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The bootstrap current in stellarators can be presented as a sum of a collisionless value
given by the Shaing—Callen asymptotic formula and an off-set current, which non-trivially
depends on plasma collisionality and radial electric field. Using NEO-2 modeling, ana-
lytical estimates and semi-analytical studies with the help of a propagator method, it is
shown that the off-set current in the 1/v regime does not converge with decreasing colli-
sionality v, but rather shows oscillations over log v, with an amplitude of the order of the
bootstrap current in an equivalent tokamak. The convergence to the Shaing—Callen limit
appears in regimes with significant orbit precession, in particular, due to a finite radial

electric field, where the off-set current decreases as vi/ >, The off-set current strongly
increases in case of nearly aligned magnetic field maxima on the field line where it

diverges as v, 12 in the 1 /v regime and saturates due to the precession at a level exceed-

ing the equivalent tokamak value by vy~ 172 where v}, is the perpendicular Mach number.
The latter off-set, however, can be minimized by further aligning the local magnetic field
maxima and by fulfilling an extra integral condition of “equivalent ripples” for the mag-
netic field. A criterion for the accuracy of this alignment and of ripple equivalence is
derived. In addition, the possibility of the bootstrap effect at the magnetic axis caused by
the above off-set is also discussed.
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1. Introduction

One relatively simple way to evaluate the bootstrap current in stellarators is to
use the long mean free path asymptotic formula of Shaing & Callen (1983) which
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contains all the information about device geometry in a geometrical factor indepen-
dent of plasma parameters. This way is especially suited for stellarator optimization
(Beidler et al. 1990; Nakajima et al. 1989) where multiple fast estimates of the boot-
strap current are required. Despite the fact that it has been derived more than 40
years ago, the validity range of this formula still remains unclear. Although the
same result is exactly (Helander, Geiger & Maassberg et al. 2011) or approximately
(Boozer & Gardner 1990) reproduced by different derivations, however, it is not
reproduced in the 1/v regime by numerical modeling (Beidler ef a/. 2011). Namely,
with decreasing normalized collisionality v,, the bootstrap coefficient does not come
to a saturation at the asymptotic limit but rather shows a complicated behavior which
is quite different at magnetic surfaces with different radii (Kernbichler et al. 2016).
In turn, in the presence of a radial electric field, numerical modeling shows a satu-
ration to the Shaing-Callen limit with decreasing v,. This feature of the bootstrap
coefficient regularly observed in the drift kinetic equation solver, DKES (Hirshman
et al. 1986; van Rij & Hirshman 1989) modeling, and later confirmed by various
codes of different types (Beidler ef al. 2011) has been pointed out to the authors of
a paper by Henning Maassberg (2004) more than 20 years ago, and, together with
the problem of bootstrap resonances (Boozer & Gardner 1990), it was the main rea-
son to start the development of the drift kinetic equation solver NEO-2 (Kernbichler
et al. 2008; Kasilov et al. 2014; Martitsch et al. 2016; Kernbichler ef al. 2016; Kapper
et al. 2016, 2018). Finally, we can present here the results of this long going effort.

Some of the reasons for the anomalous behavior of the bootstrap coefficient
described above have been identified recently (Beidler 2020) by using the general
solution of the ripple-averaged kinetic equation, GSRAKE (Beidler & D’haeseleer
1995), to determine the Ware-pinch coefficient, which is equivalent to the bootstrap
coefficient due to Onsager symmetry. Although instructive, these results are largely
of a qualitative nature, and one of the main purposes of this paper is to treat this
problem in a more analytical manner, with subsequent verification by numerical
modeling using NEO-2 and a simplified propagator method in order to provide
simple scalings and certain conditions useful for stellarator optimization. The chal-
lenges which such an endeavor must face will also be illustrated by considering the
extreme example of a so-called anti-sigma configuration - the antithesis of the model
field considered in Mynick, Chu & Boozer (1982) - for which the bootstrap coef-
ficient obviously diverges with decreasing collisionality over the entire v, range of
DKES computations. A second purpose of this paper is to outline a simple numerical
approach, utilizing the computations of the bootstrap coefficient in the 1/v regime,
to also allow computations in regimes where particle precession (in particular, due
to the radial electric field) is important, thereby providing an effective tool for the
optimization problem mentioned above.

As shown below, for the ‘anomalous’ behavior of the bootstrap coefficient, the
interaction between boundary layers separating co- and counter-passing particles
from trapped particles and the layers separating different trapped particle classes
from each other plays an important role. In collisionless asymptotic theories, these
layers are assumed infinitely thin and non-overlapping. This cannot be fulfilled at
irrational flux surfaces, where the number of trapped particle classes is infinite, while
the width of the layers is finite at any collisionality. Another reason is the interaction
of the trapped-passing boundary layer with itself, which happens in case of anti-
sigma configurations where the magnetic field maximum at a given flux surface is
reached on a line which splits the field line into non-equivalent segments exchanging
transient particles via the boundary layer. In both cases, an important prerequisite
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for anomaly is a finite bounce-averaged cross-surface drift of trapped particles, which
is absent in axisymmetric and nearly absent in sufficiently accurate quasi-symmetric
configurations showing no anomalies of the bootstrap current (Landreman, Buller &
Drevlak 2022).

We restrict our analysis here to the mono-energetic approach (Beidler ef al. 2011)
employing the Lorentz collision model, since this approach is sufficient for the
account of main effects related to the magnetic field geometry. Effects of energy
and momentum conservation pertinent to the full linearized collision model can be
recovered then with good accuracy from the mono-energetic solutions of the kinetic
equation using various momentum correction techniques (Taguchi 1992; Sugama &
Nishimura 2002, 2008; Maassberg, Beidler & Turkin 2009). This mono-energetic
approach is briefly outlined in §2.1 where also the basic notation is introduced.
In §2.2 we re-derive the Shaing-Callen formula (Shaing & Callen 1983) within
this approach in the 1/v transport regime in order to obtain an explicit solution
for trapped particle distribution accounting for various trapped particle classes.
The structure of this solution is quite demonstrative for the reasons behind the
‘anomalous’ behavior of the bootstrap current mentioned above. In that section, we
also extend the alternative derivation of Helander ef al (2011) within the adjoint
approach to the next order in collisionality. Although the obtained correction has no
effect on the resulting Ware-pinch (bootstrap) coefficient, it is useful for understand-
ing a certain paradox contained in this solution. Collisionless asymptotic solutions
are compared with numerical solutions for finite plasma collisionality in § 2.3 where
the cases with convergence of these solutions to the Shaing—Callen limit at low
collisionality are demonstrated. In §3 we examine the effect of collisional bound-
ary layers on the distribution function in the adjoint (Ware pinch) problem where
they lead to the off-set of this function from the value of collisionless asymptotic of
Helander et al. (2011) and respective off-set of the Ware-pinch coefficient. In par-
ticular, in § 3.2 we introduce a simplified approach (propagator method) to describe
this off-set in the leading order over collisionality with help of a set of Wiener—Hopf-
type integral equations. This set is infinite in the case of irrational field lines, and
becomes finite for closed field lines. In §3.3, with the help of this set, we derive
the conditions on the equilibrium magnetic field required to avoid the leading-order
off-set. We obtain a simple expression for the distribution function off-set in the
case these conditions are weakly violated in § 3.5, where we express these solutions
via two discrete functions tabulated using the numerical solutions of two respec-
tive infinite integral equation sets resulting from the linearization of the original
Wiener-Hopf-type set. In § 4 we examine the off-set of the distribution function and
Ware-pinch coefficient at irrational flux surfaces both numerically, with the help of
the NEO-2 code solutions at high-order rational magnetic field lines approximat-
ing the irrational surface (§4.1), and using the analytical estimates of the asymptotic
behavior of the off-set with decreasing plasma collisionality (§ 4.2). A related issue of
bootstrap resonances is briefly discussed in §4.4. In § 5 we study the effect of banana
orbit precession (in particular, due to a finite radial electric field) on the off-set of
the Ware-pinch coefficient and formulate there a simple bounce-averaged approach
for the account of this effect in computations of the Ware-pinch coefficient using
the numerical solutions for the distribution function in the 1/v regime. A qualitative
discussion of the off-set in the direct problem describing the bootstrap coefficient
is presented in § 6 where we also examine the possibility of bootstrap effect at the
magnetic axis. Finally, the results are summarized in § 7, where some implications
for reactor optimization are also discussed.
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2. Asymptotic models and finite collisionality

In this section, we review asymptotical long mean free path models of the
bootstrap and Ware-pinch effect in the set-up where all explicit and implicit assump-
tions used in derivations of those models are fulfilled. We use a standard method
(Hinton & Hazeltine 1976; Galeev & Sagdeev 1979; Helander & Sigmar 2002) to
re-derive transport coefficients in both cases, with a main focus on the boundary
conditions in the presence of multiple trapped particle classes. We verify these mod-
els by numerical computation and identify their applicability range and mechanisms
responsible for discrepancies at finite collisionality.

2.1. Adjoint mono-energetic problems on a closed field line

For the present analysis of bootstrap current convergence with plasma collision-
ality, a mono-energetic approach is sufficient, where a Lorentz collision model and
constant electrostatic potential within flux surfaces are assumed. The linear devia-
tion of the distribution function f from the local Maxwellian f), is presented as a
superposition of thermodynamic forces A; as detailed in Kernbichler ez al. (2016)

3
f=fu=Fu)_ gwA (2.1
k=1
where
1 on, e E, 3 0T, 1 97T, AE B
A1=—i—e————, Ay=— , A3=Mv (2.2)
Ny or T, 2T, or T, or T,(B?)

where, e,, m,, n, and T, are the a species charge, mass, density and temperature,
respectively, E,, E, are the radial (electrostatic) and parallel (inductive) electric
field, B is the magnetic field strength and (...) denotes a neoclassical flux surface
average. This reduces the linearized drift kinetic equation in the 1/v regime to a set
of independent equations

. ) ) 3 IAln
Lgo=020_° (p2B®)_y,.  Dp="" (2.3)
ap an an [.B?
which differ only by source terms
Bv,  9H, o B
= — 8 = —¢ , = s = . 24
SO= B T o S =280 S =g, 2.4)
where
/ |)\’| 2
H¢=W(3+’\ ) IVrikgpr, (2.5)

will be integrated along the field line later to give bounce integrals H; in (2.26).
Here, we use a field aligned coordinate system (r, ¥y, ¢), where r is a flux sur-
face label (effective radius) fixed by the condition (|Vr|) =1, ¥y =19 — ¢ is a field
line label, ¢ is the rotational transform and ¥ and ¢ are the poloidal and toroidal
angles of periodic Boozer coordinates (Boozer 1981; d’Haeseleer et al 1991),
respectively. Variables in the velocity space are parallel velocity sign o =v/|y|
and two invariants of motion, z =m,v*/(2T,) and n = v? /(v?B) respectively being
the normalized kinetic energy (playing a role of parameter) and perpendicular
adiabatic invariant (magnetic moment). The other notation is the pitch parameter
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A=v/v=04/1—nB, the mean free path /. =v/(2v,) defined via deflection fre-
quency v, (the same as v in Beidler ef al. 2011), radial guiding center velocity
vy =V - Vr, Larmor radius p;, = cm,v/(e, B) and the geodesic curvature given by

1 dr B, 0B 0B
IVrlke=(hx (h-V)h)-Vi=—(hxVB) - Vri=— (—2 -~ "),
B dy \ B, +(B, 09 07,

(2.6)

with h=B/B and i being the toroidal flux normalized by 27 and counted in the
toroidal angle direction for the right-handed coordinate system and in the opposite
direction for the left-handed system, and B?, B, and B, being contra- and covariant
components of the magnetic field in Boozer coordinates.

Neoclassical transport coefficients D, link thermodynamic forces A, by

3
I;=-n, Y DAy (2.7)
k=1

to thermodynamic fluxes Z; defined via particle, Iy, and energy, Q,, flux density
and parallel flow velocity V|, as follows:

_

I] = Fou IZ Ta

, I3 =Ny <V||[xB> . (28)

These transport coefficients are obtained by energy convolution of mono-energetic
coefficients (Beidler et al. 2011) D, with a local Maxwellian

2 [ .
Djk:ﬁf dzy/z €Dy (2.9)
0

Presenting neoclassical flux surface averages in the form of field line averages
explicitly given in field aligned variables by

-1

YN d N d
(@)= lim /—‘p 0, (2.10)
o \ | BY BY
%0 %0

the mono-energetic coefficients are given by

oN d -1 | oN 1/B
— . () + . . +
Djkszlllgloo /E 1 Z/ dQD/ dﬂs(j)g@:l}wilgw/dQS(;)é’(k),
@0 o==%1 0 Qy
(2.11)
where
a'(p.n,0)=a(p,n, —0). (2.12)

Definitions of thermodynamic forces and fluxes and, respectively, of diffusion coef-
ficients (2.9) here are the same as in Kernbichler et al. (2016) and coincide with
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those of Beidler ef al. (2011) for the reference field By = 1 except for the sign of A;.
The sign convention used here results in a simple Onsager symmetry for all trans-
port coefficients, D = Dy;, but negative coefficient D;; corresponding to plasma
conductivity.

For the present analysis, we solve the kinetic equation on the rational surface using
a ‘representative’ field line where necessary conditions valid for the irrational flux
surface are fulfilled. The flux surface average (2.10) at the irrational surface corre-
sponds then to the limit of the series of representative field lines closed after N turns
at respective rational surfaces, r =ry, where ((ry) = M/N, which converge to the
irrational surface, A}im t(ry) = t(r). The requested condition is Liouville’s theorem,

—> 00

which states that the integral over any closed surface of the normal component of the
guiding center velocity multiplied by the phase space Jacobian is zero for fixed total
energy and the perpendicular adiabatic invariant used as phase space variables. For
the magnetic surface with constant electrostatic potential, this means (Bv; /v;)=0,

where the surface integration is performed over regions where vi =v*(1 —7B) >0
keeping invariants z and n constant. The field line average form (2.10) of Liouville’s
theorem results in

-1

YN d YN d Bv'
v
fim ud / P2% _o, (2.13)
YN —> 00 B¢ Bq}U”
P Y0
for passing particles and in
YN
dqo Jmax d(pBU
li — = 2.14
lPNILnoo / B¢ Z / B‘pU” ( )

Y0

for trapped particles, where ¢; () and <p]7“ (n) are the left and right turning points,
being solutions to nB(go;.:) =1, index j enumerates local magnetic field maxima
B(g;) fulfilling B(¢;)n > 1 so that turning points are contained between maximum
points ¢; and ¢;,. The upper summation limit jy. = jmax (1, N) is the total number
of such maxima between ¢, and ¢y. For the “representative” closed field line with
@o at the largest maximum we require that conditions (2.13) and (2.14) are fulfilled
exactly for finite gy, i.e.

YN

. ¥
Jmax

[ avs=0. % [ dosu=0 (2.15)
=

L0

for passing and trapped particles, respectively (see (2.4)). We will call these
conditions “quasi-Liouville’s theorem™. In the devices with stellarator symmetry con-
ditions (2.15) are satisfied for closed field lines passing through the magnetic field
symmetry point ¢y which is obvious due to anti-symmetry of the geodesic curvature
(and, respectively, of v;, and s(;)) with respect to this point, s, (2¢ys — @) = —51)(¢).
Restricting our analysis to such devices with a single global maximum per field
period, the reference field line is then the one starting from the global maximum,
which must be located at one of (at least two possible) symmetry points ¢y € @gs.
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Representing flux surface averages (2.10) and (2.11) by the same expressions with-
out the limit ¢y — 0o, one can check that so defined mono-energetic coefficients
stay Onsager-symmetric. Namely, replacing source terms in (2.11) via equation
(2.3), integrating by parts and using the periodicity of the distribution in the pass-
ing region, g(¢o, n, 0) = g(¢n, 1, o) and its continuity at the turning points in the
trapped region, g((pf, n, 1) =g((pji, n, —1), we get

Dj = / d2 gq (1:80)) = / ds2 8Zj)1:g<k> = / dQ gl sy = Dy. (2.16)
Qn QN Qy
Thus, we can either compute the bootstrap coefficient D5, solving the direct problem

driven by s(;, or use its equality to the Ware-pinch coefficient D,; resulting from the
adjoint problem driven by s.

2.2. Collisionless asymptotic solutions

Omitting the drive index (k), asymptotic solutions of (2.3) in the long mean
free path limit /. — oo follow from the standard procedure where the normalized
distribution function is looked for in the form of the series expansion in /!

g((p7 na 6) =g—1(’77 0) +g0((p’ 77» 0) +gl((p9 n’ 6) + ceey (217)

where the leading-order term g_; is independent of ¢, and corrections satisfy

dg, 0 dg,
o8 _ % D']gl
dp  On on

) =+ 8,08, n=0. (2.18)

Equation (2.18) is integrated to

12

4
0 08,_ , _
Bl 10) =05 fdso’Dn o +oanof ' + o) (219

¢Pbeg Pbeg

where @y, = ¢ (17) for trapped particles and gye, = ¢y for passing, and we require
that each of g, is continuous at the periodic boundary and at the turning points.
Continuity at ¢ = ¢; means that g, is an even function of o in the trapped region,
g, = &.(n), while continuity at the periodic boundary in the passing region and at
Q= (p;f in the trapped region results in an equation for the integration constant g,_;
(solubility constraint for g,). The leading-order constraint for g, gives a bounce-
averaged equation for g_;

trapped 3 P Pend Pend
Z R / d¢'D, | + / dg's | =0, (2.20)
o==+1 87’] 877

Pbeg Pbeg

where @enq :<p;r(n) for trapped particles and ¢.,q = ¢y for passing, and the sum
trapped

>~ is taken for trapped particles only. Higher-order constraints result in equations
o==%l1
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for integration constants g,

trapped 9 9z Pend Pend a( _ )
P / d<p’D,,+/ do'D, =88 N o, w0, (21
= on |\ an an

Pbeg Pbeg

where g, — g, is determined by g,_; via (2.19).

Since boundary conditions for the collisional flux in velocity space restrict only
the whole solution (2.17), we have a freedom for setting boundary conditions for
individual expansion terms. Thus, we can require that this flux is produced by g_;

only
trapped Pend 9 trapped 9 Pend
3 / dgo’D,,a—g: £8 / dg'D,, (2.22)
o==+1 N o==%1 87)
Pbeg Poeg

while the corrections carry no flux so that (2.21) is integrated to

trapped 93 ¥end Pend a( 5)
Z 8&n / d(/’/Dn + / d(p/Dn 8n &n _ 0, n> 0. (223)
—t1 an an

7= Pbeg Pbeg

We apply this ansatz separately to the direct problem driven by source s(;, and to
the adjoint problem driven by source s,.

