what follows, we assume

a basic understanding of standard complexity classes as well as the polynomial hierarchy.

The first problem is skeptical reasoning under forgetting, that is, is some atom true

in all answer sets of a forgetting result f(P, V ). Formally, given f ∈ F, P ∈ C(f), V ⊆ A,
and a ∈ A\V , we determine f(P, V ) |=s a, where |=s denotes skeptical inference, that is,

truth in all answer sets. This problem has been considered for Fstrong, Fweak, Fsem, FHT

and FSM for different classes of programs. In fact, for Fsem, a can be a literal, and for

FHT a formula, but we simplified this aspect here for the sake of the comparison. Figure 1

summarizes the results. We can observe that, for normal programs, Fstrong, Fweak, which

are only defined for this class of programs, and Fsem coincide. In fact, though it has not

been considered explicitly for normal programs, the result for FHT does also coincide (for

the larger class of programs) due to hardness of skeptical reasoning for ASP even without

forgetting. For FSM, this is not likely due to the maximization check. In general, for classes

Cd and Ce for which skeptical reasoning without forgetting is ΠP
2 -complete, we observe

that Fsem and FSM are computationally more expensive than the other classes due the

additional minimization/maximization which is part of their respective definitions. We

note that only Fsem and FSM do also consider credulous reasoning. In the former case,

the result raises to ΣP
3 , while, in the latter, it remains on the same level of the hierarchy,

that is, ΣP
2 .

Thus, requiring that answer sets be preserved comes at a cost in terms of computa-

tional complexity. When comparing Fsem with both Fstrong and Fweak with their lack

of semantic grounds (for part of their construction), arguably the additional cost is pre-

ferrable. When comparing FHT and FSM, this is less straightforward, as FHT clearly is

based on semantic grounds. Such considerations therefore depend on the intended usage

and whether preserving answer sets justifies the additional cost.

The second problem considered is determining whether a given program is indeed a

result of forgetting. Formally, given f ∈ F, P, P ′ ∈ C(f), V ⊆ A, we determine P ′ ≡HT

f(P, V ). This problem has been considered for FHT, FSM, FSP, FR, FM, and FUP and

Figure 2 presents the results. It can be observed that the results for FHT and FSM do

coincide (unlike the first problem), and that there is an increase in terms of complexity

for the classes that relate to property (SP). This is probably not surprising, as FSP,

FR, and FM all relate to criterion Ω that establishes whether it is possible to forget and
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Table 2. Known complexity results for determining whether a given program is a result

of forgetting. All results are completeness results but FUP, which is only an inclusion.

FHT FSM FSP FR FM FUP

ΠP
2 ΠP

2 ΠP
3 ΠP

3 ΠP
3 ΠP

3

preserve (SP) for the concrete combination of program and atoms to be forgotten, which

has been shown to be ΣP
3 -complete (Gonçalves et al . 2020). The result for class FUP also

points into this direction, but hardness and completeness remain to be shown. Still, the

known complexity results on uniform equivalence (Eiter et al . 2007) do indicate that it is

not likely that an improvement can be achieved in comparison to the other three classes.

Here, the main conclusion is that trying to preserve the answer sets for arbitrary

programs (or sets of facts) to be added increases the computational complexity. In our

view, this is preferable unless the intended usage does not require it. We will revisit this

question in the following section.

6 On the properties of existing operators

Having presented the properties and classes of operators introduced in the literature for

forgetting in ASP, in this section, we provide a detailed comparison of these classes with

respect to their characteristics. In more detail, we draw a precise picture on the relations

between classes of operators and the properties they satisfy. We then discuss the suitabil-

ity of these classes based on their characteristics, establish concisely the relationship to

uniform interpolation, and discuss their suitability w.r.t. several applications considered

in the context of forgetting.

6.1 Specific properties

Putting aside for a moment the considerations on the suitability of properties at the

end of Section 4, the desirability of these properties is, to some extent, in the eye of

the beholder. Often, a particular novel approach to forgetting is justified by the fact

that previous approaches did not obey some new property deemed crucial, neglecting

however that this novel approach actually ended up failing to satisfy other properties,

themselves deemed crucial by those who introduced them. Whereas the introduction of

most known approaches to forgetting was accompanied by a study of some properties

they each enjoyed, there are many missing gaps, some because some properties were

only introduced later, others because they were simply neglected. Despite the discussion

and potential controversy around the adequacy of the properties, which may ultimately

depend on the application at hand, the first and perhaps most important step is to draw

an exhaustive picture regarding which properties are obeyed by which classes of operators.

This takes us to the central theorem of our paper, illustrated in one easy-to-read table.

Theorem 5

All results in Table 3 hold.

One first observation is that every class of operators obeys a different set of properties

(apart from FS and FSE, which coincide, cf. Theorem 3). This is a strong indication
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Table 3. Satisfaction of properties for known classes of forgetting operators. For class F

and property P, ‘�’ represents that F satisfies P, ‘×’ that F does not satisfy P, and ‘-’

that F is not defined for the class C in consideration.
Fstrong Fweak Fsem FS FW FHT FSM FSas FSE FSP FR FM FUP

sC × × � × � × � � × × � � �
wE × × � × � × � � × × × � �
SE × × × � � � � � � � � � �
W � × × � × � × � � × × × ×
PP × � × � � � � � � � � � ×
SI � � × × � � × � × � � × ×
SC × × × � � � × � � × × × ×
RC � � × � � � × � � × � × ×
NC � � × � � � × � � × � × ×
PI � � � � � � � � � × × × (�)
CP × × × × × × � � × × × � �
SP × × × × × × × � × × × × ×
wC × × × × × × � � × � × � �

wSP × × × × × × × � × � × × ×
sSP × × × × � × × � × × � � ×
UP × × × × × × × � × × × × �
UI � � × × � � × � × � � × �
SIu � � × × � � × � × � � × ×
ECH � � � � � � � � � � � � �
ECn � � � × � × × − × × × × ×
ECd − − � � � × × − � × × × ×
ECe − − − − − � � − − � � � �

that these properties play a role in characterizing the classes of operators. In fact, a

precise characterization of some classes of operators in terms of the properties they

satisfy sometimes exists (Wang et al . 2012; 2014; Delgrande and Wang 2015), although

this not the case in general.