2.2.1. Direct problem
Due to the first condition (2.15), the bounce-averaged equation (2.20) for passing
particles is homogeneous

YN
o [ag
2% / d¢'D, | =0. (2.24)
an \ 9n

L0

Integrating it once and applying the boundary condition dg_;/dn = 0 at the strongly
passing boundary n=0 we get g_; =const. in the passing region. Since g_; is
continuous at the global maximum point ¢ = ¢, at the trapped-passing boundary
n=1/Bua, the function g_; can only be even. Since any constant satisfies the
homogeneous mono-energetic equation in the whole phase space making no con-
tribution to transport coefficients but only re-defining the moments of equilibrium
Maxwellian, we fix g_; = 0 in the passing region. In the trapped region, (2.20) is

o (7w #) =0 >
where we denoted
Q) Q)
non= [ ey o= [ deH, (2.26)
@; () @; ()
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FIGURE 1. Example of class-transition boundary introduced by local field maximum B!

(black dot) where three types of trapped particles meet (two “single-trapped” and one “double-
trapped”). Boundary conditions (2.28) are fulfilled by (2.27) due H;(n. —0) = H;j(n. + 0) +

Hj+l (me +0).

see definitions (2.3)-(2.5). Since dg_;/dn = 0 at the bottoms of local magnetic wells
n=1/By where H; =0 due to ¢; =¢; we can integrate (2.25) to

ag_1(n) _ _chj
an nl;

(2.27)

This solution automatically satisfies collisional flux conservation relations in all
boundary layers separating different trapped particle classes

9 ) 9 ) 9 @+
1,28 = | 1,2~ +| 1., 28 , (2.28)
on an an
nN=nNc—0 n=nc+o n=nc+o

where 7. =1/B", see figure 1, o denotes an infinitesimal number and the super-
script (j) on g_; denotes partlcle type trapped between the reflection points go It
Derivative (2.27) satisfies also the flux conservation through the trapped-passing
boundary n = n, turning there to zero, because only a single type of trapped par-
ticles exists near this boundary, and H;(n, + 0) =0 follows then from the second
condition (2.15).

Solution (2.27) is sufficient for the computation of the effective ripple (Nemov
et al. 1999) e, which determines device geometry effect on the mono-energetic
diffusion coefficient Dy, (and all other D,k for j, k <2 trivially related to Dy).
Substituting in (2.11) gq)=g-1 and sq, via (2.4), integrating the result by parts
over n and using the continuity of g_; through all boundary layers, changing the
integration order over ¢ and n results in

(2.29)

YN
- Ulc / / jmax(’] N) H2 4ﬁ UleLBZ 3
2

= —_— —_— ,

11 j:1 n I 97T R Bz eff
where 1, = 1/Bn. and n,, = 1/By;, are defined by global field maximum and min-
imum, respectively. The last equality (2.29) where R, and B, are reference values

of major radius and magnetic field, respectively, defines £ in the same way as
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equation (29) of Nemov et al. (1999), where quantities I ;(0") and H (D) are related
to the present notation by I; = I; and H; = 3B;"*n'*(o, B)™'H, with b’ = (Byn)~".
For the next-order correction gy, we notice that the first two terms in the right-
hand side of (2.19) are odd in o. Therefore, in the trapped particle region, equation
(2.23) for the integration constant (which can only be even there) is homogeneous,
resulting in gy = const. Due to the continuity of the distribution function across
the trapped-passing boundary, the integration constant in the passing region is the
same. We can again absorb this constant into the equilibrium Maxwellian, as we
have already done in the previous order when setting g_; =0 in the passing region.
Thus, substituting in (2.19) the derivative dg_;/dn via (2.27) and the source s = s,
via (2.4) and (2.5) we get explicitly
¢
8 / / ’ |)"(§0/7 77)| H/(U))
,1,0)=0— d' | H (¢, ) — ————— ), 2.30
go(p, n, 0) o / ® ( L@ m) B(@) L) (2.30)

¢; (m

where we have exchanged the derivative over n with integration in the first term
using H_ (¢; (17), n) = 0. It should be noted now that the integral over ¢’ is a discon-
tinuous function of 7 at the boundaries between classes n =7, where either ¢; (1)

or (pj(n) jumps. Respectively, the function g, contains a §-function 8(n — 7.), which
is required by particle conservation in the boundary layer. Namely, integrating (2.3)
over n across the boundary, we get

Ne+o

g
o / dﬂa— = Dn(@s 77)
%

Ne—0

n=nc+o

0g(e, n)
an

(2.31)

n=nc—o

Substituting here g=g_; + go and ignoring g, on the right-hand side where its
contribution is linear in collisionality we get

Ne+o

0 M@, n)| (H;(n. —o0)  H;(n.+o0)
o | dngg.n.o)="" ( " - ) (232)
dp B¢ (¢) \Ij(n.—o) Ii(n.+o)
Ne—0
which is an identity for g, in the form (2.30).
In the passing region where g_; =0, (2.19) results in
a ¢
w=oy [ e+ (2.33)
L0
where
93 o 2 |
0
Bl [ @), @34)
an  (IAD) < an? v

@0

follows from (2.23) and (...) denotes a field line average (flux surface aver-
age (2.10) with ¢y kept finite). This derivative has an integrable singularity at
the trapped-passing boundary, dg,/9n o< (17, — n)~'/* which follows from |Vr|ks
(¢ — @o) near the global maximum ¢ = ¢, (and ¢ = ¢y since the innermost inte-
gral is a single-valued (periodic) function of ¢ on the closed field line). Therefore,
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go 1s continuous at the trapped-passing boundary, where it is connected to go =0
in the trapped region. Moreover, the derivative of the full solution d9gy/d7n has no
singularity at this boundary (in contrast to dgy/dn). One can also check that this
derivative does not depend on the lower integration limit ¢, in (2.33) and (2.34)
which, therefore, needs not to be the global maximum point.

We can formally combine expressions (2.30) and (2.33) into

[A(e', M| Hj(n)

o0(n, o), 2.35
Be(9) Ij(n)>+gO(n o 33

4
0 / PN
gO(‘P» 77707):0—% / d§0 <H¢(¢’n)_
Pbeg

valid for the whole phase space with I; = I, and H; = Hy =0 in the passmg region
where they are given by (2.26) with the limits ¢q and @y instead of (p . Due to the
linear scaling of g, with velocity module v, we can evaluate energy 1ntegral in the
expression for the parallel current density of the « species substituting in (2.1) g = g
which is the only term contributing in the leading order

1/B
ju=e. [ s -s=c8 Yo [ wa (2.36)
o==1 0
where
3 0Py
= >¢ P —eunoE, ), Do =0y T, (2.37)
4BPL or

and we omitted the inductive current by setting A; = 0. Since go/ oy, is independent of
particle species, total current density is independent of E, in quasi-neutral plasmas,

1/B 1/B
Ji= Z]ua—CuBZ / d’?é’o:CBZU/ dn (go—g’o—ﬁ%),
o=l o=£l % n
(2.38)
where
CH=C||(”)=LZC0/P/L: i 3_]?’ P=ZPa, (2.39)
PL 2 4Bp, dor "

where p; denotes the Larmor radius of «’ species, and we used the condition gy =0
at the boundary n=1/B when integrating by parts in the last expression (2.38).
According to (2.35), the term gy, — go is a derivative which contributes only at the
lower limit n =0 where using explicitly (2.5) one gets parallel equilibrium current
density as

op |Vrlkg

| =—2cB— d/ —CB d —= 2.40

Ji BT ? 3R BY o f 7777 Jes + b (2.40)
% o==%1

Here, as well as in (2.34), the point ¢, must be at a global maximum because inte-

gration over 7 in the first term required the continuity of ¢y, at the trapped—-passing

boundary. Equation (2.40) naturally agrees with the ideal magnetohydrodynamic
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radial force balance which determines the Pfirsch—Schliiter current density jps up to
the arbitrary constant times B. Due to quasi-Liouville’s theorem (2.15), the current
density (2.40) is periodic, j;(¢n) = jj(¢o), so that the last expression (2.6) for the
geodesic curvature leads to

PN
0 dp
9%, ) By

L0

(2.41)

which is a “true” rational surface condition (Solov’ev & Shafranov, 1970). Using
the explicit form of H in (2.34) and taking the flux “surface average” (2.10) of
JiB thus eliminating the Pfirsch-Schliiter current which is driven solely by charge
separation potential and, therefore, must satisfy (jpsB) =0, we finally obtain the
bootstrap current density j, which scales with B as

(B?) ap
= —CA 2.42
B CApp—— ar ( )

(JiB)=J

Here, A, is the dimensionless geometrical factor A; given by equation (9) of Nemov
et al. (2004) in the case of normalization field B, = (B?)!/?

Vrik 32 A Vr kg B
hop = ( 2B d’l r|G d"" d’l B )
I?»I |A|* B¢

with (...) given for a closed field line by (2.10) with finite @y. It is convenient to
express it via the mono-energetic bootstrap coefficient (2.11)

voLB’

(2.44)

App =

in order to use it also for finite collisionality.
The separate contribution of trapped particle region to A,z is obtained by
replacement of the lower integration limit in (2.38) from 0 to 1, + o

¢
rlk
KZ"B=< /d i leb(3+/\)> Ay =+/1—n,B. (2.45)

2B B¢

L0

In the usual case of small magnetic field modulation amplitude ¢, < 1, this contri-
bution is of the order 811‘,;2 as compared with the first term in (2.43) and is of the
order &), as compared with the second term. Therefore, it can be ignored (Boozer &
Gardner 1990) as long as an exact compensation of bootstrap current, A,z =0, is
not looked for.

The factor (2.43) matches the result of Shaing and Callen, which is a natu-
ral consequence of using the same method. Namely, A,z = (1 — f.)(G,)/S where
S = dV/ dr is the flux surface area, fraction of circulating particles f. is given by
equation (56) of Shaing & Callen (1983), and geometrical factor G, is given there
by equations (75b) and (60c). In the case of negligible toroidal equilibrium current,
By =0, the result of Boozer & Gardner (1990) is also approximately recovered,

https://doi.org/10.1017/50022377825000200 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377825000200

Journal of Plasma Physics 13

Apg = A¢B, dr/ dy + O(enm), where the quantity A, is given by equations (51), (53)
and (54) of Boozer & Gardner (1990), ignoring the small trapped particle contribu-
tion and other corrections linear in g, (in the case of a circular tokamak, A,z =~ AA,
where A is the aspect ratio).

Note that the trapped particle distribution function here is formally the same as the
one given in the implicit form by equation (54) of Shaing & Callen (1983) omitting
there the ripple plateau contribution absent in our case where we ignored banana
precession (cross-field drift within flux surfaces) already in the starting equation
(2.3). On the other hand, we obtained also the explicit expression for its odd part,
(2.35), which is demonstrative for the distribution of the parallel equilibrium current
in the velocity space. It can be seen that a significant part of this current (essentially
of the Pfirsch—Schliiter current) flows in the boundary layers between trapped par-
ticle classes (but not in the main, trapped-passing boundary layer). The origin of
these localized currents is the same as the origin of the Pfirsch—Schliiter current in
all devices, i.e. they remove charge separation introduced by the radial particle drift.
However, in contrast to tokamaks (and tokamak-like part of the current in stellara-
tors) where compensation currents are produced in a long mean free path regime
within a single turn of particle bounce motion due to the finite radial displacement
during this time, localized currents serve to compensate charge separation by finite
bounce-averaged drift, which accumulates on much longer collisional detrapping
time. Interpreting the source term s, (2.4), in the regions where it is positive as
a source of ‘particles’ and where it is negative as a source of ‘anti-particles’ whose
total amount generated at the flux surface is the same as the amount of ‘particles’,
being a consequence of quasi-Liouville’s theorem (2.15), we see that particles (or
anti-particles) accumulated in the local ripple wells due to the finite bounce-averaged
drift, H; #0, can only leave the wells due to collisional scattering flux through the
class boundaries (see figure 1). Since local collisional flux density generally needs
not be continuous at this boundary, dg_;(n —0)/0n # dg_(n + 0)/dn, a significant
amount of particles (anti-particles) is re-distributed through the boundary layers,
which is manifested by the é-like behavior of gq, (2.35), being, up to a factor, a
parallel flow density in velocity space.

The asymptotic series expansion (2.17) can be continued to the next order, lead-
ing to the correction g;. This correction, however, has a non-integrable singularity
at class-transition boundaries, g, o (n — n.)~> (in contrast to integrable singularity
of gy oclog |n — n.|), which is a consequence of finite geodesic curvature at respec-
tive local field maxima. Therefore, contributions of different order corrections to
the collisional flux density in the matching conditions (2.31) become comparable
at finite collisionality for |n —n.|=8nocl /> o v'/?, where dgo(n)/dn~én~" and
dg1(n)/dn ~17'6n~>. In other words, the expansion (2.17) breaks down at the edge
of the boundary layer of width 5. Respectively, matching interval o in (2.28), which
is an infinitesimal for vanishing collisionality, should satisfy én <« o < n for finite
collisionality, which means that the error of the asymptotic solution scales with /v
rather than with v. Since the particle-anti-particle re-distribution flux manifested by
d-functions in asymptotic expression (2.35) for g, is independent of collisionality, we
can estimate the odd part of the distribution function which carries this flux in the
class-transition boundary layers as g°% ocdn~" o I!/? oc v=1/2,

As shown below, the presence of these strong parallel flows in class-transition
boundary layers is actually responsible for the ‘anomalous’ behavior of the bootstrap
current at finite collisionality.
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2.2.2. Adjoint problem

The asymptotic solution of the adjoint problem has been derived by Helander et al.
(2011) omitting in the correction gy, which determines particle flux, the ¢ indepen-
dent part g, which does not contribute to this flux and, respectively, is not needed
for the Ware-pinch coefficient. Here, we extend this derivation in order to obtain
the complete even part of this correction useful for the interpretation of numerical
examples in the following sections. The leading-order asymptotic solution is odd in
o and is given by the bounce-averaged equation (2.20) for the source s, see (2.4),
with the same boundary conditions as previously as

oNn n oN -1 n
/de/d”/dD l/d’<Bz> (2.46

g-1=0 ¢ B nn ¢D,| =ol n T’ 46)
b0 n $0 n

in the passing region, and g_; =0 in the trapped region. The next-order correction
results from (2.19) in the trapped region in

¢ 12 @
~ /BZ ~ /BZ
aem=o [ dosoramn=[ & ram=[ wi=gw. e

¢; v; @b
where we integrated (2.23)
35, B (¢7) d¢;
9% _ Be;) d¢; (2.48)
an  BY(p;) 9n

from the trapped-passing boundary and included an arbitrary integration constant
into the lower integration limit ¢, being, therefore, an arbitrary constant too.
This constant is the same for all classes due to continuity of g, at class-transition

boundaries.
In the passing region, solutions of (2.19) and (2.23) result in
[ (B 9 (B 1Al
=] do| —— —— 2.49
8ole, m) / ¢ (B‘P 0 (A) B ) 8o(n), (2.49)
Pb
where

] "
do'— C,, 2.50
2olm = /W <|| i |x| / >+ (2.50)

and where C, are different integration constants of (2.23) for ¢ = +1. Similar to
the solution of the direct problem, derivative dgy/dn of the function (2.49) does
not depend on ¢, in the passing region. Actually, the lower integration limit ¢,
in (2.49) and (2.50) enters g, via a periodic function of ¢, which adds up to
the integration constant C, (this follows from explicit evaluation of ago/aq)b_
((B*) — B*(¢s)) / B*(¢) whose integral over the whole range ¢, < ¢, < @y is zero).
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Function gy has an integrable logarithmic singularity at the trapped-passing bound-
ary, go «log(n, — n), in particular, due to such singularity of d(|A|)/dn which, up
to a constant factor, is a bounce time. Next-order correction shows again that series
expansion breaks down in the boundary layer, |1, — n| < 8n ol /2.

In order to fully determine g, in the whole phase space we must express three
integration constants, ¢, and C,, via a single constant which is the only degree
of freedom re-defining an equilibrium Maxwellian. For that, we must match the
solutions through the trapped-passing boundary where g, is singular, but first it
is convenient to split gy into even and odd parts in o, gy =g + gJ%, where
gy is given by (2.47)—(2.50) with replacement of C, by a constant Cg., and
ggdd =0Coya®(n, — 1), where ®(x) is a Heaviside step function, and C,q4 is another
constant.

Function g{%® is of no interest in the following since it does not contribute to the
Ware pinch but only provides a correction to the leading-order solution (2.46). As
for g¢*°", we still need to determine it formally in the boundary layer identifying there
its most singular part. For this purpose, we take the odd part of (2.3) and, similar
to (2.32), and integrate it across the boundary layer ignoring the contribution of the
source term and retaining only the leading-order solution (2.46) in the collisional
flux through the boundaries of integration domain

o " (BY) |2 (B%) ||
even n n
v f dn g5 " (e, n)=( —) —>< —) ) (2.51)
T o Be) T i B,
np—An

Here, 6n < An < n,, 61 is the boundary layer width and the last expression corre-
sponds to the collisionless limit An — 0. Thus g¢**" can be formally presented near
the trapped passing boundary as

¢
,1{B?) 2| -
even _ o _ d L C, ou Fo) s 2.52
8o (5 — ) / ¢ Be T O +o(n7) (2.52)

Pb

where C,, 1s yet another integration constant, and the last term provides a vanish-
ing contribution to the n-integral in (2.51). Similar to the passing particle solution
(2.49), which is defined for the whole closed field line and which is a periodic func-
tion of ¢ with period ¢y — ¢, boundary layer solution (2.52) is formally defined
for the whole field period too and must be a periodic function as well. In order
to be periodic, function (2.52) must be discontinuous over the variable ¢, and the
only point where a jump restoring the periodicity is possible, as we see below, is the
global maximum point ¢ = ¢, (and ¢ = ¢y). This discontinuity requirement leads to
a certain paradox because, according to (2.3), the distribution function is continuous
with ¢ everywhere in the range where nB(¢) < 1, which includes the whole trapped-
passing boundary approached from the passing side, n = 1, — 0, which in turn seems
to contradict the discontinuity of the function (2.52). To resolve this paradox, we
note that a formal representation with a §-function actually assumes a small but finite
width of the boundary layer, which is partly located in the passing particle region
where the distribution is strictly continuous with ¢, and partly in the trapped particle
region where it is continuous too except a small forbidden region with nB(¢) > 1

even

located near the global maximum. Discontinuity of g¢**" within this trapped part
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of the boundary layer is sufficient to provide the required jumps restoring the
periodicity.

Similarly to the boundary layer, the periodicity argument means for the trapped
particle distribution that its integral form (2.47) determined via ¢, from the interval
Yo < @, < @y can be used only in the same interval, ¢y < ¢ < @y. Thus, an extension
of (2.47) and (2.51) to the infinite ¢ range is obtained replacing there the lower
integration limit ¢, with @, + (py — @) [(¢ — o)/ (¢xy — @o)], where [...] denotes
the integer part. As already mentioned above, the passing particle solution (2.49)
is valid for the infinite ¢ range as is. We can actually combine all these periodic
solutions for gi**" in one multiplying so extended trapped particle solution (2.47)
with ®(n — n;), adding an even part of the passing particle solution (2.49) multiplied
with ®(n, — n) and then adding an extended boundary layer solution (2.52).

In order to eliminate from such a combined solution, all but one unknown con-
stants out of three, ¢;, Ceyen and Cpo,, We use the stellarator symmetry of our closed
field line such that B(2¢, — ¢) = B(¢) and B?(2¢, — ¢) = B?(¢), where ¢, is a sym-
metry point. We use the fact that the stellarator-symmetric part of the generalized
Spitzer function g = g@, given by gym(@, n, 0) = (g(@, n,0) + g*(¢, n, 0)) /2 with
g (p,n,0)=gQRp, — ¢, n, —o) can only be a constant. Namely, it can be checked
that g* satisfies the same (2.3) but with an opposite sign of the source s, and,
therefore, g* = —g + C, where C is an arbitrary constant. Thus, gym =C/2 in the
whole phase space. Introducing now a stellarator-antisymmetric part of the dis-
tribution function, g.ym(®,n,0)=(g(@,n,0) —g*(¢,n,0)) /2, we can split our
solution g¢*" into stellarator-symmetric and stellarator-antisymmetric parts, g¢*" =

8ym T &aym- Thus, we obtain that stellarator-antisymmetric part of the combined
g5'®" does not contain any unknown and is determined by
12
T B0 (g _ B A 0.5
gasym (p’ 77 - (p B(" an 77h 77 <|)\’|> Bw ) .

Ps

where ¢, is fixed now to a second stellarator symmetry point ¢, = (¢y + @) /2 which
necessarily exists besides the global maximum point ¢,. Solution (2.53) is given here
only for ¢y < ¢ < ¢y and can be extended to the infinite ¢ range replacing there
@, with ¢, + (on — o) [(¢ — ©o)/(pn — @o)]. Such an extended expression is stel-
larator antisymmetric with respect to symmetry points of both kinds (in particular,
anti-symmetry with respect to field maximum points @y + k(¢y — @), Where k are
integers is enabled by the discontinuity of the extended lower integration limit at
those points) and is independent of an arbitrary constant ,.

In turn, all the unknown constants enter the stellarator-symmetric part of the
combined solution g¢**" which is of the form

Ps Bz Ps (Bz>
gsym Z/ d§0 E + ®(nb - 77) Ceven - / dQD F
b Pb

Ps
,n(B?) |A]
+38(mp —n) / de Wﬁ + Coou | - (2.54)

Pb

Since this function can only be a constant, we must set Ce., and Cp, so that
they annihilate respective brackets multiplying the Heaviside function and §-function
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which permits setting n =1, in the sub-integrand in the latter bracket. Finally, the
remaining first term can be, as usual, absorbed into the equilibrium Maxwellian so
that the whole final solu‘uon 86" = &aym 18 given by (2.53). The only difference of
this solution from equation (12) of Helander ez al. (2011) is the lower integration
limit ¢, which is the second symmetry point (usually global minimum) instead of a
global maximum point ¢.

Substituting (2.46) and (2.53) for gy =g-1+ go in (2.11) we obtain the mono-
energetic Ware-pinch coefficient as

- 1
Dis = zupi By, (2.55)

with the geometrical factor given by

1/B

] \Vrlke 8

A== dn g&ven — (BIAl+ AP)). 2.56
ln 2<f g 817(||+||)> (2.56)

0

Exchanging in this expression the integration order over n and ¢ and integrating
by parts over ¢ within the motion domains @yes(17) < ¢ < @ena(n) We use conditions
(2.15) to eliminate contribution from the integration limits. Thus, only the deriva-
tive dgo/d¢ can contribute. Integrating the result by parts over n in the term with
®(n, — 1), one finally obtains AZB = Ay given by (2.43).

It should be noted that, in contrast to the solution of the direct problem, the
solution of the adjoint problem (2.53) is regular at all class-transition boundaries and
has a §-like behavior only in the boundary layer at the trapped-passing boundary
where finite collisionality scaling of g is g®" ~ [/ ~v~1/2. As shown below,
interaction of this boundary layer with locally trapped particle domains is responsible
for the ‘anomalous’ behavior of the Ware-pinch coefficient at finite collisionalities.

2.3. Finite collisionality, numerical examples

For the numerical tests, we use the drift kinetic equation solver NEO-2
(Kernbichler et al. 2008; Kasilov et al. 2014; Martitsch et al. 2016; Kernbichler
et al. 2016; Kapper et al. 2016, 2018), which, generally, employs a full linearized
collision operator including the relativistic effects (Kapper et al. 2018). Here, we
restrict its collision operator to the Lorentz model only. The magnetic field model
corresponds to a circular tokamak with concentric flux surfaces (8 = 0) and with a
toroidal ripple-like perturbation, given in Boozer coordinates by

—1/2

2
By 9) COS(n(p)) . (2.57)

3020 (r)

Here, By(r, ¥) is the unperturbed field, Byo () is the (m, n) = (0, 0) harmonic of this
field and &), is the modulation amplitude. It can be checked that this field fulfills
“true surface” condition (2.41) at all rational flux surfaces, which is a property useful
for the studies of bootstrap resonances briefly discussed in §4.1. We fix n =3 and
ey = 0.1 and consider two cases of the rotational transform ¢t = 1 /g with ¢t =1/4 and
t=2/5, where the field line is closed after one and two poloidal turns, respectively.

The normalized bootstrap coefficient (2.44) computed by NEO-2 for the above
two cases as a function of the normalized collisionality v, =7 Rv, /v =7 R/(2l,) =

B(r, 9, ¢) = By(r, ¥) (1 +eu
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FIGURE 2. Geometrical factor A,p computed by NEO-2 (blue) for different normalized colli-
sionalities v, and computed from the Shaing—Callen limit (2.43) evaluated by NEO (red) for
t = 1/4 (left) and « = 2/5 (right). Black dashed lines show the result of NEO-2 for axisymmetric
fields (epr = 0).

mv*, where R is the major radius of the magnetic axis and v* is the definition of
Beidler et al. (2011), is compared with the Shaing-Callen limit (2.43) in figure 2.
(The latter asymptotic limit is computed here using the code NEO (Nemov et al.
1999, 2004), which should not be confused with the drift kinetic code of Belli and
Candy (Belli & Candy 2015) having the same name.) It can be seen that the asymp-
totic value is abruptly reached in both cases at rather low collisionalities v, ~ 1076
with the collisional A,z dropping briefly below the Shaing-Callen limit prior to con-
vergence. Naturally, the normalized Ware-pinch coefficient AZ 5 (2.55), differs from
bootstrap coefficient only by small numerical errors and cannot be distinguished in
this plot. For the studies of the off-set of collisional bootstrap (Ware-pinch) coef-
ficient from the asymptotic value seen at low but finite collisionality, we examine
the distribution function computed by NEO-2 in the direct and adjoint problems
separately.

2.3.1. Direct problem

An odd part of the distribution function perturbation g°“ responsible for the boot-
strap current in the direct problem is shown in figure 3. One can observe the
appearance of boundary layers around class-transition boundaries (but not at the
trapped-passing boundary) with decreasing collisionality. It can be seen that, at low-
est collisionality, v, = 10~°, where the asymptotic limit is reached in figure 2, the
highest class-transition boundary layer corresponding to two highest local maxima
becomes clearly separated from the trapped-passing boundary.

The distribution of the parallel equilibrium current in velocity space is better seen
from figure 4, where an integral fnl/ ® dn’ g° is shown at the middle of the field line
(¢ = ¢, = 5). According to (2.38), the value of this integral at n =0 up to a factor
equals the parallel equilibrium current density. It can be seen that the contribution
of the trapped particle region to the parallel current is independent of collisionality
despite the varying width of the class-transition boundary layers which carry a signif-
icant amount of this current. Off-set of the current which depends on collisionality is
produced in the passing particle region. Solution g°¥ in this region is determined up
to arbitrary constant, which should match then the solution in the trapped-passing

odd
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FIGURE 3. Odd part of the distribution function, g°% (¢, n) = (g(¢, n, 1) — g(@, n, —1))/2,
driven by s(1) for different normalized collisionalities v, (see the legend) in case ¢ = 1/4. The
trapped—passing boundary is shown by a white dotted line.

boundary layer. At sufficiently low collisionalities (v, < 107°), where the bootstrap
current is independent of collisionality, the nearest class-transition boundary layer is
well separated from the trapped-passing boundary (see figure 5), and the boundary
condition for passing particles is fully determined by the last trapped orbit nearest to
the boundary between the trapped and passing particle domains (Boozer & Gardner
1990). The rest of trapped particle domain has no effect on the passing distribution,
because ‘particles’ generated by bounce-averaged drift in the first local ripple fully
annihilate in class-transition boundary layer with ‘anti-particles’ generated in the last
local ripple where the sign of geodesic curvature is opposite to the sign in the first
ripple. At higher collisionalities (v, > 107°), where the trapped-passing boundary
layer crosses the class-transition boundary, some part of the ‘particles’ generated in
the first ripple (where source s, > 0) and leaving this ripple with positive velocity
(in the direction of a local maximum) when changing due to collisions their trapping
class, can later cross the trapped-passing boundary without mirroring and enter a
co-passing particle domain. Similarly, ‘anti-particles’ from the last ripple enter the
counter-passing domain. Both create a current off-set of the same sign. Naturally,
they cannot annihilate because they enter different domains.

Note that at some intermediate collisionality off-set changes sign (see figure 2).
In this case, the class-transition layer is almost isolated from the trapped-passing
boundary, so that the probability to enter the passing domain after a single pass along
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FIGURE 4. Integral [ ,71 /B dn’ g°4 as a function of the lower limit (left), and its zoom near one

of the class-transition boundaries (right) for various plasma collisionalities (see the legend) at
¢ = Smr. The trapped—passing boundary is shown by a vertical dotted line.
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FIGURE 5. Odd part of the distribution function g®d near the trapped—passing boundary
(vertical dotted line) at ¢ = Sm for various collisionalities (see the legend).

the boundary layer is lower than the probability to do that after the first reflection
near the global maximum. In such a case, most ‘particles’ enter counter-passing
domain (‘anti-particles’ - co-passing) which results in negative current off-set.

2.3.2. Adjoint problem

An even part of the distribution function perturbation g*" responsible for particle
flux (Ware pinch) in the adjoint problem is shown in figure 6 for the same cases as
in figure 3. As expected, the boundary layer appears at low collisionality only at the
trapped-passing boundary. The structure of this layer well agrees with the complete
analytical solution (2.53), i.e. g**" is an anti-symmetric function of ¢ with respect to
the middle stellarator symmetry point ¢;.

Similar to the direct problem, if the trapped—-passing boundary layer is well sepa-
rated from the nearest class-transition boundary (lowest collisionality case, v, = 107%)
the Ware-pinch coefficient agrees with the asymptotic limit. At higher collisionali-
ties where this boundary layer enters a class-transition boundary, one can observe

even
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FIGURE 6. Even part of the distribution function, g*" (¢, n) = (g(¢, n, 1) + g(@, n, —1))/2,
driven by s(3) for the same cases as in figure 3. The transition boundary between the two highest
trapping classes is shown by a white dotted line.

increased g©'*" in the local ripple wells whose lowest maximum determines this transi-
tion boundary. This accumulation of the particles in local ripples drives the off-set of
Ware pinch since g®*" there is anti-symmetric with respect to the mid-point ¢, = 57,
which is true also for geodesic curvature and, respectively, for the bounce-averaged
radial drift velocity in these local ripples. Therefore, particles in both ripples drive
the flux of the same sign. In the following, we will call such ripples ‘off-set wells’. As
one can see from figure 7, g®°" is constant in most of the off-set well, and changes
only in the vicinity of class-transition boundary. Therefore, we can characterize g**"
in the whole off-set well by its value at the off-set well bottom, which will be denoted
as gor. It can be seen that g, has similar feature to A,p, i.e. it changes sign with
reducing collisionality before going to zero.

Properties of this distribution function off-set, which was also observed in
GSRAKE modeling (Beidler 2020), will be studied in more detail in the next sec-
tion. Here, we only show an extra example in figure 8§ where more than one type
of off-set wells is present simultaneously with different types of off-sets dominating
at different collisionalities. In this example, both off-set wells containing only the
lowest class of trapped particles who traverse a single minimum during their bounce
period (as in figure 6) and an off-set wells containing many classes are shown. Note
that trapped-passing boundary layer which has a standard (collisionless) form at
lowest collisionality v, = 10~¢ appears to be split into two independent layers at the
intermediate collisionalities v, < 10~* where mismatch of two local maxima located
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FIGURE 7. Even part of the distribution function g°" as a function of 5 in the middle of the
left off-set well, ¢ =47 /3 for various collisionalities (left) and ¢ = 1/4. The trapped—passing
boundary is shown by a vertical dotted line. The value of g®¥" at the off-set well bottom, gpot,
is shown as a function of v, in the right plot.
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FIGURE 8. The same as in figure 6 for ¢ = 2/5 and different collisionalities (see the legend).

near the middle of the field line with the global maximum becomes small compared
with the typical boundary layer width (see the discussion of a few global maxima
case after (2.53)). Thus, the off-set phenomenon has a rather high complexity even
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in the simple case of a closed field line which is, nevertheless, illustrative for real-
istic configurations. In particular, switching off-sets can be observed in figure 3 of
Kernbichler et al. (2016) where bootstrap coefficient has been computed for W-7X
down to collisionalities v, = 107°.

3. Bootstrap/Ware-pinch off-set for a closed field line

Let us study the bootstrap/Ware-pinch off-set phenomenon in more detail. Since
both effects are quantitatively the same due to the Onsager symmetry of the transport
coefficients, we focus now on the Ware-pinch effect only.

3.1. Boundary layer e-folding

As we have seen from asymptotic solutions and numerical examples in both direct
and adjoint problems, the distribution function gy, which is independent of colli-
sionality in most of the phase space, includes huge contributions localized in the
boundary layers where they scale as [}/ ~ v='/? and formally become infinite in the
collisionless limit manifested by §-functions in the asymptotic solutions. To estimate
the decay of these localized contributions outside the boundary layer, we consider
the homogeneous kinetic equation (2.3) and use the ansatz which is only slightly
different from the ansatz of Helander ez al. (2011) and leads to the same approxima-
tion at the end. Namely, we replace in the trapped particle domain the independent
variable ¢ with

¢
To de’ |\
O =0y (9, 0, 0) = — , 3.1
w=tutono)="" [ G.1)
¢

where the integral I; =1;(n) is defined in (2.26). Thus, particles with A >0 are
described by 0 < 6y < m, particles with A <0 are described by —7 <8y <0 and
continuity of the distribution function at both turning points is enabled by periodicity
of g with 6. Formally presenting the homogeneous equation (2.3) in tensor form

el , .08

—J\V'g—-D'— ) =0, 3.2

07! J ( 8 dz/ ) 3.2
where z' = (¢, n), and transforming the contra-variant components of the phase

space velocity V' and diffusion tensor D" and the Jacobian J to the new phase
space coordinates (0y, 1) using tensor algebra rules, this equation takes the form

0 ad a 00 0 0y 0
% _ (L4 2P p, (98 %8 (3.3)
30y an 00y 9dn an an 00y
where differential operators d/9n and 9/96y act on everything to the right, and
ni;
Dy =Dy(n) =—=. (3.4)
l,

Expanding the distribution function in Fourier series over 9y,

g(GH’ 77)= Z 8im] eimOHv (35)

m=—00
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equation (3.3) turns into a coupled set of ordinary differential equations for Fourier
amplitudes gp,,;(n). It should be noted that terms with 96, /0n which lead to the
coupling of Fourier modes are negligibly small in most of phase space except for
the close vicinity of the boundary (sub-layer (Helander et al. 2011)) where due to
the scaling 3°0y/9n> ~n~'(n —n,)~" their contribution is comparable to the left-
hand side which means the sub-layer width n — n, ~ v, < /v.. Thus, one can ignore
the right-hand side terms with derivatives over 6y outside the sub-layer, and the set
decouples into

0 ag ml

IMgim = 8nDH o

(3.6)

Harmonic

A
8[0]—21 Z/ | |g, (3.7)

—:l:l

is actually zero in our case because §-like terms in the direct problem are odd, and
the solution of the adjoint problem is stellarator antisymmetric. Ignoring in (3.6),
variation of Dy in the main boundary layer, Dy ()~ Dy(n,), which brings this
equation in agreement with the result of the “rectangular well” ansatz of Helander
et al. (2011), we look for solutions in the form gy, o exp(k,,(n — 1)) with the m =1
harmonic being dominant with increasing n — ;. Thus, boundary layer contribution
decays outside the layer as

Agi ~ a exp (niﬁn_ ”) (co (”ban +¢) cos (104])

—o sin ("”5_" +¢) sin(l@Hl)), (3.8)

where |65| = |04 (@, n)|, and 87, is boundary layer e-folding length,

2,1 () AB\"* (v,A@\'"?
80, =~/2Dp(ny) = | —LT ~ o, [ = : (3.9)

7l B 21

estimated in the last expression via typical variation of B in the magnetic well AB
and toroidal extent of the boundary layer Ag.

In figures 9 and 10, the boundary layer contribution represented by the difference
Ag =g — go between the numerical (NEO-2) and analytical (2.47) solutions of the
adjoint problem is compared with the asymptotic boundary layer solution Agg, given
by (3.8) with amplitude a and phase ¢ fitted to match Ag in the upper left plot of
figure 9. Oscillations of Ag with 5 in figure 9 result from interchanging dominance
of “particles’ and “anti-particles” which enter the trapping domain and become
mirrored there once (twice, etc.). Since the observation point in the last three plots
is in the region ¢, < ¢ < @y, “particles” dominate there over “anti-particles” in the
first peak (see also figure 6) which they produce before the first reflection. The
above mechanism results in helical structures in g(¢, A) distribution formed in the
trapped particle domain (see figure 10). They are produced by the combination of
the collisionless phase space flow (which is clockwise in this domain) and the flow
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FIGURE 9. Difference Ag and the fit Agg, (3.8) for the case v, = 10~% in figure 6. Upper left —
even and odd parts as functions of ¢ for n — 1, = 0.07. Upper right — even parts as functions
of n for ¢ = 197/3 (7th local maximum). Lower panel — zooms of the upper right plot over the
Y-axis. Dashed line in the last zoom corresponds to the NEO-2 result for g¢°" — g;_o, where
gr=0 is g for standing particles with n = 1/B. Function g,—o differs here from go = g{, by
an exponentially small off-set.

driven by the collisional diffusion (directed over A to the trapped particle domain
from the co- and counter-passing particle domains, where sources of “particles” and
“anti-particles” are located, respectively).