We now focus on analyzing specific properties and how they relate to the known

classes of operators, following commonly the presentation of the properties from left to

right according to the historical order established in Section 4.

Starting with (sC) and (wE), we know, by Theorem 1, that any F that is known

to satisfy (CP) also satisfies these two. Not surprisingly, Fsem also satifies both, even

though it does not satisfy (CP), since the proposal is based on the ideas behind these

properties. For the remaining classes, it is worth illustrating why FS , FHT, and FSE do not

satisfy (sC) by looking at the example where we forget about a from P = {a← not a}:
all three classes require the result to be strongly equivalent to ∅, that is, the forgetting

operation introduces a new answer set. Turning to (wE), it requires that the results of

forgetting about p from P = {q ← not p, q ← not q} and from Q = {q ←} have the

same answer sets, while the three classes FS , FHT, and FSE require that the results be

strongly equivalent to f(P, p) = {q ← not q} and f(Q, p) = {q ←}, respectively, which
are obviously not equivalent. FW satisfies both properties (though not satisfying (CP)):

in the previous two examples, ⊥ must be returned in the former, while f(P, p) includes

q ← in the latter.

The properties (SE), (W), and (PP) have received more attention in the literature,

although focussing more on the properties not satisfied by previous approaches to moti-
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vate the introduction of a new one. As a result, several novel positive results are included

in the table. It is perhaps worth pointing out that despite Wang et al . (2014) having

discussed that FS and FW do not satisfy (PP), they did so using a counterexample –

Example 5 in this paper – that is not really part of the language for which FS and FW

are defined, since it relies on rules with double negation as missing consequences, which

in our view seems to be an unfair argument. According to our uniformized notions, for

the language for which they are defined, they satisfy (PP). In any case, we can observe

that (SE) and (PP) are satisfied by most of the classes, basically only some of the early

approaches do not satisfy these, and we can arguably conclude that these are vastly

consensual properties of forgetting. The same does not hold for (W) where the incom-

patibility result with (wC) (and thus (CP)), item 13 in Theorem 1, affects the results.

Example 6

Consider P = {a ← not b, b ← not c} whose only answer set is {b}. Thus, according
to (wC), a forgetting result must contain at least this answer set modulo the forgotten

atoms. For example, for f ∈ FSP, f(P, b) contains a← not not c, whose only answer set is

{}. However, this rule is not an HT-consequence of P , hence (W) is not satisfied.

(SI) has received less attention, yet often this non-trivial property is satisfied. Wong

(2009) showed (SI) for strong and weak forgetting, but using t-equivalence instead ofHT -

equivalence, whose semantics differs. This explains the negative result in the case of FS .

The negative result for FSE follows by correspondence to FS , and for FSM from forgetting

about b from P as in Example 6: f(P, b) ≡HT ∅ for f ∈ FSM, so adding c← results precisely

in a program containing this fact. If we add c← before forgetting, then the HT -models of

the result of forgetting, ignoring all occurrences of b, correspond precisely to 〈c, c〉, 〈c, ac〉,
and 〈ac, ac〉. To preserve the answer sets of this modified program (there is only one –

{a, c}), only the last of these three HT-models can be considered. Hence, a ← and c ←
(or strongly equivalent rules) occur in the result of forgetting for any f ∈ FSM, and (SI)

does not hold. Still, as pointed out in Sec. 4, (SI) is an important property as it allows

one to focus forgetting on the rules that contain the atoms to be forgotten.

For the other three HT-related properties originally proposed by Wong (2009), (SC),

(RC), and (NC), the consensus is less obvious. Considering first (SC), we recall from

10. and 11. of Theorem 1 that it is implied by (PP) and (W) together, and in turn

implies (SE). In fact, four of the five classes that satisfy (SC), also satisfy (PP) and

(W). Only FW does not satisfy (W), and still satisfy (SC) (according to an first example

presented by Wang et al . (2014)): Consider P = {p← not q; q ← not p}. For any f ∈ FW ,

forgetting about p is strongly equivalent to q ←, which is not a consequence of P itself.

Regarding the relation to (SE), we can observe that there are several cases where (SE)

holds, while (SC) does not, showing that both properties are relevant and indicating

that (SC) can be seen as a stronger version of (SE). Still, given the broad consensus for

(SE), arguably (SE) seems preferable among the two.

Regarding (RC) and (NC), we note that both are always satisfied for the same cases.

This could be based on some correlation, but none is known. Arguably, this coincidence

could be based on the fact that both are closely tied to the concrete definitions of FS

and FW along which they were introduced. Actually, inspecting the definitions of both

properties, one could consider that (NC) implies (RC), that is, that the rule which is

an HT consequence in (NC) is somehow the rule r′ in (RC), but this is not the case in

general.
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Example 7

Consider Fstrong which satisfies (NC) and P = {a← b}. We have that fstrong(P, {p}) =
P . Since fstrong(P, {p}) |=HT a ← b, we have, by (NC), that P |=HT a ← b, not p.

But we also know that fstrong({a ← b, not p}, {p}) = ∅, and, therefore fstrong({a ←
b, not p}, {p}) |=HT a ← b does not hold. This shows that there are cases where r′ of
(NC) is not the rule for property (RC).

Nevertheless, item 12. of Theorem 1 indicates that (W) implies (NC), and there are

several cases where the latter is satisfied and the former is not, indicating that (W) has

a more restrictive condition than (NC). This is also corroborated by the two incom-

patibility results in Theorem 1 and the apparent coincidence of satisfaction for (RC)

and (NC) in Table 3, in the sense that (W) also has a more restrictive condition

than (RC).