Note that oscillatory behavior similar to that in figure 9 is seen also in the class-
transition boundary layers in figure 5 and is reflected then in the small bootstrap
off-set oscillation in figure 2 at low collisionality, where it decreases exponentially.

3.2. Propagator method, leading-order solution

For more detailed analysis of boundary layer effects on bootstrap/Ware-pinch off-
set, we use propagator method. We look for the solution of the adjoint problem in
the whole phase space in the form

2oy (@, n,0) =00 —n)g_1(n) + g(®) + gvou(®, 1, 0), (3.10)

where g_; and g are given by (2.46) and (2.47), respectively. The kinetic equation
(2.3) corresponding to the source s, transforms to

i’gbou=sbou+ As, (311)
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FIGURE 10. Difference Ag (left) and its fit Agg, (right) as functions of (¢, n) and o = 1 (upper
panel) and (¢, 1) (lower panel) for the same case as in figure 9. Saturation of color scale at
|Ag| > 5000 occurs in the whole passing particle region. Fit Agg; is plotted excluding pass-
ing particle domains and local trapping domains where Agg; is not defined. Red dotted line in
Ag(p, 1) plot shows the trapped—passing boundary where transient particles move clockwise.

where the source terms are

~ D, (B
sbou—alc(s(nb_n) <|)\‘|> ) (312)
b
o D, (B> d B?
A5 ==al O~y <n|<x|>>_”lﬂ s -, [ dn’imi (3.13)
n

In the following, we use a formal solution of (3.11) in terms of its Green’s function,
which makes it evident that the last term in (3.13) does not contribute to the solution
since n-integral of this term weighted with any function with finite derivative over n
is zero. The remaining term, as we check later, provides a correction of the order
87, to the solution driven by sy0,, (3.12). Thus, we ignore As fully in the leading-
order solution. Note that g,., is an aperiodic function in the passing region due
to aperiodicity of g/ in the definition (3.10). The leading-order solution is treated
nevertheless as periodic, with the aperiodic term included in the ignored correction
driven by As. It should be noted that correction terms ignored here may become
important in a special case where the leading-order solution tends to vanish. These
cases are discussed below in §§ 3.3 and 4.3.
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FIGURE 11. Computation domain before (left) and after (right) simplifying transformation.
Trapped—passing boundary 1 =, and matching boundary n =, are shown by black dotted
and red solid line, respectively. Original domain boundary n = 1/B(¢) (solid blue), field max-
ima ¢; (dashed black) and boundaries of interface regions ¢; &= §¢ (dashed red) are shown in
the left plot. Reflecting (solid) and transparent (dashed) boundaries of the transformed domain
are shown in the right plot.

We make the following simplifications. As follows from the analysis in § 3.1, solu-
tions driven by sources located in the passing region or at the trapped-passing
boundary tend exponentially to constants of n at some sufficiently large distance
from the trapped-passing boundary, n > n,,, where matching boundary n,, satisfies
e K Ny — Ny K Nnp. Generally, these constants can be different in different ripple
wells in case they are bounded on both sides by the maxima fulfilling n,,B(¢;) > 1,
see figures 6 and 7. Thus, we solve (3.11) only in the domain 5 < n,, imposing at
the matching boundary zero flux condition, dgyou (¢, N, 0)/3n,, = 0. The boundary
n = n,, serves then as an upper boundary in most trapped particle domain, except the
interface regions near the global maximum and local maxima fulfilling n,,B(¢;) > 1,
where 7, B(¢) > 1, see figure 11. Since the widths of these regions §¢ are small at
low collisionalities, 8¢ ~ Bdn!/? (823/8<p2)71/2 o714, we ignore the collision and
source terms there, which leads in such a leading-order solution to an error of the
order |A|8¢ ~ (6n.B)*8¢ ~ 8n,B>*"? (823/8902)_1/2 o [7'2, being of the same order
as an error introduced by ignoring the sub-layer in §3.1. (For this error estimate
in the main boundary layer, |n — n,| ~ 87,, we compared the variance 2 [ d¢D, in
particle n introduced by the collisions when traversing the interface region with such
variance for the whole trapping region assuming in the latter for simplicity that both,
A and the region extent in ¢ are of the order one. The error of the above model is
of the order of one within the sub-layers, where effect of collisions on A becomes
comparable to the effect of mirroring force, but the overall contribution of these
narrow sub-layers is similarly small.)

The solution is trivial in the interface regions, and we can express it via mapping
between the boundaries ¢; &= d¢ where ¢; is maximum point

gbou((pj isﬁﬁ, n, :I:l) :gbou((pj :ng)v n, :I:l), 7’]B(§0!) < 17
Soou(®j £8¢, n, £1) = goou(@; £8¢, 1, F1), nB(p;) > 1. (3.14)

https://doi.org/10.1017/50022377825000200 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377825000200

28 C.G. Albert, C.D. Beidler, G. Kapper, S.V. Kasilov and W. Kernbichler

Similar to §3.1, we ignore the dependence of the diffusion coefficient on 7,
setting D, (¢, n) — D, (¢, n,) and, finally, ignore the extent of interface regions,
8¢ — 0, with each of these steps introducing an error of the order Bén. ~ 12, as
before. Thus, we have transformed our computation domain to a set of rectangular
domains 0 <1 < n,, ¢; <@ < @;, limited by relevant field maxima, 7, B(g;) > 1
(see figure 11). This transformation leads to similar simplifications of the kinetic
equation as the transformation used in § 3.1 for the main trapping region (or for the
whole field line in case of vanishing boundary layer width) and is the same as the
transformation of Helander et al. (2011) extended here to multiple local trapping
regions.

Introducing Green’s function G, (¢, n, ¢’, ') which satisfies, with respect to
(¢, ) variables, the homogeneous equation (3.11) with D, = D, (¢, 1), boundary
conditions at the strongly passing and the matching boundary

d ’o 0 o
(_G(r((pv Uv%ﬁ’ﬂ)> :<—G(,(§0, 77?¢?’7)> =0, (315)
877 n=0 87] N=Nm

and initial condition G, (¢’, n, ¢’,n')=38(n —n’') at the starting point ¢’, we can
formally express the leading-order solution to (3.11) within a single trapping domain,
P <¢. ¢ <@j1,as

Nm

gbou(w,n,0)=/ dn'G, (e, 1, ", 1) gbou(@’. ', 0) + Qs (@, ¢, 1), (3.16)
0

where ¢ > ¢’ for 0 =1 and ¢ < ¢’ for 0 = —1, and where

Nm

@
0,9, ¢, 77):0/ dfp”/ dn'G, (@, n, ¢", )Seou(@”, 7', 0)
o 0
(2

—¢, f A" Dy (9", 1) G (s 1, @' 1), (3.17)

/

Co=1. (5°) . (3.18)
i)

Introducing the fundamental solution in the unbounded n-region

12

with a constant

Go(6n,n—1")= 1 exp (_(n—_W) (3.19)
V278n 28n?
where
9 1/2
51 =on(p, o) = |2 f dg’ Dy(¢" m)| . (3.20)

/

12

https://doi.org/10.1017/50022377825000200 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377825000200

Journal of Plasma Physics 29
we can construct Green’s function satisfying boundary conditions (3.15) as

Golp, 1, ¢, 1) =Go (1.1 —17') + Go (81, 0+ 1)
2

Ui
G (61, "—2n,)+ 0O (e ——= , 3.21
+Goo (S0, n+10" —2n) + <Xp< 23;72)) (3.21)
with the last term being negligibly small in the long mean free path regime
where 817 < n,,. By our assumption, 81 < §n, < (., — 1), and, of course, 1 <K n,.
Therefore, the second and third terms in (3.21) provide similarly exponentially small
contributions to the source term (3.17) which can be expressed then as

, o Codn(p, ¢') ( n— 1 )
NORE ® : 3.22
Clo v m=""7 V250(p. @) (22

where

1
d(x)= % / dr exp(—f—j) . (3.23)
0

We can estimate now the next-order correction to the source term AQ driven by
As, (3.13), in the trapped particle domain as AQ/Q, ~ Bénlog(Bdn) < 1, where
the logarithm is due to the scaling of the bounce time with the distance to the
trapped-passing boundary.

Since non-trivial behavior of the solution driven by sy, is localized in the region
[n —ny| < 8n, while gy, tends to constant elsewhere, we can formally extend the
domain 0 < n <7, to an infinite domain —oco < n < oo with boundary conditions
HEIBOO dgvou/ 01 = 0. Respectively, one should retain only the first term in Green’s

function (3.21) and use infinite limits of ' integration in (3.16). Thus, mapping
between the distribution function gﬁin) of particles which enter the trapping domain

¢; < ¢ < @;;1 and which leave this domain, g7,

i =&ou (@ 1, 1)y &ouy (1) = oou (@41, 1, 1),
gj_(in)(n) = gbou(¢j+l9 n, _1)’ gj_(out)(n) = gbou((pj7 n, _1)’ (324)
follows from (3.16) as

gk () = / 0GBy, 11— Vg (1) + QoG ). (3.25)

where

/2 ,_
lc 1/2’ Qoff(énjv 77) = QU(¢]’ (/)j-&-l» n)a

(3.26)

and 1;(n) is given by (2.26) so that 8n; = '/28n,, see (3.9). Conditions (3.14) with
8¢ — 0 link the incoming distributions g, to the outgoing g, as follows:

8n; =8n(e;, i) = (201 (n))

&im M <) =& 10wy (1 < 1)), M > 1) =gjowm>1n,),  (3.27)
iim M <Mj41) = &1 1100w (M < Mj51)s iim M > 1j41) = &iouy (1 > 151,

https://doi.org/10.1017/50022377825000200 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377825000200

30 C.G. Albert, C.D. Beidler, G. Kapper, S.V. Kasilov and W. Kernbichler

where 7; =1/B(g;). Substitution of gﬁm) into the mapping (3.25) via (3.27) leads
to a coupled set of Wiener-Hopf-type integral equations for gﬁout). Introducing a
dimensionless variable x and dimensionless distribution function af as follows:

x = n,—n gi (7]) — Coanref
V26 e V8

where 87, is some reference boundary layer width which is set in case of a closed
field line to the largest 8n;, this set is of the form

ozf(x), (3.28)

A ©0 A (a2 , , ’ ’
af<x>=7’;/ dx' V(O (x7 —x) of (v) + O (x' =) e (+))

1
- ®(Ax), (3.29)

J

where mis-alignments of relevant maxima x; < 0 and aspect ratios A; are

x+_77b_77j+1 — A _ OMrer

= X, = —:-, L= .
! \/58 Nref ! \/58 Nref ! § 77./

It should be noted that solution of set (3.29) is determined up to the null space

of the original operator L, (2.3), which is an arbitrary constant, i.e. ™ = const, and
which produces no particle flux or parallel current but only re-defines the equilibrium
Maxwellian.

(3.30)

3.3. Alignment of maxima, equivalent ripples

An obvious consequence of (3.29) is the configuration where the leading-order
off-set is absent. Namely, coupled set (3.29) reduces to two coupled equations in the
case that all trapping domains are equivalent, which means that all relevant maxima
are aligned with a global maximum, x¥ = 0, and all aspect ratios are the same (equal
to one), A; = 1. The first condition means that global maximum is reached on a line
(lines) rather than at a point (points). The second condition means that all én; are
the same, i.e. the integral (3.20) between maximum points is the same for all trapping
domains. In other words, this means that the value of the first integral (2.26) at the
trapped-passing boundary n = n;, does not depend on field line parameter ¥,

alj(l?(), nb) _ 1 ﬂ 1 dl

0. I.(0.n)=- —— ¢ =y, 3.31
30, iWom=5¢ph=29 Fu (3.31)

Thus, oz;.‘L(x) =a*, and the set (3.29), respectively, closes to the form
at(x) = % / dx' e 7 (O (x) o (') + O (—x) o (x)) £ D(x), (3.32)
T

corresponding to quasi-symmetry (Nithrenberg & Zille, 1988) (omnigeneity (Cary &
Shasharina 1997; Helander & Niihrenberg, 2009)). Obviously, the even part of the
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FIGURE 12. Normalized distribution functions «™ (blue), «~ (red) and source function &
(magenta). Full normalized distribution functions, at + g, are shown with dashed lines. The

right picture is a zoom to the trapped region, where also the asymptotic solution (3.34) is shown
(black dashed).

solution a™ + o~ satisfies a homogeneous equation and thus is constant, which we

set to zero. Expressing o~ = —a™, set (3.32) is reduced to a single Wiener-Hopf-type
integral equation

at(x) = % / dx’ e " sign (x) e’ (x) + @ (x). (3.33)

Obviously, deep in the trapped region x — —oo where ®(x) — 0 and o™ — const,
this equation reduces to a™ = —a™, i.e. it results in zero off-set o* = 0. Actually,
as shown in (Helander er al. 2011), the ripple equivalence condition (3.31), which
is fulfilled for a perfectly quasi-isodynamic stellarator where the magnetic field is
omnigeneous, allows reduction of the boundary layer problem to a tokamak-like
problem up to the same degree of accuracy as the analysis here (essentially, we use
the integral representation of the same problem as in Helander et al. 2011).
Solutions to the equation set (3.32) are shown in figure 12 together with asymptotic

solution (3.8) expressed in terms of normalized variables using 87; = 81t = /77,
as

o (x) = Foy exp (x/ﬁ x) cos <x/ﬂx + ¢> , (3.34)

where oy = const. They agree well because the latter solution must actually be the
same as a® in the region where the source term is negligible. We can recover the
full solution if we add to a®(x) the rescaled leading-order term (2.46) expanded to
the linear order in n — n,,

g, (x) = Oy —mg-_1(n) ~ +4xO(x). (3.35)

Codrer

Naturally, full solution a®(x) + ozf‘r/v(x) has a continuous derivative at the trapped-
passing boundary.

Note that alignment of maxima, x+ =0, is not sufficient on its own, without con-
ditions of equal aspect ratios, A; =1, for avoiding the leading-order off-set. This
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FIGURE 13. Normalized distribution functions a;r (solid) and a; (dashed) in the case of three
relevant trapping domains per closed field line. The right picture is a zoom to the trapped particle
domain.

can be seen from figure 13, where a solution to (3.29) is shown for the case of
three relevant trapping domains and aligned maxima but different aspect ratios,
Ap=A,=2and A; =1 (i.e. 26y =26n, =n = nwer). A finite off-set in the first
and last domains, ozzi(—oo) = —ozoi(—oo), can be clearly seen. In such a case, the
function gy, in the trapped particle domain and, respectively, bootstrap coefficient,
diverge at low collisionality as A, ~ v~'/? (see the normalization (3.18) and (3.28)).

A particular example of configurations where the bootstrap coefficient diverges
in the 1/v regime in this way is a family of ‘anti-sigma optimized’ configurations,
i.e. configurations where sigma optimization (Mynick et al. 1982; Shaing & Hokin
1983) is applied to align maxima instead of minima. A magnetic field strength
for a particular family of such configurations with dominant toroidal ripple is of
the form

B0, ¢) = By (1 4 & cos (Nior@) + f () (1 — cos (Nior0))) (3.36)

where By and ¢, are constant parameters, N, is the number of field periods and
f(©¥) < &y. For the computations with NEO-2, we use the following simple form of
this function:

f(¥)=¢€,cost + &3 cos(31), (3.37)

with g9 =0.125, &y =0.05 and two values of &;. We set Ny, =1 and t=1/4 to
get 4 relevant domains (ripples) on a closed field line passing through the point
(@, ) = (0, 0). In the case &3 =0 (case 1), condition A; =1 does not hold, and a
strong off-set of the bootstrap coefficient A,z oc v~!/? is seen in figure 14. In the case
£3 =0.06994425 (case 2) all four ripples are equivalent, A; = 1, and the leading-order
off-set is absent. However, there still remains a residual off-set driven by source As,
(3.13), which includes constant and logarithmic parts, A,z — C; + C, log(v,), see
the previous section. It should be noted that v='/2 divergence of A,z in the case of
aligned maxima but non-equivalent ripples is not a property of a closed field line.
A similar behavior is seen also for the case ¢; =0 at the irrational flux surface with
t=(14+/5)/20~0.1618 labeled there as case 3.
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FIGURE 14. Left: normalized bootstrap coefficient App, (2.44), computed by NEO-2 for “anti-
sigma optimized” configurations in cases 1, 2 and 3 (see the legend) as function of normalized
collisionality v. For each case, the Shaing—Callen limit (2.43) is shown with a dashed line of
the respective color. Sign of A;p (but not of the respective asymptotic) is reversed in case 2.
Right: magnetic field strength B(¢), (3.36) for these cases plotted along the field line within the
first four toroidal periods.

3.4. Non-aligned maxima, large aspect ratio

Let us consider now a more typical situation where local field maxima are not
aligned. For simplicity, we consider a configuration with short ripples located near a
global maximum adjacent to a long ripple, as in the case of the first rippled tokamak
configuration (2.57) with ¢ = 1/4 illustrated in figures 3 and 6. Besides the global
maximum, there are only two relevant maxima at low collisionalities. They separate
two short and shallow trapping domains, called below ‘off-set domains’, from a wide
domain in between, called below the ‘main region’. Setting 1, = dn; so that A; =
1, aspect ratios for off-set domains are the same, Ao = A, = A,. Respective value
A,~23.7> 1 will be called below the ‘off-set aspect ratio’, or simply ‘aspect ratio’.
To keep an example more general than the configuration with ¢ =1/4, we do not
assume that the local maxima separating the main region from two off-set domains
are the same (thus allowing broken stellarator symmetry). For the present example, it
is convenient to change the general notation in (3.29) as follows, aj = o, of = a,
and o5 =a?, so that subscripts ‘+o0’ and ‘—o’ denote the left and right off-set
domains, respectively, and subscript ‘mr’ stands for the main region. Respective
normalized mis-alignments of local maxima we re-notate as follows, x;" =x; =x_,
and x; =x; =x,,, see schematic figure 15. Thus, we cast the closed set of six
equations (3.29) to

anfr(x) = %/ dx’ e~ ="’ (@ (x]Fo — x’) ol (x’) + @(x/ — x@) aio (x’)) + O (x),

A f ' D(A,
=2 [ e 0 () e, (1) + 0 (), (1) £ L
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FIGURE 15. Locations of normalized outgoing particle distributions aio and air in the respec-
tive off-set domains and the main region. Positions of relevant maxima ¢; are shown with blue
lines. Normalized misalignments x, are shown with red lines.

(0= T [ @ e (O (r, =) L, (¥) 40 (v =) o, (4)
+ M, (3.38)
A,

where notation o, means that either o, or a7, should be taken, and &7, means
that either af, or a”, should be taken.