Property (PI) is also widely accepted, that is, a set of atoms can be forgotten in

any order. The only exceptions are the three classes closely tied to (SP), FSP, FR, and

FM, essentially, because it is not always possible to forget and preserve (SP) (Gonçalves

et al . 2016c). In such situations, the three classes then provide approximations of for-

getting while preserving (SP), and, since the order in which atoms are forgotten may

affect whether forgetting is possible (while preserving (SP)) (Gonçalves et al . 2017), the

property does not hold for any of them. Regarding FUP, we note that a weaker version

of (PI) was proven (Gonçalves et al . 2019), showing that it is possible to iterate the

operators of the class when applied in the context of modular logic programming. Thus

strictly speaking the exact result is open. On the other hand, in the context of modular

answer set programming, directed towards uniform equivalence, this result suffices, which

explains the particular notation of the result in Table 3.

The new negative results for (CP) and (SP) can be illustrated with forgetting about

b from P = {a ← not b, b ← not a}, that is, the first two rules of Example 5. Since

AS(P ) = {{a}, {b}}, the result must have two answer sets {a} and ∅, which is not

possible for disjunctive programs obtained from operators in FS , FW , and FSE. The same

example serves as counterexample for all negative results of (wC), while positive results

follow for classes satisfying (CP) from Theorem 1. Notably, the counterexample also

applies to FSE, thus invalidating Theorem 2 in the paper of Delgrande and Wang (2015).

Regarding (SP), only FSas satisfies the property due to the way the class is defined.

However, an important note is in order. Namely, unlike previously stated by Gonçalves

et al . (2016b; 2017; 2019), in Table 3, all results are positive for FSas. The following

consideration reveals the cause for this discrepancy. Many of the negative results previ-

ously stated for FSas are based on counterexamples using the concrete operator defined

in (Knorr and Alferes 2014), among them, for example, that FSas does not satisfy (UP)

(Gonçalves et al . 2019). However, items 3., 15., and 16. of Theorem 1 allow us to show

that (SP) implies (UP), seemingly a contradiction. The reason why this is not a problem

is revealed by a close inspection of the definition of class FSas. The operator defined by

Knorr and Alferes (2014) is actually not defined for a standard class of programs, nor for

all programs in this class which is in conflict with the quantification applied in the defi-

nition. This is complemented by the general result that forgetting and satisfying (SP) is

not always possible for programs that include normal programs. These observations lead
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to the following corollary, strongly restricting the class of programs to which operators

in FSas can be applied.

Corollary 1

There is no forgetting operator f ∈ FSas with Cn ⊆ C(f).

Thus, the operator defined by Knorr and Alferes (2014) does not belong to FSas and

all previously negative results for FSas are invalidated, allowing that this class indeed

satisfies all the properties in the literature considered here, but only within the scope of

Horn programs.

Regarding (wSP) and (sSP), these properties are essentially exclusive to the (SP)-

related classes of forgetting, which is not surprising given item 7. of Theorem 1, with

the exception of (sSP) for FW , as this class satisfies both (sC) and (SI), which implies

satisfaction of (sSP) by item 8. of Theorem 1.

Concerning (UP) this is indeed also a strong property, as it is essentially only satisfied

by the class for which it was defined, besides FSas, of course. In fact, (UP) can be seen

as an adaptation of (SP) to uniform equivalence. Thus, despite the reduced number of

classes that satisfy it, it is an important property as it shows that the conceptual idea

of (SP) can be satisfied in the scope of general programs (not restricted to Horn), if

one only varies facts for the sake of preserving the dependencies for the atoms not to

be forgotten. This is also well-aligned with a central idea of answer set programming,

where the general specification of a problem is encoded as an answer set program which

is combined with different set of facts, representing an instance of the problem one wants

to solve.

With respect to (UI), we observe that satisfaction is vastly sanctioned by the fact

that it is implied by (SI) (cf. 15 of Theorem 1), with the exception of FUP for which the

positive result is a result of 16. of Theorem 1. We exemplify the negative result for the

case of FS . Consider forgetting about p from P = {a← not p, b; p← not a; ← p, b}. This
program has a ← not not a, b as an HT-consequence, which is however not a disjunctive

rule and thus not captured in the construction. So adding b ← to the program makes

a true, and forgetting preserves that. If we forget first, that connection is lost and we

cannot conclude a by adding b← to the result of forgetting.

Although (SIu) is a weakening of (SI), the results for (SIu) are often a consequence of

those for (SI). The positive ones follow immediately from the fact that (SIu) is implied

by (SI) (cf. 17 of Theorem 1), and most of the counterexamples for the negative results

are similar to those of (SI). An interesting exception is the case of FM, for which the

negative result for (SI) can be easily justified by the satisfaction of (CP), as these

properties together are equivalent to (SP). In the case of (SIu) the same argument

cannot be used, since this property together with (CP) is not enough to imply (SP).

Rather an advanced counterexample can be found based on HT-models in which the

result is different from that of FSP and FR, which both satisfy (SIu) (for the details we

refer to the appendix).

Finally, the results on (EC) for different classes of programs C reveal that all classes

of operators are closed for CH , and, in addition, each F is closed for the maximal class

of programs considered, but often not for intermediate ones, with the exception of Fsem

and FW . Interestingly, the two known semantic operators in Fsem are not closed for CH ,

while the syntactic one is, despite not being closed in general and thus not an operator
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Fig. 2. Sets of properties satisfied by known classes of forgetting operators, where each
connection represents that the above set of properties implies the one below (with (SP) and

(W) restricted to Horn programs).

according to 1. This can be remedied by defining an additional operator specific to Horn

programs, which is a simplification of forget1 (Eiter and Wang 2008) taking advantage of

the fact that only one answer set exists. Note that ‘-’ was used w.r.t. to the definitions of

each F: the singleton classes Fstrong and Fweak are precisely defined for normal programs;

the intuition behind minimization embedded in Fsem’s definition does not combine well

with double negation; and, for FS , FW , and FSE, the consequence relation that is applied

is defined for disjunctive rules.

6.2 Classes of operators

The results in Table 3 provide us with valuable information to compare classes of oper-

ators, as well as some guidelines regarding the choice of a forgetting operator.

The first concern is perhaps the required class of programs C. If some class of operators

is not closed or even not defined for C, then it is certainly not a good choice. Of course,

as already mentioned, nowadays, existing ASP solvers have no problem with accepting

the full syntax of extended programs here considered, hence, there is no impediment in

that regard. Rather, if the application in question requires a certain class of programs,

then this may discard certain classes of forgetting operators as possible choices. Hence,

many classes defined for extended programs may face difficulties if normal or disjunctive

programs are required (cf. the occurrences of “×” in Table 3). At the same time, FSas

is clearly not suitable with its restriction to Horn programs, while Fstrong and Fweak

present considerable limitations if disjunctions are required, since it is well-known that

these cannot be represented in a strongly equivalent normal program; and Fsem, FS , and

FW may require additional effort to represent double negation such as a← not not a by

a← not aux and aux← not a using an additional auxiliar atom aux, where introducing

new atoms to be able to forget others seems counterintuitive.

With these considerations on (EC) in mind, we can analyze the remaining properties.

To that end, Figure 2 presents a lattice of inclusions between the sets of properties satis-

fied by each known class of forgetting operators, taking into consideration the following:
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• Properties on existence, that is, (EC), as well as (PI) are not considered in this

lattice. The reasons are that existence can be easily handled orthogonally, and the

same is true for the few cases where (PI) does not hold. Moreover, this allows

obtaining more interesting observations that would otherwise be obfuscated.

• For the sake of readability, not all properties are made visible in each case. Rather,

taking advantage of the results obtained in Theorem 1, only the necessary ones

are presented, those that are implied are left implicit. For example, for FW , which

satisfies both (SC) and (SE), only (SC) is shown, while (SE) is left implicit.

• As FSas satisfies all the properties, it represents the top element of the lattice, in

a certain sense the ideal case (even though this turned out to only be possible for

Horn programs). To complement this, property (IR) which is true for any notion

of forgetting, has been chosen as the bottom element.

Figure 2 makes it apparent that there is one kind of property that divides the classes

into two groups, namely whether some kind of relation between the answer sets of the

original program and those of its result of forgetting holds or not. The classes for which

this is the case are Fsem, FW , FSM, FSas, FSP, FR, FM, and FUP by either satisfying (sC)

or (wC) or a property that implies these.

Among them, putting FSas aside, as it satisfies all the properties which turns out to

not provide considerable insights, the two classes that satisfy (CP) and (PP) turn out

to be separated by only one property as follows (using semi-formal notation):3

FSM + (sSP) � FM.

Hence, the difference between these two classes resides in the preservation of answer sets,

no matter which rules are added (over the remaining atoms).

Another such close relationship in terms of satisfied properties can be established

between FW and FR as follows:

FR + (SC) + (wE)� FW .

Thus, the difference between these two classes lies in strengthening property (SE) (using

(SC)) and adding preserving equivalence while forgetting.

We can even take this one step further and state the following:

FR + Fsem + (SC) � FW .

However, note that picking an operator of FR and somehow enforcing (SC) and (wE)

will not provide an operator of FW . It can be shown that the effect of forgetting V from

P for f ∈ FW yields a result that replaces all v ∈ V as if they were false, independently

of the actual rules in P . For example, forgetting about p from p← would yield ⊥, which
is not aligned with the original idea of forgetting, that is, removing all v ∈ V without

affecting other derivations, nor with the idea of class FR in particular, and neither (SC)

nor (wE) will change that. In general, an operator of a superclass does not necessarily

belong to a subclass in the hierarchy of Figure 2. Still, there are cases where this is true,

for example, f ∈ FUP naturally satisfies the defining condition of class Fsem, and thus

belongs to the class.

3 Such equations are in fact not to be read as precise characterizations of classes, but rather a form of
visualization of differences.
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142 R. Gonçalves et al.

Also note that the three classes related to (SP) FSP, FR, FM, place themselves quite

differently in this picture. Recall that these three classes, in the face of the result that

it is not always possible to forget while satisfying (SP) (Gonçalves et al . 2016c), are

considered relaxations of the equivalence, stating that (SP) is composed of (sC), (wC),

and (SI) (Gonçalves et al . 2020). Each of the three classes then basically is relaxed by

dropping one of these three properties. Given that these three properties imply differ-

ent other properties (cf. Theorem 1), this relation becomes less apparent in our lattice

representation. Still, some observations can be made. FM, which satisfies both (sC) and

(wC), aligns well with approaches that preserve answer sets. FR, which satisfies both

(sC) and (SI), fits within the classes that satisfy (SI). Finally, FSP, which satisfies both

(wC) and (SI), does not relate to any class other than FSas, essentially because a) it

is the only class that satisfies (wC) and not (sC), and b) it satisfies a set of properties

distinct from any of the classes that satisfy (CP).

Among the four classes that do not support preservation of answer sets, Fstrong and

Fweak are closely related due to their similar definition. Both coincide on satisfying (SI),

a consequence of their syntactic definition that only manipulates rules containing the

atoms to be forgotten, and differ on (W) and (PP), a consequence of the different

treatment of negated occurrences of the atoms to be forgotten.

For the third node without this preservation support, FS/FSE, there is also a close

proximity to FW based on their definition, yet, their characterizations differ substantially.

Both satisfy (SE) and (PP), but differ on six other properties, which means that in

this case the variation in the definition has a much more profound effect on the set of

satisfied properties. At the same time, we already know that there is a close relation to the

remaining class FHT as witnessed in Theorem 4. This is matched by a close correspondence

in terms of satisfied properties.

FS/FSE + (SI)� FHT.

Here, (SI) plays a distinguishing role. Notably, this clarifies the apparent mismatch of

the characterizations for FHT and FSE in terms of satisfied properties, both claiming that

it is precisely given by (IR), (W), (PP), and (NP). This is indeed true for each of

them for the maximal class of programs considered, but, intuitively, restricting FHT to

Cd cancels (SI).

FHT is also closely connected to FSM, as the latter restricts the HT-models of the result

s.t. (CP) holds. It turns out that this not only cancels (W) (see 1. of Theorem 1), but

also (SI) and four further properties related to HT-consequences.