Due to A, > 1, source terms ®(A,x)/A, can be ignored in the last two pairs
of equations since a7, ~ ai, ~a, ~ ® > ®/A,. Since a,, (x), which varies on the
scale x ~ 1, changes little compared with the exponent in the sub-integrand of the
last pair of equations, we can set there o, (x') ~ o, (x). Thus, the last pair of (3.38)
takes the approximate form

X+o0
A, ’ -
ot (x) ~ = / dx’ e M0 0T (x) + 0 (A, (x — xu)) 0, () (3.39)

—0Q

where we introduced a “smooth step” function as
~ 1 ~
BOx) = 3 (14 erf(x)), Alim O(A,x) =0 (x). (3.40)

Further analysis is strongly simplified if we restrict ourselves to the most probable
case of strong mis-alignment of local maxima where boundary layers in both off-set
domains associated with these maxima are well separated from the trapped-passing
boundary, §ny < |n, — 11| and 81, < |, — 12]. In normalized variables, these con-
ditions mean A,|xy,| > 1. Since the first term in (3.39) is exponentially small in
the region A,(x —xi,) > 1 where also © (A,(x — x1,)) ~ 1, (3.39) results there
in af (x) ~ak (x). Thus, the second pair of (3.38) with the source term ignored
approximately is
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oz, (x) ~ % f dx e 0 (0 (<) o, (¥) + O (¥) &, (v)),
Ao(-x - xq:o) > 1. (341)

Moreover, due to slow variation of «* (x’) compared with the exponent, one can
further simplify this expression to

ozio(x) ~AO(—x)al (x)+ 0 (x) a;‘; (x), (3.42)

which is valid in the region x > x4, except for small vicinities of class bound-
ary, |x —x4,| <1/A,, and trapped-passing boundary |x|< 1/A,, which contain
local boundary layers of the off-set domains (layers of the width 85y ~ 81, <K §ny).
Contribution of these vicinities to the integral in the first pair of (3.38) is of the
order of 1/A,, and, therefore, this pair can be closed as follows:

o (x) = % / dx' e (O, (x) + O (—x) of, (x)) £ @(x) + O(A; ).

(3.43)

-1

o

Obviously, in the leading order over A
equivalent ripples.

For the solution in local trapping regions of the off-set domains, x < x.,,
Heaviside functions in the sub-integrands of the second pair of (3.38) can be replaced
by their values at x’ < 0 which turns this pair (with the source term ignored) into

these equations are the same as (3.32) for

A,
N

az,(x) =

/ dx' e e T (x'). (3.44)

Substituting this result in (3.39), we note also that variation of the last term in (3.39)
is determined in the region of interest by ® while the factor o varies slowly and
can be replaced by its value at x = x.,. Introducing the new independent variable
y = A,(x — x4,), equation set for e reduces to two independent equations

0 00
1 , o (v—v)2 (v —" ” ~
@, GON >~ / dy [ dy’ e 000k (x(y) + O (3) e, (xs,)

—00 —0Q

(3.45)
which have constant solutions
af, ) =ay (x5,), ol =ai,. (3.46)
Thus, we obtained an intuitively clear result that

e The distribution function in the main region (long ripple) is weakly affected by
off-set domains (short ripples) which provide only a correction of the order of
ATl
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FIGURE 16. Off-sets in three local wells as functions of the normalized mis-match parameter
X4, for the symmetric case, x_, = x4, (left) and for the destroyed stellarator symmetry, x_, =
2x 4o, (right). Solid — results of direct solution of (3.29), dashed — approximation (3.46).

e The distribution function in the off-set well takes the value of the distribution
function in the main region at the local minimum point (¢, ;) separating the
main region and the off-set domain (see also figure 6).

The last conclusion can be easily generalized to the case where a short off-set domain
is separated from two long main regions by local maxima on both sides. Assuming
that solutions in both main regions are known, the off-set is determined by the
solution in the main region separated from the off-set domain by the lower local
maximum (this local maximum determines the class-transition boundary 7. limiting
the region n > n, with particles trapped in the off-set domain).

The large aspect ratio approximation, A, =23.7, is checked in figure 16, where
the left picture corresponds to the stellarator-symmetric case of figure 6 and in the
right picture symmetry of local maxima is destroyed by setting x_, = 2x,,. It can be
seen that approximation (3.46) is good in its validity domain and is violated for small
mis-match parameter values x., < A;l. The finite off-set value for aligned maxima,
X+, =0, is the result of A, # 1. Note that left figure 16 corresponds to collisionality
dependence of the off-sets in case of fixed magnetic field geometry. This dependence
for the first local ripple is shown for the dimensional distribution function (3.28) in
figure 17 where it is compared with the NEO-2 result. Since gy, is given there
by propagator method in the leading order only, we added error bars to the result
of (3.29) showing the order of magnitude estimate of the omitted correction term
Agpou driven by the source As in (3.11). According to (3.12), this correction term is
driven by the sources in the passing particle region and is of the order of g at the
trapped-passing boundary (and in the whole boundary layer) because Agp,, must
restore periodicity in the passing region. Since there are no sources in the trapped
particle region, Agy., decays exponentially outside the boundary layer, as follows
from (3.8) and from the solution ot (x) for equivalent ripples, (3.33), where x is
defined in (3.28). Therefore, we extend the estimate of the correction term to the
whole trapped particle region by using Agyo, ~ gor™ (x). This simple estimation gives

an error bar gio™(x.,) that decreases when x., o v '/? increases.
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FIGURE 17. Distribution function off-set goff = g3) — gf) at the bottom of the first local well,
Jj =0, as a function of collisionality parameter v, for configuration in figure 7. Blue — leading-
order solution for gpoy via (3.29), magenta — its large aspect ratio approximation (3.46), red —
off-set goff = gbot — g(’) via the result of NEO-2 shown in figure 7.

3.5. Weakly non-equivalent ripples

An important case is that of weakly non-equivalent ripples where the condi-
tions of alignment of local maxima, n; =n,, and of equal aspect ratios, A; =1,
are only slightly violated. Assuming infinitesimal mis-alignments n; — 1, and aspect
ratlo perturbatlons AA; =A; — 1 and looking for the solution of (3.29) in the form
a =at+ Aoc Where at = —qa~ are the solution to (quasi-symmetric) (3.32), the

equatlon for the linear-order correction Aoz,.i is

1 [ ;= (x—x")? / ’ ’ /
Ao‘f(x)Zﬁ/ dx’ e (O (—x') Aaf (x) + O (x) Aass, (7))
Here, the first source term is due to small mis-alignment of maxima |x]| < 1 with

/ dx' e g (x’)=2‘i;;o) e, (3.48)

dp(x)=7F lim

I F =0 \/_)ﬁ

and the second source term is due to small differences in boundary layer widths
|AA;| < 1 with

D,(x) = % f dx’ e~ (l —2(x — x’)z) sign (x’) at (x’) — % e, (3.49)

Let us assume now an infinite number of ripples, —oo < j < 0o, with only the first
maximum mis-aligned, n; — n, = An # 0, while the rest are aligned perfectly. Then
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the non—zero normalized mis-alignments are x; =x; = —Ax = —An / (\/_ 28n.er) and
the rest x; *=0. In the absence of AA; =0, solution to (3.47) is anti-symmetric
with respect to the mis-aligned maximum, Aay = —Aajf, Aa™, = —Aa], etc. Thus,

ripples j <0 are eliminated from the set (3.47), where the only inhomogeneous
equation is

Aa;f(x) = % / dx' e =’ (© (=x) Aa; (X)) = O (x') A (x')) + Ax p(x),

(3.50)

while equations for A«; and AozfE

(3.47) with x7 = AA; =0.

In the other case of perfectly aligned maxima, x7 =0, and only one perturbed
aspect ratio, AA;#0 and AA; —0 for j#£0, solutrons are anti-symmetric with
respect to ripple j =0, i.c. Aa = —Aa«aT. Thus, solutions with j <0 are again
eliminated from the set Where the only inhomogeneous equation is

with j > 1 are given by the homogeneous set

Aoy (x) = —% / dx’ e (© (=x) Ao (x') +© (x) Ay (x'))

+ AAy Du(x), (3.51)

while the rest Aa are given by the homogeneous set (3.47) for j > 0.

Off-set factors AA B— Aoﬁ( 00) = Aa; (—00) as functions of ripple index j are
shown in figure 18. F actors A f are due to mis-alignment of a single local maximum
between ripples 0 and 1 (Ax =1 and AA,=0) and AA are due to violation of the

aspect ratio in ripple 0 (Ax =0 and AAy=1). Off- set AB is mainly produced in
ripples 0 and 1 adjacent to the mis-aligned maximum, but it also propagates via the
passing particle region to the distant maxima, decaying there as oc j~!. The effect on
adjacent ripples can be understood in terms of ‘particles’ (produced by the inductive
field in the passing region with positive velocities and having positive weight) and
‘anti-particles’ (negative velocities and weight). Some of the ‘particles’ entering the
trapped region in ripple 0 from the passing region penetrate through the gap Apn
to the trapped region in ripple 1, thus producing a positive off-set there. Similarly,
some of the ‘anti-particles’ entering ripple 1 produce a negative off-set in ripple 0.
The effect on distant ripples is because some of the particles which penetrated the
trapped region in ripple 1 return to the passing region and thus create the asymmetry
of the boundary layer in those distant ripples. For the off-set A;‘ only the second
mechanism is possible: if the boundary layer width in ripple 0 is larger than in
other ripples (longer or deeper ripple), ‘particles’ which enter this ripple from the
passing region have more chance to return, thus dominating the ‘anti-particles’ in
the boundary layers of ripples with j > 0. Respectively, ‘anti-particles’ dominate in
ripples with j < 0. Due to the symmetry, none are prevailing in ripple 0, where the
off-set is absent in this case. Note that AA, > 0 means a more narrow boundary
layer, which is the reason for the negative A;‘ at j > 0 in figure 18.
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FIGURE 18. Factors Af (blue) and A‘Jf‘ (red) as functions of the ripple index j.

The corresponding dimensional off-set for the ripple j related in the general case
to the dimensionless off-set via (3.28) as follows:

Cod1re
gc(éf) = g](out)(oo) = &jouy(00) = 0\/§ faji(_oo)v (3.52)
is expressed in the present case via the off-set factors as
Nl ((B?
g == (u) (AfAn + «/EA;‘AAoanref> . (3.53)
s\ /.,

One can see that an off-set due to maxima scales as 1/v and an offset due to
aspect ratios scales as 1/4/v, i.e. with reducing collisionality the role of the first
one increases. Note that the linear approximation employed in this section requires
An K 8n.r. If the opposite limit is reached, ripples 0 and 1 combine into a ripple
with AAy.; ~ 1, which strongly violates the alignment of aspect ratios, leading to
much stronger off-set typical of the anti-sigma configurations discussed in § 3.3.

3.6. Off-set of Ware-pinch coefficient

We define the off-set in the normalized Ware-pinch (bootstrap) coefficient as fol-
lows, Ao = Apg — Ajy, Where Ayp = AbB is defined by (2.55) via mono-energetic D3
for finite collisionality and Aj3 denotes its asymptotic (/. — 00) value (2.43). Thus,
Aofi 18 given by (2.55) with the replacement gy — goir = g3) — &3, in the definition

(2.11) of D3, where g is the asymptotic solution g, derived in §2.2.2. Splitting
in (2.11) the integration interval [¢,, @] into sub-intervals [¢;, ¢;,] separated by
relevant maxima ¢; (points of highest local maxima 7n;B(¢;) =1 contained within
the matching boundary 7,,, n; < n,,, see §3.2), these intervals correspond to off-set
domains or main regions where the even part of the distribution function g, is essen-
tially different from zero in the trapped particle domain and is close to a constant g((n{g
approximated using propagator techniques by (3.52) in each interval ¢; < ¢ < ¢,
where we set gor(¢, ) ~ ©( — YO B(p) — 1) g} with 0} =max(n;, n;11), we
obtain the off-set coefficient as

ot XY gl (3.54)
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Here, weighting factors are

N
=1 ¢ 1/B -1

3 YN d 3 YN d
=g | [52] [ e [ anshi==5 ([ 52] m ().
Z)OLB By Z,OLB B¢
. G e 0

(3.55)

where H;(n) is given by (2.26), (p( = =¢; (nl((fc) ) are coordinates of banana tips (turn-
ing points, see the definition of ¢; (1) below (2.14)) of the transient orbit separating
locally trapped orbits in the offset well from the rest of the phase space (one of the
tips (p () 1s located at the point of lowest local maximum, ¢; or ¢;,,) and we assume
here the closed field line (i.e. finite @y).

Using for s, the first definition (2.3) and exchanging the integration order, we
can express weighting factors in terms of the bounce-averaged radial drift velocity
and bounce time

0) 0B ot ()
2 9B, dgB
)bk = — / 8 , Ty = 2 / (p , (356)
Thk |v”|B<p |UH|B¢
Wk_(n) ‘ﬂk_(ﬂ)
where ¢ are the turning points defined below (2.14),
oN —1 /B,
oW __ = de ,
Yot =75, B / BY / dn Z Tok (V) - (3.57)
2 7]1(]) keoff(j)

Here, BY) is the minimum value of B in the segment [¢;, ¢;.], and the notation
k € off(j) means all segments satisfying [¢; (), ¢; (n)] € [¢;, ¢j+1]. As follows from
(3.57), large off-set in the distribution function does not necessarily mean large off-
set in the bootstrap/Ware-pinch coefficient. In the devices with minimized bounce-
averaged radial drift such as, e.g. devices optimized for quasi-symmetry, the off-set
of bootstrap current is also minimized.

Less demonstrative but more practical expressions are obtained by evaluating the
integral over n in (3.55) with the help of the second definition (2.3) of s, and (2.5).
Thus, weighting factors are expressed directly via the geodesic curvature

N
=1 e

YN
; 1 de |Vrlkg ;
0 _ = () (D py1/2
wif =3 f—Bw fdgo e (4=nlB) a=nlB)=  (358)

L0 w(_j)

In field aligned Boozer coordinates, we replace BY = B*(tBy + B,)~' with covari-
ant field components being the flux functions, and use the last expression (2.6) for
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FIGURE 19. Off-set of the geometrical factor, Ao, from the propagator method via (3.54) (blue)
and from NEO-2 results shown in figure 2 (red) for ¢ = 1/4 (left) and ¢« = 2/5 (right). In the case
of t =2/5, also shown are summary contributions to (3.54) of the off-set domains (dashed) and
of the main regions (dashed-dotted).
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It should be noted that the off-set (3.54) ignores the contribution of the trapped-
passing boundary layer, where the distribution function is the largest and strongly
depends on ¢. This kind of off-set, which scales with the width of this layer, oc v'/2, is
present also in axisymmetric devices and has been studied by Helander et al. (2011).

The result of (3.54) and (3.59) with gé’fg obtained by propagator method (figure 17)
is compared with the NEO-2 result in figure 19. For the configuration With t=1/4,
the off-set is fully determined by the first (and last) off-set well, g7, since g'}; = 0 and

g(ﬁg gof) due to stellarator symmetry. For the configuration with ¢ = 2 /5, both the

off-set well, g\), and the main region, g}, are contributing (with g\ = —g') and

gé‘g =— gf)?z just doubling the result due to stellarator symmetry). Off-set wells merge

with the main regions (0 with 1 and 3 with 4) at v, < 1074, therefore we used 7.’
for such combined regions in individual w(}). It can be seen that the contribution of
the off-set wells is slightly larger than of the main regions, despite the much smaller
toroidal extent, which is natural for bounce-averaged drift (the longer the orbit, the
smaller is this drift). These two contributions tend to compensate for each other at
lower collisionalities, which is a general trend due to the respective increase of the

off-set domain length studied in more detail in §4.2.
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As it could be expected, relatively good agreement between the propagator method
and NEO-2 is obtained at very low collisionalities while at v, > 10~* direct off-set
due to boundary layer discussed by Helander et al. (2011) becomes also important.

4. Bootstrap/Ware-pinch off-set at irrational surfaces

As we have seen from the example of the ‘anti-sigma’ configuration in § 3.3, the
Shaing—Callen limit cannot be reached in the case of perfectly aligned maxima where
the bootstrap/Ware-pinch coefficient diverges as 1/4/v. This, however, is the ideal
case, which cannot be realized exactly. As follows from (3.53), due to the strong
(1/v) scaling of maxima mis-alignment term with collisionality, sooner or later small
mis-alignments of local maxima will prevail, and configuration will turn into a gen-
eral one with a single global maximum. Therefore, we have to consider this general
case now.

4.1. Long field lines

The field line integration technique employed in analytical asymptotic models and
in NEO-2 assumes that the representative field line covers the flux surface densely
enough so that the result does not depend on its length anymore. There are at
least two ways to do so, in a way the ends of the field line are identical (and the
solution is periodic) at the irrational surface. One way (standard in NEO-2) is to
follow the line until there is a good match with the starting point, and then slightly
modify B(¢) in the last field period for a smooth field line closure. The result can
be verified then by using another starting point at the same flux surface. Another
way (employed here) is to replace ¢ with a rational number of a high-order well
approximating the original irrational ¢ and start from the global maximum. Thus,
within stellarator symmetry, one can always keep quasi-Liouville’s theorem fulfilled
exactly. Within this second approach, we consider now five different field lines for
the magnetic field model used in §2.3 with t=0.44=11/25, 1=0.43=43/100,
t=0.435=287/200, : =0.438 =219/500 and ¢ =0.442 =221/500 which cover the
field period with 75, 300, 600 and 1500 passes, respectively.