Now, in the spirit of describing classes of forgetting operators, for several classes,

a defining characterization in terms of satisfied properties has been introduced in the

literature. But providing operators that precisely satisfy only a certain set of properties

can also be used to show that some sets of properties do not suffice to characterize a

class:

• (W), (SI) : delete all rules with atoms to be forgotten.

This operator matches the properties satisfied by Strong Forgetting, but it clearly does

not fit into the class (even if we ignored that we defined the class Fstrong as a singleton),

since, by the way deletion is applied, the idea of (WGPPE) is lost.
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We mention examples of further operators that can be defined in a similar style, pro-

viding evidence that certain sets of properties alone are probably of little interest as they

are satisfied by absurd operators. In fact, several of them do not even correspond to the

definition of a forgetting operator, as no semantic relations between the remaining atoms

are preserved.

• (IR) : delete all rules; then add some arbitrary rules over the remaining alphabet

(after forgetting);4

• (W) : delete all rules with atoms to be forgotten and an arbitrary 50% of the

remaining rules;

• (PP) : perform weak forgetting; in the resulting program, pick an arbitrary set of

rules and turn them into facts by removing their body;

• (SE) : compute all answer sets; remove all atoms to be forgotten from them; create

a set of facts that represents the intersection of all such reduced answer sets;

• (SI) : perform the WGPPE replacement step of strong and weak forgetting; in the

resulting program, arbitrarily delete rules with negative occurrences (in the body)

of atoms to be forgotten, or just remove their bodies, and delete all rules with

positive occurrences (in the body or head) of atoms to be forgotten;

• (SE),(W) : delete the entire program;

• (SE),(PP) : add, as facts, to the result of performing SE-forgetting, the atoms

that belong to some answer set of the original program and for which there is some

rule of the original program that contains some negative and no positive occurrence

of forgotten atoms.

Thus, often a meaningful choice of a class of forgetting operators requires looking at

more than one property in combination with the rationale behind their definition, in

particular for cases such as Fsem where the number of satisfied properties is comparably

small.

Finally, while the results in Theorem 5 for (EC) naturally differentiate between the

classes of programs C considered, the remaining properties are stated for the most general

class of programs for which the class of operators is defined. This begs the question

whether restricting C would affect the results shown in Table 3, which we will now

address to gain further insights.

We first consider Horn programs, for which we already know that all classes of operators

are closed. From Theorem 2, we know that several classes that satisfy different sets of

properties in the general case actually coincide. As expected, these classes all satisfy the

same set of properties when restricted to Horn programs. The reason can be traced back

to the incompatibility result 13. in Theorem 1, only stated for program classes above CH ,

that is, it does not apply here.

Theorem 6

For Horn programs, the following holds:

• Fstrong, Fweak, FS , FHT, FSM, FSas, FSE, FSP, FR, FM, and FUP satisfy (W), (RC),

(SP), and (PI);

4 The term “arbitrary” is used freely to represent some deterministic set, for example, the first elements
of some specific ordering.
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• Fsem satisfies (CP) and (PI);

• FW satisfies the same properties as in the general case.

Actually, only the minimally necessary properties are mentioned, the remaining can be

obtained from Theorem 1. This means, in particular, that the first group of classes

satisfies all the presented properties (with (EC) limited to (EH), of course), and, that

reducing to Horn programs does not change the set of properties satisfied by FW .

For normal programs, it turns out that the introduction of negation in the body im-

mediately makes the result coincide with the general one for all the classes (except for

FSas which is not defined for such classes). This is witnessed by the fact that all coun-

terexamples are normal programs, in particular those mentioned in the previous section.

6.3 On desirability of classes of operators

The plethora of results presented so far spread out over the previous sections, and the

many differentiating details discussed with respect to these make it difficult to assess

which classes of operators are in the end more important. To aid the reader in that

regard, we present some summarizing considerations, guided mainly by the definition of

forgetting operators, that is, the idea that the semantic relations between the remaining

atoms be preserved.

We start by identifying several classes of forgetting operators which in our view are

less important, and can be dismissed for the remaining discussion. We note that in listing

these, we follow the chronological order only, without any preference associated to this

order.

• Fstrong and Fweak can be dismissed, as their semantic consequence relation is non-

standard (T-equivalence), resulting in forgetting results that do not even align with

answer sets. Moreover, they are only defined for normal programs which severely

limits the application.

• Fsem can be dismissed, as the characterization based on answer sets only is se-

mantically too weak, not even aligning with expected results for Horn programs in

general. It is true that one can find concrete operators that overcome part of these

problems, but not in general.

• FW can be dismissed because, even though the class satisfies many properties, it

cannot coincide with intended results even for Horn programs, that is, the semantic

relations preserved over the remaining atoms are not aligned with our expectations.

• FSas can be dismissed, as it is only defined for Horn programs, which does not

fit the intention of forgetting in ASP, where default negation is fundamental. The

interest in the approach lies rather in the introduction of the idea of (SP) itself.

The remaining seven classes, FS , FHT, FSM, FSP, FR, FM, and FUP, all coincide for

Horn programs, so further considerations are needed. If we look for a consensus among

the satisfied properties, then we note that (PP) and (SE) are basically satisfied by

all of them (with the exception of FUP which is justified by the fact that this approach

focusses on uniform equivalence). However, these two properties alone do not suffice

because, as we have seen, corresponding absurd operators can be defined. To facilitate

a comparison, we can separate them according to how semantic relations between the

remaining atoms are preserved.
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Preserving strong equivalence. This is the strongest form of preservation of semantic

relations, as it aims to approximate satisfying (SP), and the classes FSP, FR, and FM

correspond to this. A preference among these three strongly depends on which of the

individual distinguishing characteristics one prefers. This relies mainly on the satisfied

properties, as the computational complexity and the classes of programs to which these

can be applied do coincide. These differences have been spelled out with much detail by

Gonçalves et al . (2020) and we refer the reader to this paper.

Preserving uniform equivalence. This is a weaker form of preserving the dependencies

compared to the previous one, and aligned with (UP). The class FUP belongs to this

category. The main benefit over the previous ones is that (UP) is indeed satisfied and

that individual atoms can be forgotten in any order without leading to a different result.

It is also well-aligned with ASP when we only want to vary the instance data, that is,

the facts.

Preserving equivalence. This is again weaker than the previous ones, and aligned with

(CP). Only FSM fits this category among the remaining. While the preservation of rela-

tions over the remaining atoms is weaker, as noted in the previous section in particular

w.r.t. FM, it comes in exchange with a lower computational complexity.

Preserving consequences. These approaches preserve the semantic consequences over the

remaining atoms, including the classes FS and FHT. While a comparison with the previous

ones w.r.t. the strength of preserving semantic relations from the original program is not

straightforward, we argue that, since the definition of FSM imposes a further restriction

on that of FHT, preserving consequences is weaker. Among the two classes, as shown by

several technical results in this paper, FHT is preferable.

While this exposition indicates an order of preference among these classes, it is not

strict, and still depends on the concrete intended usage. To aid in that regard, we next

discuss with more detail the relation to uniform interpolation, before we consider appli-

cations.

6.4 Forgetting and interpolation

A strong notion of interpolation, called uniform interpolation, is well-known to be closely

related to forgetting (Zhang and Zhou 2009; Lutz and Wolter 2011; Gabbay et al . 2011).

Gabbay et al . (2011) introduced the notion for the case of logic programs, which we here

adapt to make it more concise.

Definition 3

A class of logic programs C is said to have the uniform interpolation property with respect

to a consequence relation �, if for every program P ∈ C and set V ⊆ A of atoms, there

exists a program P ∗ ∈ C with A(P ∗) ⊆ A\V , such that:

(i) P � P ∗;
(ii) P ∗ � R, for every R ∈ C with A(R) ⊆ A\V such that P � R.

In this case, P ∗ is said to be a uniform interpolant of P with respect to V .
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We say that a forgetting operator f over a class C of logic programs can be used to

obtain uniform interpolants, if f(P, V ) is a uniform interpolant of P with respect to V ,

for every P ∈ C and V ⊆ A\V . Gabbay et al . (2011) considered the non-monotonic

skeptical consequence relation �∼ for logic programs, defined as P �∼ P ′ if M |= P ′,
for every M ∈ AS(P ). Using a forgetting operator in Fsem, as defined by Eiter and

Wang (2008), Gabbay et al. showed that, with respect to the consequence relation �∼, the
class of disjunctive programs satisfies uniform interpolation for programs R composed of

facts. Later, Wang et al . (2013) extended this result by showing that, with respect to

the consequence relation �∼, the class of all logic programs satisfies uniform interpolation.

Besides knowing that the class Ce of all logic programs satisfies uniform interpolation,

it is also worth determining which approaches of forgetting can be used to obtain such

uniform interpolants. It turns out that satisfying (CP) is a sufficient condition to obtain

uniform interpolants with respect to �∼, and in fact the two inclusions of (CP), that is,

(wC) and (sC), imply, respectively, conditions (i) and (ii) of the definition of uniform

interpolation.

Theorem 7

If a class F of operators over a class C of logic programs satisfies property (CP), then

every operator of that class can be used to obtain uniform interpolants w.r.t. �∼.
Given the above result, we know that every forgetting operator satisfying (CP) can be

used to obtain uniform interpolants, namely the classes FSM, FM, and FUP. Class FSas also

satisfies (CP), but this case is not worth considering, because the class is only defined for

Horn programs. From the remaining classes that do not satisfy (CP), only FR satisfies

the conditions of uniform interpolation.

Theorem 8

Every forgetting operator of the classes FSM, FM, FUP, and FR can be used to obtain

uniform interpolants with respect to �∼.
None of the other classes of forgetting operators can be used to obtain uniform in-

terpolants with respect to �∼, and we now present, for each of these classes, a coun-

terexample showing that one of the conditions for uniform interpolation is not sat-

isfied. As shown by Gabbay et al . (2011), the class Fsem satisfies the conditions of

uniform interpolation when R is a set of facts. Although condition (ii) is satisfied

in general, we can see that this is not the case for condition (i). Consider the pro-

gram P = {a ← p, a ← b, p ← not b, b ← not p} over A = {a, b, c, p}, where

AS(P ) = {{a, p}, {a, b}}. Then, since the only restriction that any f ∈ Fsem has to

satisfy is AS(f(P, p)) = {{a}}, we can consider f(P, p) = {a ←, c ← b}. In this case

P ��∼ f(P, p), showing that condition (i) of uniform interpolation is not satisfied.

In the case of Fweak, consider the program P = {a ← not b, b ← not a}, for which

AS(P ) = {{a}, {b}}. In this case, fweak(P, a) = {b ←}. But since {a} �|= fweak(P, a), we

have that P ��∼ fweak(P, a), and therefore condition (i) of uniform interpolation is not

satisfied. For the classes Fstrong and FS , consider the program P = {b ← not a}, where
AS(P ) = {{b}}. In this case, for f ∈ (Fstrong ∪ FS), we have that f(P, a) ≡HT {}, and
therefore AS(f(P, a)) = {{}}. If we take R = {b←}, then P �∼ R, but f(P, a) ��∼ R, which

means that condition (ii) of uniform interpolation is not satisfied.
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For FW , consider the program P = {b ←, a ← b}, where AS(P ) = {{a, b}}. In this

case, for f ∈ FW , we have f(P, a) = {b ←,⊥ ← b}, and therefore AS(f(P, a)) = {}. But
since {a, p} �|= f(P, a), we have that P ��∼ f(P, a), and therefore condition (i) of uniform

interpolation is not satisfied.

If we now consider FHT, we can take a program P such thatHT (P ) = {〈ab, ab〉, 〈b, ab〉}.
Therefore, AS(P ) = {}. In this case, for f ∈ FHT, we have HT (f(P, a)) = {〈b, b〉}, and
therefore AS(f(P, a)) = {{b}}. If we take R = {⊥ ← not b}, then P �∼ R, but f(P, a) ��∼ R,

which means that condition (ii) of uniform interpolation is not satisfied.