The resulting normalized bootstrap coefficients (2.44) are shown in figure 20. They
are weakly dependent on ¢ for collisionalities v, > 107> (in the first hill), and follow
this trend down to v, = 107° in the second hill, with only the curve ¢ = 0.43 depart-
ing from the other four. As one can see from the ¢ scan in this figure, this transition
is smooth, in contrast to the Shaing-Callen limit which shows well-known ‘boot-
strap resonances’ briefly discussed in §4.4. To analyze this behavior, we plot the
Ware-pinch distribution function gg), (%, ¢, A) (mono-energetic generalized Spitzer
function) for particles with zero parallel velocity (A =0) as function of angles for
two cases of ¢t =0.435 and ( =0.43 and two different collisionalities, v, =3-107*
(figure 21) and v, = 107° (figure 23). Since the distribution function in the trapped
particle domain is almost independent of pitch parameter (equivalently of 7), the
plotted quantity characterizes well the radial particle flux. Obviously, this function
is stellarator antisymmetric, gi) (9, ¢, 0) = —g3, (=19, —¢, 0), and retains all other
relevant features seen for the short field line examples in §2.3.2. Namely, ‘hot spots’
around the global maximum (¢ = m, ¢ = /3), where g, is the largest, correspond
to the contact region with the boundary layer (see the left figure 7). These spots are
responsible for the tokamak-like off-set studied by Helander et al. (2011). One can
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FIGURE 20. Normalized bootstrap coefficient (2.44) for five ¢ values vs. normalized collisional-
ity v, (left) and its dependence on ¢ for two selected collisionalities shown in the legend (right).
Shaing—Callen limit (2.43) is shown with dotted lines (data points — with dots). Abscissa values
for markers in the right plot correspond to the legend in the left plot.
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FIGURE 21. Generalized Spitzer function g3y (¥, ¢, A) for standing particles (A = 0) at the flux

surface with ¢ = 0.435 (left) and ¢ = 0.43 (right) for v, =3 - 10~4. White dotted lines show the
field line starting from the global maximum and making 7 toroidal turns.

clearly see in figure 21 also the off-set domains (blue and yellow) in the ripples adja-
cent to the global maximum (mainly contributing to the off-set at this collisionality)
as well as the widely extending ‘main region’ (green). Thus, this case is rather similar
to figure 6 for v, = 10~*. Remarkably, results for two different ¢ are almost indis-
tinguishable, which explains the close values of A,z in figure 20 at this collisionality.
Since the radial guiding center velocity v’ is stellarator antisymmetric as well, the
resulting normalized radial trapped particle flux distribution over the angles y given
with good accuracy by y (9, ¢) = V(9, ¢)gs) (U, ¢, 0), where V is the sub-integrand
in (3.59), is stellarator symmetric. It is shown for v, = 3 - 10~* in figure 22, where the
contribution of the off-set domain (2 < ¥ < 4) is positive, which agrees with the first
hill in figure 20. Note that the direct contribution of the boundary layer is already
small at this collisionality, which is also seen from vanishing hot spots in figure 22.
Off-set in adjacent toroidal ripples vanishes completely for the lower collisionality
case v, = 107% shown in figure 23. The visible difference between ¢ =0.435 and
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FIGURE 22. Normalized distribution over the angles of trapped particle radial flux y (9, ¢) at
the flux surface with ¢ = 0.435 (left) and ¢ = 0.43 (right) for v, =3 - 10~*. White dotted lines —
the same as in figure 21.
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FIGURE 23. The same as figure 21 for v, = 1079,

t=0.43 is different amplitudes of straps on g, which, in fact, is higher for =
0.43 where the off-set of A,z is smaller (see figure 20). Less visible is the split of
the straps into the off-set domain and the main region for ¢ = 0.435. Actually, this
split is responsible for the lower amplitude of the straps in this case. Note that the
strap structure and difference in its amplitude for two ¢ values transfers also to the
angular distribution of radial particle flux shown in figure 24. Despite the factor
1.5 higher amplitude of the flux density modulation, the value of A,z is only 14 %
different (and is lower) for ¢ = 0.43 than for « = 0.435. The reason is the relatively
low contribution of the strap structure dominating the plot to the radial transport
because this contribution is mostly averaged to zero. Namely, change of g, along
the straps (more precisely, along the field lines) is rather slow, but not slow is the
change of local guiding center velocity which, at the end, results in much smaller
bounce-averaged value actually contributing to the flux.

The appearance of strap structure on the generalized Spitzer function g;,, which
only emerges in figure 21 and becomes dominant in figure 23, is connected with
a certain paradox of the asymptotic solution of Helander er al. (2011) for trapped
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FIGURE 24. The same as figure 22 for v, = 107°.

particles, gj, given by (2.47) in §2.2.2. Being perfectly correct and accurately repro-
duced at short field lines and the lowest collisionalities by NEO-2, it does not result
in smooth distributions over irrational flux surfaces, but rather in the fractal struc-
ture with an infinite amplitude. Since two arbitrarily close points on the flux surface
can be connected in the 1/v regime only along the field line, the connecting seg-
ment of the field line is in general infinite, which results in infinite values of the
integral (2.47). As we saw already in §2.3.2, this paradox is resolved for finite col-
lisionality. Namely, whenever the field line enters the ‘hot spot’ (boundary layer), it
starts a new segment which should be treated independently from the rest. Thus, the
problem becomes local at finite collisionalities even at the irrational surfaces. With
reducing v, the size of the ‘hot spot’ is reduced, and, at some point there will be a
transition from a 7 strap structure to another structure with more straps. Finally, in
the zero collisionality limit, the fractal structure of the solution of Helander et al
(2011) will be recovered. Of course, within this simple splitting approach combined
with an asymptotic model, the fractal structure will not appear anymore but the
off-set effect will naturally be different from the one in the collisional model.

The actual ‘splitting’ of the collisional solution for v,=3-10"* is shown in
figure 25, where the same distribution functions as in figure 21 are plotted along
two field lines as functions of the number of toroidal turns (¢ — ¢y)/(27). The first
line starts from the global maximum (&%, ¢y) = (7, 7/3), and the second one starts
from the close point with ¢ = ¥, + 6. Together with solutions of NEO-2 for two ¢
values, also plotted is the asymptotic solution of Helander et al. (2011), (2.47), which
has the form of a straight line in Boozer coordinates, g = (tBy + B,)(¢ — ¢). In
the left plot, one can observe the same pattern consisting of the ‘main region’ and
two off-set domains (this case is similar to the one in figure 6) repeated three times,
which corresponds to a ‘resonance’ with ¢ = 3/7 (note that 0.435 — 3/7 ~ 0.0064 and
0.43 —3/720.0014). One can also see that g, well represents the solution within
each domain up to a constant shift introduced by splitting in the boundary layers.
Spikes on g, correspond to the contact with the trapped-passing boundary layer
(‘hot spots’), and one can see nearly no spikes at the transitions between the off-set
domains and the main region, which correspond to the boundary layers between
trapped particle classes. One can also see slow accumulation of a different type of
off-set in the main regions, which results in a different g, pattern in the long run
(see the right plot). This off-set, however, has a much smaller effect on A,z (see

https://doi.org/10.1017/50022377825000200 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377825000200

46 C.G. Albert, C.D. Beidler, G. Kapper, S.V. Kasilov and W. Kernbichler

104 v, =3-1071 %104 v, =310
5 y " 6F , : ;
4_
2} J~ [
D € o HHHH ]
g g ol HAH A
FPATEFFF F
2 i
4t
0 2 4 6 0 10 20 30 40 50
¢ [2n] ¢ [2n]

FIGURE 25. Generalized Spitzer function g3y along the field line starting from global maximum
(solid) and from the close point displaced by A®¥ = 0.03 (dashed) for ¢ = 0.435 (blue) and ¢ =
0.43 (red) and v, =3 - 10~4. The magenta line shows the asymptotic solution gf), (2.47), at the
first field line. Left and right plots show the same for 7 and 56 periods, respectively.
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FIGURE 26. The same as figure 25 for v, = 10~% and A® =0.01.

figure 20) because the bounce-averaged velocity for relatively long ‘main regions’ is
much smaller than for the short off-set domains.

Short off-set domains fully disappear at lower collisionality v, = 107, as shown in
figure 26. There, the off-set pattern in the long run determines A, , which shows then
in figure 20 a significant difference for the two ¢ values under examination here. We
see that this pattern is formed by sub-domains with toroidal extent corresponding to
a full poloidal turn of the field line. For the case « = 0.435, the pattern is repeated
twice in the long run and is formed by the ‘main region’ consisting of 3 sub-domains
(field line misses the boundary layer during these full poloidal turns), and there are 3
off-set domains on each side of the main region with the opposite off-set value in each
triple (field line visits the boundary layer within these sub-domains at opposite sides
for each triple). One can see also ‘symmetric’ sub-domains with nearly no off-set,
which separate the patterns approximately repeated after 25 toroidal turns. In con-
trast, for ¢ = 0.43, almost a harmonic structure is formed with a period determined
by At=0.44 —0.43=0.01.
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FIGURE 27. Normalized trapped particle radial flux angular density y (left) and sub-domain
average y (right) for the distribution functions shown in figure 26.

Finally, the normalized trapped particle radial flux distribution over the angles y =
Vg (the same quantity as in figure 24) and the sub-domain average y = (V)yg3m
where (V), are averages over the field line segments corresponding to one poloidal
turn (i.e. these are integrals in (3.59) normalized by ¢; 1 — ¢; with [¢;, ;1] being
the sub-domain) are shown in figure 27 for the same field lines as in figure 26 and
v, = 107%. It can be seen that large oscillations on the local flux density y are mostly
averaged off within sub-domains, and the resulting sub-domain average y which is
determined mainly by the bounce-averaged radial drift shows the significant positive
contribution of the off-set domains for ¢ = 0.435 and a smaller negative contribution
for t = 0.43 (in agreement with the trend in figure 20).

4.2. Asymptotic behavior at irrational surfaces

For estimation of the A, trend with v, — 0 we analyze the nearly periodic pattern
seen in right plots of figures 26 and 27 (such a pattern is seen also in the left plot
of figure 25 while the right plot shows the overlay of two patterns). This pattern
is formed if the field line starting in close vicinity to the global maximum point
(Pmax> Pmax)» 1.€. at the point (P, o) = (Fmax + ADo, Pmax) Where Ay < §0 and 89 is
the poloidal boundary layer width (width of ‘hot spots’ in figures 21 and 23), returns
after N turns back to this vicinity, (Jy, @n) = (Umax + AON, Omax) With Ay K 5.
The off-set pattern is formed if within these N turns at least one approximate match
occurs at some (9, ¢) = (Umax + AD, Prmax) With Ay < AP < 59, By the symmetry
argument (one can make N turns backwards), such matches come in pairs, thus
forming one ‘main region’ and at least two off-set domains with positive and negative
off-sets, respectively (see the left plot in figure 25 and the right plots in figures 26
and 27 where six off-set domains are formed for ¢ = 0.435).

Expanding the magnetic field around the global maximum point

1 3°B

B ﬁmax Al?a max A %Bmax M~ o~ A Al?z A 2 )
(Fmax + AD, Pnax + Ag) +2ﬁw(ﬁ + Ag?)
3B (3*B\ "
=— |(— . 4.1
p 92 <8<p2> @.1)
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where the second derivatives correspond to the global maximum point, and the
mixed derivative there is zero for our example (2.57), we can relate the distance An
between class-transition boundary n =17, =1/B and trapped-passing boundary

n =1, = 1/Bn. to the poloidal distance A¥ between the respective local maximum
and the global maximum as

1408

R 2B
7 B2

99?2

AV 4.2)

We have expressed here the toroidal distance between these maxima as Ag =
—tBAY, which follows from the local maximum condition h- VB =0 and (4.1).
Assuming that rational numbers 0 <m/n <1 with n < Ny, are distributed uni-
formly in this interval (which is generally not true but gives a correct order of
magnitude estimate), we obtain for the best match at some n = N that
m;l;l[&axhn—ml'VUNmale/N. (4.3)
Thus, a field line starting at a global maximum will be displaced from this maximum
after N toroidal turns by Ay ~27x/N and, according to (4.2), pass through the

local maximum with respective class boundary 7, displacement Any = n. — 1, given
by

(4.4)

where we denoted &, = (1 + 2B)n, |azB / 8192‘ well represented by field modulation
in an axisymmetric tokamak. The trapped-passing boundary layer width correspond-
ing to N toroidal turns is given by (3.20) with ¢ = ¢, and ¢’ = ¢y + 27 N resulting
in the estimate

Sn~4x 2 (2,)*n, (W.N)'?, (4.5)

obtained here for ¢y <&, <1 (see (2.57)) and using ¢By + B, ~ R/n,. Since the
poloidal width of the boundary layer §9% and boundary layer width §» are related by
(4.2) with replacement A — §, the best match after N turns completing the off-set
pattern means Any < 87, which, according to (4.4) and (4.5), results in

3/10
we)!

V2t

The last expression (4.6) agrees with the v, scaling of the boundary layer width
obtained by a similar argument in Helander, Parra & Newton (2017). Since
Any/8n~ N~ rapidly decays with N, strong inequality (4.6) is achieved even
if one only doubles the N value given by the right-hand side. Therefore, we use (4.6)
further, as order of magnitude estimates rather than strong conditions. Assuming
for simplicity then only one pair of off-set domains is formed with local minimum
mis-match of the order of the boundary layer width in the main region, An ~ §n,r
and estimating this width in the large aspect ratio limit as 87 ~ 81 ~ 41, (g,,)*",
we obtain the distribution function in the off-set domains with the help of (3.52),
(3.46) and estimate o=, ~ 1 due to x4 ~ An/8ner~ 1 as

N> 81> 4ny (g,v,)*° . (4.6)

g((,éf) ~ RBosfl/lovf/S, 4.7)
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FIGURE 28. Span of the generalized Spitzer function g(()sf;;) = (max(g(3)) —min(g)))/2 for

standing particles, . =0, at ¢ =0 as a function of collisionality (case ¢ = 0.435 in figure 20).
Scalings v, 3/ 5, 1/ve and 1/./v, are shown by black dashed, red and green dotted lines,
respectively.

where By = B, and constant (3.18) has been estimated as Cy ~ R B§ / (V*E,l / 2). Note
that scaling (4.7) is reproduced up to a factor 2 by the relation between the color
ranges in figures 21 and 23 and is in good agreement with collisionality depen-
dence of the span gfff?) of the generalized Spitzer function which corresponds to the
maximum off-set at ¢ = 0 line (in particular, in figures 21 and 23), see figure 28.

It remains now to estimate the weighting factors w'Z in (3.54) which results, for
our near-periodic pattern with two similar off-set domains, in Aoy~ g )w' with j =
0. Expanding the sub-integrand V' in (3.59) in Fourier series over periodic Boozer

angles

V@, @)=Y Y Vi) sin(md +ng), (4.8)

m=1 n=—00

with n = nl(;c), this series has no m = 0 terms due to the last (3.60), where the deriva-
tive over 1 is the same as the derivative over . Here, we placed the origin of angles
at the global B maximum to avoid cosine harmonics in stellarator-symmetric fields.
Introducing the number of toroidal turns per off-set domain, N, < N, we present ¢ =
to + 8t, where 1, = M,/N,, M, is the number of poloidal turns and 8¢ < 1. The field
line segment with the off-set domain starts at (¥, ¢) = (A¥, 0) and ends at (¢, ¢) =
QaM,+ Avy, 2w Ny), where Ady = Ay + 27 N,5t, and the tips of the tran-
sient banana orbit are located at (9, ¢;,) = (A + t8¢o, 5@) and (90, @) =
2aM,+ Ady + 8pn, 2r N, + Spy), where 8¢y y ~ max(|Ady|, |Ady]]) K1 are
toroidal shifts of those banana tips from the global maximum points, see figure 29.
Replacing in I](,’ ), (3.59), the integrand V with V, which is given by the same (3.60)
with the replacement nf(fc) — 1, extending there the integration interval to the whole
off-set segment 0 < ¢ < 2w N, and thus ignoring the shifts ¢, 5, and expanding V,
around the helical line ¥ =, we get
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FIGURE 29. Field line segment containing the off-set domain (blue dotted) covered by transient
banana orbit (red) in case the lower local field maximum is on the right, n, Oc) =1nj4+1. Dashed

black ellipses correspond to the contour n(’ C) B, ¢)=1.

+
?()
1= [ dovan+ieo (4.9)
20)
27N,y

1
~ / de <Vb(t0¢, @)+ V, (L, 9)(ADy + St ) + Evg(to(pa @) (A + &t w)z) ,

where V, and V), denote the first and second derivatives of V, (%, ¢) over . The
first two approx1mat10ns in (4.9) skip negligibly small terms of the order of A¥;

To check that we notice that derivative dB/d79, in (3.60) vanishes at the global
maximum and, therefore, scales in the additional integration intervals 0 < ¢ < ¢;

and <p(J;) <@ <2aN, as 0B/dvy x Aty y. The same scaling is true there for the

square root term (1 — 1, B)"/> o« A y. Thus, due to the scaling V oc A9, in those
intervals whose size is |8¢o v|, their overall contribution has a cubic scaling with

A, y. The difference 8V =V — V), can be estimated as 8V o< n/) — 1, o ADg  in the
whole integration interval including the vicinity of its ends where 8V ~ V), AD§ .
However, in the case of stellarator symmetry, §) is essentially an odd function of
¢ —t N,, which does not contribute to the integral, while its even part Ve
Aﬁo v respectively provides a negligible contribution o Aﬁo ~- Since in the case of
stellarator symmetry quantities V, and V), are odd functions of ¢ —w N, while V), is

an ¢ven functlon we get

2w N,

I ~ Adpig f de (V, (e, @) + 8V, (e, ) (9 — TN,))

0

g mN,St
=27 N, AV V¢ Ores - 1 —6ces) ), 4.10
w ay . > m ,,m(m,)( Ml ) (4.10)

m=1 n=—00
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where Ss=1 if mM,—nN,=0 and is zero otherwise, and A= (A +
A¥y)/2. Since only the resonant harmonics with (m, n) = (N,k, —M,k) and k =
1,2, ... contribute to the first term, one can estimate ) > mV) 8res ~ NoVy .
For high harmonic indices, m, n — oo, spectrum of V is determined by the vicinity
of the global maximum,

82B 3/2

992

98"n;"”
N

where N, is the number of toroidal field periods and V) =0 for n which are
not multiples of N, see Appendix A. Therefore, contribution of the first term
NV om, ™~ N, is negligibly small compared with that of the second term which
does not scale with N, but contains small §¢. Using 27 N,6t = A%y — Ay and the
definition of Awy, we obtain the scaling I’ oc (A9 — A9Z) o< N> oc N=2 and
respective estimates

MmN
(mz + ﬂn2)5/2 ’

Vi (1) % (4.11)

9 & dr 35 dr max 172 dr tok
wdffwﬁd_ww(stv*) d_]ﬂ’ )\'Off ’\-'8[ RBOd—l//’\’L)\.bB, (412)

where we assumed the maximum distribution function off-set (4.7), used (4.6) and
assumed &), ~ ¢&; and 8 ~ 1. Thus, off-set of bootstrap coefficient Ay in stellarator-
symmetric fields does not decrease with reducing collisionality but has an aperiodic
oscillatory behavior with oscillation amplitude AJ#* of the order of A, for the
equivalent tokamak (Boozer & Gardner 1990; Beidler et al. 2011),

d
ok — 1.46L—‘e}/2RBOd—; = 1467672, (4.13)

see figure 20 where the factor 1.46:7' ~ 3.4 agrees well with the relative off-set
amplitude.