Finally, in the case of FSP, consider the program P = {a← p, b← not p, p← not not p},
for which AS(P ) = {{a, p}, {b}}. In this case, for f ∈ FSP, we have AS(f(P, p)) =

{{a}, {b}, {a, b}}. If we take R = {⊥ ← a, b}, then P �∼ R, but f(P, a) ��∼ R, which means

that condition (ii) of uniform interpolation is not satisfied.

All these classes of operators that cannot be used to obtain uniform interpolants share

the fact that property (CP) is not satisfied. Although this may indicate that (CP)

could be a necessary condition for uniform interpolation with respect to �∼, a simple

counterexample shows that this is not the case, and that, therefore, (CP) is in fact

strictly stronger than uniform interpolation.

Example 8

Consider the program P = {a ← not b, b ← not a, c ← a, c ← b}, where AS(P ) =

{{a, c}, {b, c}}, and a forgetting operator f such that f(P, a) = {c ←}. Then, it is clear

that f cannot satisfy (CP). Nevertheless, it satisfies the two conditions of uniform inter-

polation, and it could therefore, be taken as a uniform interpolant for P .

This also reveals that uniform interpolation with respect to the skeptical consequence �∼
is not well-aligned with forgetting, as it does not impose a strong connection between

the answer sets of the original program and those of the result of forgetting. This is in

part due to the fact that the consequence �∼ only imposes the preservation of skeptical

consequence.

Hence, instead of using the weak skeptical consequence, �∼, as originally considered by

Gabbay et al . (2011), HT-consequence, |=HT, is arguably a more suitable consequence

relation for uniform interpolation with respect to logic programs. In this case, conditions

(i) and (ii) of uniform interpolation with respect to HT-consequence match two of the

properties considered for forgetting, namely (W) and (PP), respectively.

Theorem 9

A class F of forgetting operators can be used to obtain uniform interpolants w.r.t. |=HT

iff F satisfies both (W) and (PP).

The above characterization, together with the results of Theorem 5, allow us to con-

clude exactly what classes of operators can be used to obtain uniform interpolants with

respect to |=HT.

Theorem 10

Every forgetting operator of the classes FHT and FS can be used to obtain uniform

interpolants with respect to |=HT.

The classes FHT and FS are therefore closely aligned with uniform interpolation, as

both satisfy (W) and (PP). In fact, as stated in Theorem (10) of (Wang et al . 2014),
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the class FHT is precisely characterized by (W) and (PP), which also means that it

precisely characterizes uniform interpolation with respect to |=HT. As pointed out by

Wang et al., this result also shows that the class of all logic programs has the uniform

interpolation property with respect to HT-consequence. Note that, when considering the

class of all logic programs, we should consider FHT to obtain uniform interpolants, since

FS is only defined for disjunctive programs.

The above results and discussion also show that, contrarily to forgetting in the realm

of monotonic logics, for example classical logic or description logics, where uniform in-

terpolation can serve as a guideline for what forgetting should be, in our view, in non-

monotonic frameworks such as ASP this cannot be the case: the relation �∼ seems too

weak to capture forgetting and |=HT imposes (W), a monotonic property which is in-

compatible with the preservation of answer sets when forgetting.

6.5 Applications

In this section, we will discuss some of the applications of forgetting mentioned in the

literature and provide indications as to what classes of operators are, from our point of

view, most suitable for each of them.

Conflict resolution. Forgetting has been considered as a means of conflict resolution for

inconsistencies by weakening pieces of information to restore consistency in propositional

logic, also termed recovery of preferences (Lang and Marquis 2002; 2010). This has been

adapted to a multi-agent setting using answer set programming (Zhang and Foo 2006;

Eiter and Wang 2008; Delgrande and Wang 2015), where a set of programs represent the

knowledge or preferences of individual agents. If these programs together are inconsis-

tent, then a compromise is a sequence of sets of atoms – one set per program indicating

that these are to be forgotten from the corresponding program – such that the resulting

programs together are consistent, admitting an agreement, that is, one or several answer

sets. Zhang and Foo (2006) defined compromises (termed preferred solutions) that

are minimal w.r.t. the amount of atoms forgotten, and Eiter and Wang (2008) argued

that, in such a setting, answer sets indeed result in minimal agreements (unlike in

propositional logic where non-minimal agreements may be obtained). Finally, Delgrande

and Wang (2015) emphasized that such forgetting results should clearly keep as much

of the program as is while forgetting, in particular not affecting rules over the remaining

atoms. Thus, in our view, an approach that preserves as much as possible the semantics

over the remaining atoms is recommended according to our considerations in Section 6.3,

in particular, one that preserves these semantic relations when other rules are added from

the programs of the other agents, that is, when using one of the classes FSP, FR, and FM.

Query answering. As argued by Delgrande and Wang (2015), in query answering, if one

can determine what is relevant to a query, then the irrelevant part of the knowledge

base/logic program can be forgotten, allowing for more efficient querying. Similar ideas

have been expressed in the context of forgetting in Description Logics for using only

a small fraction of the ontology in an application (Konev et al . 2009). Conceptually

common to these ideas is that one wants to use a simplified version of the knowledge

base in question “as is”, that is, without having to incorporate additional information
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during the reasoning process. This is indeed closely related to uniform interpolation.

Therefore, in our view, the most suitable solutions can be found among the approaches

that can be used to obtain uniform interpolants with respect to |=HT, that is, FHT and

FS , among which, according to our considerations in Section 6.4, we prefer to recommend

FHT, since it is more general and satisfies (SI) which allows us to simplify the process of

computing forgetting results.

Modular reuse. While similar in spirit to the ideas presented with respect to query an-

swering, a crucial difference for modular reuse is that a simplified program is created via

forgetting that, unlike the former, is still subject to interaction with rules from other pro-

grams. The answer to the question what approach is preferred then largely depends on

how this interaction is realized. If arbitrary rules can be added or interact with the pro-

gram, as, for example, outlined for the case of conflict resolution where a joint program

is composed, then the same recommendations apply as outlined for conflict resolution. If

however the interaction follows a truly modular approach with well-defined input-output

interfaces between modules (Janhunen et al . 2009), where interaction is limited to atoms,

then a particular preference can be given to FUP whose characteristics are well-suited for

this setting.

Hiding/Privacy. The principal idea of hiding is that certain parts/terms of a program are

not intended to be public. This usage is also aligned with the notion of privacy and the

data protection regulations such as the GDPR (European Parliament 2016). Here, the

recommendation on what class of forgetting operators to use depends on the intended

usage. If we aim to merely create a publicly viewable version of a program, then any

approach that can be used to obtain uniform interpolants is suitable. Thus, as spelled

out for Query Answering, FHT would be most suitable. However, since this class does not

come with a known syntactic operator, among the two, FS is preferable in this context.

Alternatively, if the resulting program is meant to be a public version that is being used,

possibly together with other programs, then the recommendations from Modular Reuse

are more suitable.

Embeddings in forgetting. Forgetting has been considered in the literature as a way to

capture other problems with the aim to facilitate their study and comparison, as well

as being able to re-use existing algorithms. For example, Zhang and Foo (2006) have

studied how different approaches to updating logic programs can be embedded into

their framework of solving conflicts which is built on forgetting, allowing then to analyze

these different frameworks. Similarly, Eiter and Wang (2008) showed how inheritance

logic programs (Buccafurri et al . 2002) can be captured using forgetting, which in turn

could be used to capture updates in logic programs. In these cases, picking a suitable

approach depends to a considerable extent on the target, so a more detailed inspection

on the approaches and what properties they satisfy is recommended (cf. Section 6.1).

Summing up, in our view, those classes of operators that are closely related with (SP)

and (UP), that is, FSP, FR, FM, and FUP, are in general the most useful, except for those

applications that are closer related to uniform interpolation, in which case FHT would be

more suitable.
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7 Conclusions

The landscape of forgetting in ASP comprises many operators and classes of operators

defined to obey some subset of a large number of desirable properties proposed in the

literature, while lacking a systematic account of all these results and their relations,

making it all too difficult to get a clear understanding of the state-of-the-art, and even

to choose the most adequate operator for some specific application.

This paper aimed at addressing this problem, presenting a systematic study of forget-

ting in ASP, including a thorough investigation of both properties and existing classes

of forgetting operators, going well beyond a survey of the state-of-the-art as many novel

results were included, thus achieving a truly comprehensive picture of the landscape.

In more detail, after providing a uniform definition of forgetting, we presented a de-

tailed account on properties of forgetting found in the literature, that allowed us to

establish existing relations between these properties independently of specific classes of

forgetting operators.

We then recalled the classes of forgetting operators proposed in the literature in a

systematic and uniform way, which allowed us to obtain several relations between them,

including that some classes of forgetting operators coincide for restricted classes of pro-

grams, and that two of them even coincide in general. This was strengthened by comple-

mentary considerations on existing concrete forgetting operators and results on compu-

tational complexity so far spread out over the literature.

We also provided a complete study showing which properties are satisfied by which

class of operators. This allowed a thorough discussion and comparison of the existing

properties, their impact on comparisons between classes of forgetting operators, as well

as considerations on unsuitable operators of forgetting, all contributing to guidelines for

the choice of a concrete forgetting operator.

Regarding such choice, it clearly depends on the application in mind, and we discussed

several applications and indicated options of forgetting operators to consider. As a brief

summary, the following criteria are important in our view:

• Preservation of semantic relations: Arguably, (SP) best captures the notion of

forgetting, but as this is in general impossible for classes of programs beyond Horn,

approximations are in order, which requires a more detailed look into the satisfied

properties.

• Concrete Operators: Preferably operators should provide results that are as similar

as possible to the given program with the aim to preserve the declarative nature of

ASP.

• Complexity: Even though forgetting is known to be computationally expensive, a

lower computational complexity is preferable.

• Program Class: Depending on the application, certain operators may not be suit-

able.

As our study shows, optimizing all criteria simultaneously, is not suitable. For exam-

ple, the classes that provide closer approximations of (SP) are computationally more

expensive, and simple concrete operators may only be defined for a restricted class of

programs. Still, we believe that our results together with the considerations on suitable

options for certain use cases provide substantial material to help making a choice that

balances these criteria.
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One important open issue is establishing further concrete operators that are efficient

(within the theoretical limitations imposed) and preferably provide forgetting results

that are as similar as possible to the original program to preserve declarative nature of

the programs, in the line of work by Berthold et al . (2019b). Other avenues for future

research include investigating the potential connections between forgetting and the work

on abstraction in the context of Answer Set Programs (Saribatur and Eiter 2018; Sarib-

atur et al . 2019; Saribatur and Eiter 2021; Saribatur et al . 2021). Alternatively, we may

further pursue forgetting over extensions of the syntax of logic programs, in the line of

the work by Aguado et al . (2019), where an extension of the syntax of programs by a

new connective, called fork, allows Strong Persistence to always hold (cf. (Berthold et al .

2019a)). Also interesting is to study forgetting with semantics other than ASP, such as

the FLP-semantics (Truszczynski 2010) following the work by Wang et al . (2014), or the

well-founded semantics (Van Gelder et al . 1991) as considered by Alferes et al . (2013);

Knorr and Alferes (2014). Finally, one ambitious open problem is the generalization to

non-ground programs with variables to be able to forget from ASP programs expressed

in first-order terms allowing then to forget predicates or constants.
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Gonçalves, R., Knorr, M. and Leite, J. 2016a. Forgetting in ASP: the forgotten properties.
In Logics in Artificial Intelligence - 15th European Conference, JELIA 2016, Proceedings,
L. Michael and A. C. Kakas, Eds. Lecture Notes in Computer Science, vol. 10021. Springer,
543–550.
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