The off-set pattern corresponding to N toroidal turns is replaced by the pattern
with a larger number of turns if collisionality decreases by a significant factor, and
further collisionality decrease triggers another pattern change, etc. Respectively, the
off-set of the bootstrap coefficient oscillates aperiodically with changing logv, as
seen in figure 20. This behavior is due to the structure of the off-set pattern which
is formed at the field line segment between two local field maxima j =0, N ful-
filling strong alignment conditions (Any, Any) < 8n with §n given by (4.5) and
which necessarily contains one or more internal local maxima fulfilling a weak
alignment condition An < &n (they split the segment into off-set domains, e.g. two
off-set domains and the main region in the simplest case). With decreasing col-
lisionality, weakly aligned internal maxima become non-aligned, An > én, which
makes the variation of the distribution function off-set g, within the segment and
respective contribution of the given pattern to the off-set of 1,5 exponentially small.
Consequently, the whole segment of the old pattern turns into a single off-set domain
of the new, longer pattern limited at the ends by even better aligned local maxima
such that they stay well aligned when one (or both) maxima at the ends of the former
segment become only weakly aligned at some lower collisionality. The above transi-
tion is well seen in figures 25 and 26 where three complete off-set patterns at higher
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collisionality (left figure 25) turn into three off-set domains of a longer pattern at
lower collisionality (left figure 26). Note that those domains contribute simultane-
ously to both off-sets, g and g!o® with the first one being dominant at higher and

the second one at lower collisionality. A kink on the collisionality dependence of

a summary function g = max (g, ¢'*) shown in figure 28 is at the transition

short __ lon

point v, = 10~* where g3i™ = g it*. At this point, internal maxima of the long off-set

domain are still well aligned, so that g'® scaling with v, is similar to (3.53) which

includes 1/v and 1/,/v terms. Note that gfff‘;) in figure 28 by definition shows only
the largest off-set within the pattern which generally contains more than two off-
set domains (see figure 26). Therefore, location of giff?) maximum at v, dependence
needs not coincide with the location of respective A,z maximum, which is at lower
v, in figure 20. The reason is that contributions of most off-set domains within the
pattern tend to saturate and then vanish with decreasing v, earlier than g% which
is determined then by the off-set domain bounded by the best aligned local maxima.
One should also note that another kink on g® located in figure 28 at v, = 1.7 - 10~
is not the transition point of different off-set patterns but a point where the off-set for
the same pattern changes sign due to the mirroring within trapped-passing boundary
layer discussed, in particular, in §3.1. As a result, the respective off-set of A, in
figure 20 changes sign too (similar to figure 2).

According to (4.2), better alignment of maxima at the off-set segment ends
means smaller poloidal displacements A, and Ay of these ends, which requires
a decrease with the pattern length N of the difference |[Ady — Avy| =2n 1N, — M|
where N, = NN, is the (integer) number of toroidal field periods within the off-
set pattern and integer M is the nearest to tN,. Thus, the increasing sequence of
N, corresponds to the sequence of the best Diophantine approximations M /N, of
(generally irrational) ¢. These approximations are the convergents of ¢ representa-
tion by a simple continued fraction (see, e.g., Hardy & Wright (1985)). Therefore,
an overall trend of the N, series N I(,"), k=1,2,...,1s similar to that of geometrical
progression, NI()"“) = ka[(,") with b; > 1 such that by — 1 = 1. Thus, due to v, Np‘5
following from (4.6), a series of collisionalities v¥ corresponding to the dominance
of pattern k in the off-set has similar geometrical trend, and a significant change in
the off-set of A, requires such a change of log v,.

Finally, in view of the off-set (4.12) being of the same order as the collision-
less asymptotic (2.43), let us estimate the role of the correction term driven by
the source (3.13) which has been ignored in the present analysis and estimated
to have a vanishing effect with decreasing collisionality in a short field line exam-
ple in §3.4. Comparison of the asymptotic and numerical solutions in figure 25
shows an obvious feature which cannot be described by the leading-order off-set.
Namely, instead of the continuous linear growth of g/, numerical solution tends to
a nearly periodic behavior with the period of the order of the off-set pattern length.
In other words, finite collisionality provides an aperiodic correction term which
nearly balances the aperiodic behavior of g{ (while the leading-order off-set provides
only a nearly periodic correction contained in the off-set domains within the pat-
tern). One can formally present this next-order correction as a ‘staircase function’,

Ag =%, Cc"e ((p — P ), where ¢\°” are the boundaries of the offsset pattern
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(points of well aligned relevant maxima) and C\" = g/ ((p,i‘f’l)) — g ((p,(f’p)). Being of

the same order as g, which, due to its dependence on ¢, makes an independent of
collisionality contribution to A,z within each off-set pattern, the staircase function is
constant within the pattern and, according to the first estimate (4.12), its contribu-
tion scales with collisionality. Namely, replacing the distribution function off-set g‘(){vg
with Agfffrf) ~ NN, where N, is the number of patterns per closed field line (and N,
as before, is the number of toroidal turns within the pattern), respective contribution
to the bootstrap coefficient scales as Ar,z ~ w' ) Agly ~ NyN =2~ Ny,
Another feature demonstrated for the short field line in figure 8 is a split of the
boundary layer caused by a strong alignment of relevant maxima. This split can also

be formally described by a staircase function Agly =3, ™0 (go — (p,(fp)) Sy (M —

n) where &y, tends with vanishing collisionality to a é-function and is localized within
the boundary layer width §n where it scales as §n~! at finite collisionality, whereas
constants C,(Cbl) are given by the integral in parentheses in (2.52) with the change of

lower and upper limits to ¢\” and ¢, respectively. Since Ag™™ is also a constant of

¢ within the pattern, its contribution to A,z can be estimated as Axyz ~ Aw') Agh

where Ag® ~ NN,8n~', and the estimate Aw(}) ~N'AL follows from (3.59),

where AI{," )~ 893~ N3 is the contribution of the boundary layer to the integral
I3 (this estimate is similar to the estimate of the error due to the finite 7\’ — n,
below (4.9)). Finally, we obtain Al,p ~ Ny N 28071 ~ Ny N~' ~ N,w!/® where we
used (4.6) treated again as an approximate equality instead of a strong inequality.
Thus, despite a visible effect on the generalized Spitzer function gg), the ignored
correction provides to the bootstrap coefficient a contribution which is converging
to zero with decreasing collisionality.

It should be noted that scaling AA,g oc Ny, with the number of off-set patterns
within the closed field line is the result of the ‘worst case’ estimate allowing for
‘bootstrap resonances’ discussed below in §4.4. Such a crude ‘worst case’ estimate
of the collisionless asymptotic AZ 5 1n the form (2.56) results in a similar scaling with
the field line length which, in turn, does not contain the collisionality dependence.

4.3. Off-set of bootstrap/Ware-pinch coefficient in case of (nearly) aligned maxima

In the advanced stellarator configurations aiming at good confinement of fusion
alpha particles, global magnetic field maxima tend to be aligned. This is the case in
ideal quasi-symmetric configurations (Niihrenberg & Zille, 1988) and also in quasi-
isodynamic configurations with poloidally closed contours B =const (Mikhailov
et al. 2002; Subbotin et al. 2006). If these configurations are not realized exactly,
poloidal (helical in the general case of quasi-symmetry) closure of B = const. con-
tours is destroyed, in particular, near the field maximum where these contours
split into islands centered around the global maxima reached at one or few points
instead of lines. Local maxima h- VB =0, nevertheless, stay on poloidally closed
contours defined in periodic Boozer coordinates by ¢ = ¢;°(¢) where ¢°(8) =
P(3) + 2k /Nyor with k being an integer, and where ¢*(¢) is periodic. For
simplicity, we restrict our analysis here to the case of poloidally closed contours
where also the family of anti-sigma configurations (3.36) belongs as a sub-class with
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@) = 0. We assume that these local maxima are close to global such that per-
turbation A By.(?) = B(V, (pl"c(i?)) Bax of the global maximum B, achieved in
the ideal (unperturbed) configuration on a line is small. Since (9, ¢) = (0, 0) is a
stellarator symmetry point associated with field maximum, function ¢{°(1%) is odd
and AB(¥) is even.

It is convenient now to label the field lines by the poloidal angle in the middle of
the first field period where ¢ = ¢, = /N, such that (¢, ¢) = (0, ¢,) is a stellarator
symmetry point associated with field minimum of the ideal configuration. Namely,
we label them with ¥y =9 — (¢ —¢,) =9 — 19 + 1, where ¢, =1¢,. Positions of
local maxima on the so labeled field line, ¢, = @i (), being the solutions to ¢, =

@r° (% + t(pr — ¢,)) for —o0o <k < oo can all be expressed via the left maximum
of the first period ¢, on the relabeled field line as ¢ (%) = ¢y (Do + 2kt,) + 2kg;.
Respective perturbations A B, (%) of global maximum at these points can be
expressed via such perturbation AB, of the left maximum in the first period as
AB (%) = AB) (9o + 2kt,). Finally, integrals (2.26) where ¢ =¢; and ¢ = ¢,
can be mapped to the first period similarly, I; (%, n) = Iy(d + 2kt,, n).

Due to stellarator symmetry, function ¢,(%%) is odd with respect to ¥y —¢,, i.e.
©o(2t, — ¥9) = —@y(Vy), while function AB is even. It convenient to express the
latter via an even function of the argument AB(¥') as AB() () = AB(d —¢t,),
such that for anti-sigma configurations we have an identity AB(3) = ABj(¥) =
B(?, 0) — Bimax. We fix Bmax by the condition of zero average, AB =0 such that an
even function An(d9) =—AB(¥)/ Bmax has zero average too. Using definition (3.30)
of the aspect ratio, its perturbation is given by AA, () = (Lrer/ 1o (Do, r;,,))l/2 -1
being an even function with I; determined by the condition of zero average AA,.

Mapping to the first period of the distribution function off-set given by (3.53)
for small AA, <1 and An <K dn.s is similar to that of the other quantities,
gD (W) = gf)’g(z% — 2kt,). Since (3.53) gives the off-set in open-ended system with
sources located in a single period, solution for the closed (periodic) system with
sources in each period is an odd function given by the sum over all periods of the
open ended system

gor(®) = > gl (W — 2ku,), (4.14)
k=—00
which is expressed via even functions AA, and An as

I ((B? —
Zoir (Vo) = (EW;) Z («/EénrefAf (AA, (90 — 20,k) — AA, (D + 20,k))
n=np k=1

+ A (An (9 — 1,2k — 1)) — An (%9 + 1,2k — 1)) . (4.15)

Respectively, the off-set of the Ware-pinch coefficient (3.54) is expressed in the limit
of infinite (irrational) field-line length via g. as follows:
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2w 271 / Ntor 2
do dr dr &
Ao dv, —_—— ddo gorr (P Iy (D) =1 —— s 4.16
ff/ 0 f B2 dy 0 8ot (D) Iy (D) ﬂdwzg v ( )
0 0 0 m=

where an odd function /() is given by the second (3.59) with ¢ ;) = ¢() and
<p(+j) = ¢ (%), and we used (an odd) Fourier series expansion

(8or(0), Tv(D0)) = Y (gm, I}}) sin(m). (4.17)

m=1

Coefficients g,, are expressed via coefficients of (an even) Fourier series expansion

(AA, (), AB(9)) = i(AAZ“, AB,) cos(m?d), (4.18)
i
as follows:
gn = % (2&7;)1:% (ﬁanrefsA (mi,) AA™ — 1S (mtp)ABm) : (4.19)
where
S+(9) = i Ajlsin 2kg) . Sa(¢) = i Afsin(2k—D¢).  (4.20)
k=1 k=1

These functions have period 27 and are well approximated in the interval —7 < ¢ <
7 by S4(¢p) = 0.26 (¢ — (;r/2)sign(¢)) and Sz(¢) ~ 1.85 sign(¢).

For the estimates, we apply general expressions (4.15)-(4.19) to the anti-sigma
configuration (3.36) which corresponds to the perturbed case 3 with ¢y =¢y < 1,
e=¢ <K¢eyand g3=0

B, ¢) = By (1 + &3 cos(Nyor0) + &, cos ¥ (1 — cos(Nor0))) + ABjcosv. (4.21)

In the leading order over ¢ /ey and AB,;/B,, only A! ~¢,/(2¢)) harmonic and
A B; harmonic contribute to Ay because of the dominance in the [y, spectrum of
harmonic I, ~ —8e&,(2ey)"/*(Bi Nor)~'. Estimating [. =7 R/(2v,), (B*) ~ B}, 0y ~
l/BO, <|)‘|>n=rzb ~ 7T_1(8‘9M)1/2 and Snrefw 477_1/2(28M)1/4(V*/Ntor)l/2B()_] we get

o g T (( 2 )”2 £.54(L,) nABlSB(t,,)>
off ™~ T ¢t 0 -

dlﬁ V*Nlor (28M)3/4 4V*BO
ok (0421 e (20 e "AB 42
B T 12 34 - |t— (4.22)
(v« Nior) Ey Nior v, By

The black dotted line showing the trend in figure 14 actually corresponds to the
result of this formula for case 3.

It should be reminded here that the off-set (4.22) due to violation of
ripple equivalence appears only for relatively strong alignment of maxima,
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«—AB,/By =0 —AB,/B, =0
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FIGURE 30. Geometrical factor A, g computed by NEO-2 (circles) and DKES (filled squares) vs
V.. Three different maximum-B perturbations are marked with colors (see the legend). Dashed
lines correspond to the asymptotic (4.22). Negative A, p are shown in the right plot.

AB/By < (v,/Nip) 2811\,;4, and the validity of estimate (4.22) requires the respective
strong inequality. In the marginal case where an approximate equality is realized,
the largest off-set, A~ )\};’}; 8,1 / 28,1‘,54 (v Nior) ™% occurs. The result of a small mis-
alignment of maxima due to a finite perturbation A B; in (4.21) is shown in figure 30.
Note that the validity condition of a linear asymptotic (4.22) becomes violated for
finite AB; at v, = 1.7 - 10~® where An = 8n,;, and the case of nearly aligned maxima

starts a transition to the usual case of a global maximum reached at a point.

4.4. Bootstrap resonances

As one can conclude from figure 20, resonance structure of ¢ (equivalently, of
radial) dependence of bootstrap coefficient is absent in finite collisionality cases (see
also figure 16 of Landreman et al. 2022). This, however, does not mean that these
resonances never play a role. The reason for them is the following (see also the
Appendix of Boozer & Gardner 1990). By our assumption, the magnetic configu-
ration has embedded flux surfaces everywhere so that magnetic islands are absent
at any rational magnetic surface, which is manifested by a true surface condition
(2.41). Although these configurations constitute a set of measure zero, they are
physically possible. It is straightforward to check that the first term (representing
the Pfirsch-Schliiter current) in (2.43) is never resonant as long as conditions (2.41)
are fulfilled. However, this is not the case for the second term. Up to a flux sur-
face function, the sub-integrand of the field line integral there is the derivative over
n of the source term s, (2.3), which fulfills the quasi-Liouville theorem (2.15) at
our representative field line, but not necessarily on the other field lines from the
same rational surface. In other words, the amplitudes of resonant harmonics fulfill-
ing tm + n =0 for our rational surface are generally finite, but these are harmonics
of sin(m?d + np) = sin(mdy + ngy + (tm + n)(¢ — ¢y)) which are identical zeros for
the starting point (3, ¢p) being a stellarator symmetry point. Would those ampli-
tudes be all zero, the integral over any field line would be a single-valued function
fulfilling then a quasi-Liouville theorem (2.15) for passing particles and, as a conse-
quence, conditions ¢ d/ v, = const evaluated for passing particles along closed field
lines (see the discussion by Shaing & Callen (1983) after equation (44b)), which actu-
ally mean ‘true surface’ conditions for the effective magnetic field B* (Morozov &
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Solov’ev 1966), i.e. for drift surfaces. The latter, however, need not have the same
topology as the magnetic surfaces (see, e.g. Heyn et al 2012) and, at best, can
be made embedded for one particular n value for the cost of destroyed magnetic
surfaces and drift surfaces with different 5 (actually, true drift surface conditions
reduce for n =0 to true magnetic surface conditions). Thus, drift islands are gen-
erally present at any rational drift surface (see, e.g. Smirnova 1997), and, due to
the increased spectral width of s(;, near the trapped-passing boundary (Boozer &
Gardner 1990) where the exponential decay of s, spectrum is replaced with a power
law, (mB, — nBy)(m* + Bn?)~¥/? estimated similarly to (4.11), drift islands overlap
near this boundary (s, = — dr/ dg along the orbits by definition (2.4)). This leads
to barely trapped alpha particle losses observed in realistic stellarator configurations
(Albert et al. 2020a,b, 2023; Chambliss, Paul & Hudson 2024), which do not ideally
fulfill the quasi-symmetry conditions.

Due to our choice of reference field lines, respective drift orbits correspond
to invariant axes (X or O points of drift islands), i.e. exact resonance does not
destroy their closure and, therefore, does not affect collisionless A,z. However,
neighboring resonances result in near resonant contributions to the collisionless
Apg ¢ (tm —n)~' where the denominator is rather close to zero, min(im —n) =
mAt < 1/n. One should note that exponential decay of the spectrum is restored
from the power law decay for passing particles displaced from the separatrix by
An =n —n, and mode numbers fulfilling m* + Bn* > (n;/An)d>B/d¥>. Therefore,
contribution of near-resonant modes with high m and n to the integral over 7 in
(2.43) scales with a maximum Az which still allows the power law decay, i.e. it
is ccm™ At (m?* + Bn?)2(mB, —nBy) o« Ac”'m™*. Would the rational numbers be
evenly distributed over the real axis as we assumed for simplicity in §4.2, then
At~ 1/m?, and the contribution of near-resonant modes is oc m =2, i.e. it is relatively
small. However, uniform distribution is not the case in reality (see, e.g. figure 5 in
Kasilov et al. 2002). Namely, if A,z asymptotic is evaluated at a high-order rational
surface with tm;, + n;, =0, the distance to the low-order resonance tm; + n; =0 can
be as small as At~ 1/mj, which results in the contribution scaling as m} /m}, i.e. it
tends to infinity if the evaluation is at the irrational surface with ¢ arbitrarily close to
—n;/m;. As a result, A,z asymptotic has a fractal dependence on ¢, as seen from the
right plot in figure 20. On the contrary, if A,z asymptotic is evaluated at low-order
rational field lines, there are no other low-order rationals in the neighborhood, and
the resulting data points appear to belong to the smooth curve (see the respective
markers in the left plot of figure 20 which correspond to rational ¢ with numerators
not larger than 500 while the rest of the data points have numerators up to 10 000).

Finite collisionality limits the effect of bootstrap resonances by modifying n and
thus moving passing particles into the trapped particle region or deeper to the
passing particle region, where the Fourier spectrum of s, decays exponentially.
Therefore, only a finite (‘collisionless’) segment of its orbit corresponding to N
toroidal turns stays in resonance with a given Fourier amplitude of s, limiting
the resonant denominator to max(mAt¢, 2rN)~!). We can estimate N equating
the width of power law decay region An~ nye, (1 +*8)"'m=2 (see above) to the
boundary layer width corresponding to N turns, (4.5). Ignoring the numerical factor
and 1+ 2B~ 1, scaling of near-resonant contributions changes from m=*A.~! to
m~*(max(At, m3v,&;”*))~". For the examples in figure 20 where the lowest-order
rational number present in the ¢ range has m =11, near-resonant contributions
remain small by this estimate as long as v, > 1078, which results in a smooth A,
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dependence on ¢ in collisional cases. Since bootstrap resonances are mostly an arti-
fact of the collisionless asymptotic limit, they are avoided in practical computations
either by removal of respective near-resonant spectral modes, see, e.g. Nakajima
et al. (1989) or by introducing a Gaussian factor in the field line integration (Boozer
& Gardner 1990) which effectively mimics the collisional attenuation discussed
above.

5. Effect of particle precession

As we saw from the previous analysis, off-set of the trapped particle distribu-
tion function gy = g — g( 1s determined in the ‘well trapped’ domain beyond the
matching boundary »,, introduced in §3.2, n > n,,, where g, is essentially a con-
stant, by the collisional solution in region containing the boundary layer, n < n,,
which is the consequence of the absence of a source term in the trapped parti-
cle region. This remains the case in the presence of particle precession caused by
the magnetic drift and finite radial electric field if the typical relaxation rate in the
‘well trapped’ particle domain n > 7, stays small compared with (essentially par-
allel) relaxation in the region 1, <n <, (case of mild rotations). Since the latter
region is rather narrow, |n, — n,,| ~ 87, effect of the precession on the solution in this
trapped particle domain and in the whole passing particle region is relatively small
(Beidler 2020) as long as Mach numbers for the E x B drift, vy =vg/v = Qgr/v,

are small enough, Qzt,/80 ~ v}Nzet_y2 ~ v}s‘,_g/wv*‘z/5 <« 1, where we estimated
bounce time as the largest within the off-set pattern extending for N toroidal turns
(4.6), v, ~ NR/(v\/¢,), and the width of the off-set region as §¥ ~1/N. Since
vy ~ pr/r <1 and the respective Mach number due to magnetic drift v} is even
smaller, v} ~ &,v}, this condition is fulfilled even at very low collisionalities typical
for a reactor. Therefore, we can obtain the solution in ‘well trapped’ particle domain
n > n,, from the homogeneous problem driven by Dirichlet boundary condition at
n=n,, where g, is determined by the solution of collisional problem in the 1/v
regime.

Since the trapped-passing boundary layer is excluded from the well trapped
domain 5 > n,,, and class-transition boundary layers are rather narrow in the long
mean free path regime, we can use for g,y a homogeneous bounce-average equa-
tion. In the conservative form required for proper handling of boundary conditions
at class-transition boundaries and omitting the class index j for simplicity, this equa-
tion using the total energy w =muv?/2 + e® and perpendicular adiabatic invariant
J. =mv?/Qw,) = cm*v*n/(2¢) as momentum space variables is

5 3 9 98ofr
= (00 Zo) + == (S (07)p801) = —— ( Jp (D7), =20) (5.1
5 (S V] gorr) + 30, (I (vy°) 5 otr) o7, ( b( )b 8Jl) (5.1)

where g is independent of ¢. The Jacobian J, and bounce-averaged pitch-angle
diffusion coefficient (D’+/1), = (3J, /dn)* (D), are

d 2nl;
Jbzf_wfb, (D'm>b=—n !

c dr (5-2)

lcfb ’

with /; defined in the first (2.26), and bounce time 7, together with bounce-averaged
radial drift velocity (vy), are given by (3.56) with the omission of class index k.

It should be noted that, due to the use of field aligned (Clebsch-like) spatial
variables, both, (v;), and (vZO)b can be evaluated here along the field lines (see
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(Shaing 2015; Calvo et al. 2017; d’Herbemont et al. 2022)). On the contrary, for
the non-aligned variables (periodic flux coordinates) tangential components of the
bounce-averaged drift should be evaluated over the real bounce orbit with finite
Larmor radius, which is in contrast to (v;), where this results only in a p, correc-
tion to (3.56). Such an evaluation is required to retain in the resulting precession
frequency the effect of magnetic shear which is of the order one if Q; < Qp (see
(Shaing 2015; Albert et al. 2016; Martitsch et al 2016)). A way equivalent to
bounce averaging velocity components is to use equation (3.48) of Morozov &
Solov’ev (1966) resulting in (vy), = J,19J,/80, and (vzo)bz —J,'8J,/dr, where
Jy=m ¢ dl v is the parallel adiabatic invariant computed along the field line, which
makes the Liouville theorem 9(J,(v),)/dr + 8(],,(1)50)1,)/8190 =0 obvious.
Equation (5.1) means that off-set effect is generally non-local, i.e. radial transport
due to entrapping of passing particles at some given surface is produced in some
radial range ér. (radial correlation length) which in the 1/v regime is of the order
8re ~ 14(Vg)p, Where 7, ~ &y /v is the de-trapping time, and, at lower collisionalities,

where (vgo)b > 1/7, and mild electric fields, Qy < 23, is of the size of radial devia-
tion of precessing trapped orbit which does not scale with Larmor radius and is fully
determined by the magnetic field geometry. Thus, local ansatz (2.1) has a limited
validity in the latter case where transport coefficients and bootstrap current need
a non-local treatment, e.g. by Monte Carlo methods (Sasinowski & Boozer 1995;
Satake, Kanno & Sugama 2008) (an exception is weakly perturbed tokamak equi-
libria where a quasi-local ansatz (Martitsch ef al. 2016) can be used retaining the
boundary layer effects). Of course, ér. must be small compared with the plasma
radius for the magnetic fields intended for the reactor, however, it is not necessarily
small compared with the radial variation scale of the off-set which is quite sensitive
to small modulations of the field and ¢ changes. One consequence of this non-locality
is discussed in more details in § 6.

Equation (5.1) should be solved as is if the off-set is produced in the wide poloidal
range containing the trapped-passing boundary layer, which is the case of almost
aligned maxima discussed in §§3.3, 3.5 and 4.3. However, in a more typical case
with a distinct global maximum (or two global maxima, which are also possible in
stellarator symmetry), the width of the off-set region §¢ is small (this is a typical
width of a single strap in figures 21-24). Therefore, convective term with (v?o)b
dominates over (v;)b which, therefore, can be ignored in (5.1) together with the

dependence on ¥, of (vZO)b = Q7, J, and D’1’t, which should be taken at the global
maximum point ¥y = V., thus reducing (5.1) to

dor 1 9 95,
ot _ 2 (g,(pmy, 28 ) (5.3)
8190 ‘L’bQI’ 87’] 877

This can be done because g, is localized in ¥y due to essentially trivial boundary
conditions over n at |y — Pnax] > 8. Therefore, solution to (5.3) in the infinite
domain —oo < ¥ < o0 is sufficient to generalize the results of g, computations in
the 1/v regime for the case of finite precession frequencies (finite radial electric
fields).

For further estimates, we assume a fast precession case, Q71, > 89 (with Q71, K
89 staying fulfilled, which is possible at low collisionalities where 7, << t;), which
would be the condition of the /v transport regime (Galeev & Sagdeev 1979) in case
319 ~ 1 but is established here for smaller precession frequencies due to §9 < 1. In
this case, solution is localized in n near the matching boundary 7,,, and we can
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ignore class transitions which occur in the well trapped particle domain and also set
n =mn,, in all the coefficients. Introducing the dimensionless variables as follows:

U — ﬁmax . |Q§| i
—— o Q), =(— — ), 5.4
y g Sen(@h) x (Sﬁ(D"’% (1 = 1) (54

equation (5.3) is reduced to

Ogofr 9 gofr
ay ox2’

(5.5)

where 0 <x <00, —00o <y < oo, and the boundary conditions are g.(0,y) =
gé{fv(l‘}max +y 89 sign(Q?), n,,) and gor(x, —00) =0, so that solution is localized in
the range |y| < 1. Since the solution is also localized in the range x < I, the second
of (5.4) results in the localization range n — n,, < §gAn,., where An,, ~ 8,1 / 217;, is the
width of trapped particle domain and 6y < 1 is the attenuation factor due to the pre-
cession (we assume here &, ~ ¢, for simplicity). This reduction of the n integration
range of g.ms(1, effectively contributing to the Ware-pinch coefficient (2.11) respec-
tively reduces its value by 6z as compared with the 1/v regime. Explicitly, this factor

is
59 \! /2 ) 12
sp~ 20 o) (5.6)
11927 NR|Q?|
where N ~ 1/§0 is the number of toroidal turns within a given off-set pattern. The
overall trend of the Ware-pinch off-set with the reduction of v, is obtained with the
account of switching off-set patterns and thus increasing N in (5.6) according to the

first (4.6). Thus, the normalized maximum off-set (4.12) is reduced from its value in
1/v regime to

I v "
off s o—3/20.3/5
ALK g ~ e, V] (R|Qﬁ|) . (5.7

i.e. A,z converges with decreasing collisionality to the Shaing—Callen limit. It should
be noted that bootstrap resonances should still be removed from the asymptotic
App for the same reason as discussed in §4.4. In this case, in addition to pitch-
angle scattering limiting the effective orbit length contributing to the resonance in
the power low spectral decay region, also the precession de-correlates the resonant
particles, effectively removing them from that region.

In case of nearly aligned maxima, poloidal width of the off-set region in (5.6)
is not small anymore, 69 ~ 1 or, equivalently, N ~ 1. Thus, using the 1/v regime
estimate (4.22) we obtain the scaling for normalized off-set due to violation of ripple
equivalence as

ST ( )1/2 .
i Ner Rl |

which means that the off-set does not vanish but saturates with reducing collisionality
at a rather high level due to the ratio of bounce frequency to the precession frequency
in the last factor.
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FIGURE 31. Attenuation test for the case in figure 4 of Helander et al. (2011). Normalized electric
field values (Mach numbers vy, = cE,/(vB)) are defined in the legend. Dashed lines show the
result of scaling in (5.9) with the reference point shown by a red circle.

To verify the off-set attenuation model in case of a single off-set pattern with fixed
N in (5.6), we apply this model to DKES results in figure 4 of Helander ez al. (2011)
where the dominant pattern appears to be unchanged in the whole range of v,. The
normalized bootstrap coefficient D, = A5/ in this figure, where the precession
is purely due to the E x B drift, Q" = Q « E,, is represented using the scaling of
attenuation factor (5.6) with collisionality and radial electric field §; o (v,/E,)"* as
follows:

D*.— DSC (v, E.\"?
* _ nSC I/v _ psc ref 31 « Loref
D31 B D31 + <D31 D31 > DI/V —_ D§1C (VrefEr) , (59)

ref

*

where DSC is the Shaing-Callen asymptotic value of D%, Dj" is the actual value
in the 1/v regime, v, s and E.; are the values of v, and E, for a single reference
point in the plot and D} and Drle/f” are the values of D3, for (v,, E,) = (Veer, Erer) and
(vs, E)) = (veer, 0), respectively. As one can see in figure 31, scaling (5.9) well repre-
sents the results with mild electric field but fails for two largest values of v; where
the (tokamak like) boundary layer off-set (Helander et al. 2011) becomes important

(see also figure 19) and where the condition Qx7,/8¢ < 1 becomes violated.

6. Off-set in the direct problem, bootstrap effect at the magnetic axis

We discuss now the off-set in the direct (bootstrap) problem qualitatively. Since
the off-set in the Ware-pinch problem is driven by the asymmetry of the entrapping
of passing particles, off-set in the bootstrap problem is driven by the asymmetry in
the inverse process of trapped particle detrapping. Similarly, there are two (same)
reasons for this asymmetry. First is the asymmetry of local maxima limiting ripple
domains which leads to the detrapping in the direction of the lower maximum.
The second one is connected with the violation of ripple equivalence, A; =1,
and, consequently, to the asymmetry of entrapping and further detrapping in the
neighboring ripples. We estimate now only the first, simpler effect.

For the equilibrium (Maxwellian) particle distribution which is constant on the flux
surface, the detrapping process is balanced by entrapping of passing particles leading
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to zero phase space fluxes (detailed equilibrium) and, respectively, to zero parallel
current. In the presence of radial gradient, the distribution function of trapped parti-
cles is not constant on the flux surface anymore. It is larger in the region with positive
bounce-averaged radial drift, and smaller where it is negative. In stellarator symme-
try, it is obvious that particles are detrapped in those regions in opposite directions,
thus leading to the overall shift of passing particle distribution and, respectively,
to the parallel current. Destroyed symmetry of the ripple wells is described by the
source term s, (2.4), which generates ‘anti-particles’ in the wells with (vy), >0
and ‘particles’ where (v’), < 0. In the asymptotic 1/v regime, these particles and
anti-particles produced éy the source term s(;, within ripple wells can leave these
wells only through boundary layers between classes, where they are re-distributed
and annihilated. As we saw in §§2.2.1 and 2.3.1, parallel flows within these bound-
ary layers make a contribution of the order one to the equilibrium Pfirsch-Schliiter
current. This changes at finite collisionality where ‘relevant ripples’ appear with both
limiting local maxima entering the trapped-passing boundary layer. Re-distribution
of particles and anti-particles between ‘relevant’ ripples occurs then through the
trapped-passing boundary layer (this layer is empty in the asymptotic 1/v regime)
causing the parallel flow there and respective asymmetry of the distribution function
over the pitch parameter A. Such an odd distribution in the boundary layer, g°%,
serves as a boundary condition which shifts from zero the odd part of the distri-
bution function in the whole passing particle domain thus generating a bootstrap
current.

We can estimate g°°“ in the boundary layer using the argument at the end of
§2.2.1 as g%~ H;(Mioc)/SMrer, Where H; (o) is the collisional flux through class
boundary 1 = 1, = max(n;, n;4+1) of the relevant ripple (which corresponds to the
off-set domain in the adjoint problem) with

odd

Pj+1

Hjm):—/ dgD, 28 (6.1)

and g_; being the leading-order solution of direct problem (2.27), and where 87, is
the width of the trapped-passing boundary layer in the “main region”. Since the odd
part of passing particle distribution driven by g°¥ at the trapped—passing boundary
is independent of n and is, therefore, equal to g°, we can estimate the parallel

current density offset using (2.38) as j~ C;g°%, and the respective off-set of

the normalized bootstrap coefficient in (2.42) as Aqr~ g°%/p, ~ H i (Moc) / (PLENrer).-
Naturally, the same result is obtained for the off-set (3.54) in the adjoint problem
using for wé{vg the second equality (3.55) and for g((fff) (3.28) where oe?E ~ 1 in case of
the maximum off-set, and constant (3.18) is

oN oN
2n,(B?) / dp B de
anrzef Biﬂ 8nrzef Btﬁ .

L0 0]

Co~ (6.2)

Note that effect of particle precession reducing the off-set in the adjoint problem
is also the same in the direct problem where it causes re-distribution of trapped
“particles” and “anti-particles” between trapping domains via the rotation within the
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flux surface thus reducing the collisional fluxes into class boundaries as compared
with their maximum 1/v values H; (1i).

Recalling now definitions (2.26) and (2.4) of the normalized collisional velocity
space flux H; (see also (3.55) and (3.57)) we can approximately relate H; to the radial
correlation length in the off-set well r ; ~ rdj(v;)bj as follows, H; ~ rbj(v;)bjAnj ~
Serc‘ir]?/ An; where 7,; and (v),; are bounce time and bounce-averaged velocity
(3.56), T4 ~ (A1, /8n;)* is the detrapping time, An; ~eyn, is the off-set well
depth and 67, is boundary layer width in the off-set domain (see (3.26) and (3.20)).
Thus, g°% ~ 8re;6n;/(A;An;) with the aspect ratio A; =dn.r/én;, and we can
estimate current density as follows:

0577;771;

off odd
Jy ~Cgrt ~
! ” ,OLAjAﬁj

(p(r +38ry) — p(r). (6.3)
This formula actually reverses local transport ansatz (2.1) which assumes infinites-
imal correlation length, and manifests the fact that variation of the distribution
function on a given flux surface (along the field line) from its equilibrium value
is because its value in the ripple wells is determined by the values of equilibrium
distribution function at the neighboring flux surfaces displaced by the correlation
length (strictly speaking, connection of parallel current density to the pressure gra-
dient is non-local, j*" = [ dr'K (r, r') p(r'), with the kernel K (r, r') localized within
|r" —r| < dr.;). Thus, this variation and resulting parallel current need not disappear
at the magnetic axis where dp/ dr =0. Expanding p(r + 6r.;) to the next order, we
obtain parallel current on axis as

jaxiswcnb<v§>ijszj (Anj>3 d’p ~ cnb,oLsif d’p
| PLA; on; dr? AjN]/zvS/2 dr?’

tor Vo

(6.4)

where we estimated (vg)) ~vpL/R, T ~ R/(vare,lw/z), An; ~nyey and 8n; ~
i (v,k/Nwr)l/2 s,l\f, with N, being the number of ripples. Further denoting
d*p/ dr? = p/Lia and normalizing (6.4) to a typical tokamak bootstrap current

value ji* ~ cnyi'e;? dp/ dr = enyp/(te,”° L), we obtain

- axis 1/2 5/4 2 *
(Y, 69

- tok 1/2 3/2°
.]l:o Aleo/r L[’a V*/

where p* = p,/L,. Although this expression contains a small parameter p* in the
numerator, it has another small parameter v/ in the denominator so that current
on axis is not vanishingly small. Estimating for parameters of the tokamak ASDEX
Upgrade in the presence of the helical core with g), ~0.01,¢~0.5,¢, ~0.25, A; =1,
Nior = 2 and central density n, =3 - 10'* cm~? and temperature 7, = 5 KeV resulting
in p*=p;~2-107* and v, ~3.5-107%, we get p*v; />~ 1 so that ji*/j* ~5.
107*(L /L ,,)*. Thus, for peaked 7, profiles (e.g. in the presence of central electron
cyclotron heating) peaking factor L,/L,, ~40 is needed to make these currents
comparable. Of course, in order to achieve jﬁms, special conditions on the magnetic
geometry are required in order to create, in particular, difference in correlation
length ér; in different ripples.

Note that we have retained in the estimates (6.4) and (6.5) only the off-set effect
but ignored the usual bootstrap mechanism where radial correlation length 7.; cor-
responds to the banana width which is much smaller for electrons than ., resulting
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from the 1/v transport. However, this usual mechanism is not small for the ions
whose radial orbit extent and, respectively, radial correlation length is much larger
(with the orbits near the axis comprising a variety of classes even in an axisym-
metric tokamak (Shaing, Ida & Sabbagh 2015; Buchholz et al. 2022)), and, more
importantly, who retain due to their high mass nearly all the momentum within the
species during Coulomb collisions. For the axisymmetric devices, this mechanism
generates the parallel ion flow (generally different from the E x B flow) but not
the current since this flow is fully compensated by the electron flow driven by the
collisional friction. However, if the toroidal ripple is present, it brakes the electrons
leading to some steady current on axis if the ion flow is finite there. The latter
is affected by ripple too via the neoclassical toroidal viscous torque (Shaing 2015;
Albert et al. 2016; Martitsch et al. 2016) which tends to bring the toroidal rotation
velocity towards the (finite) intrinsic velocity driven by the ion temperature gradi-
ent. Due to the finite radial orbit width, finite gradients at surrounding flux surfaces
result in finite ion rotation on axis which finally leads to a finite equilibrium current
there. Generally, once the axial symmetry of the tokamak magnetic field is violated,
there appear various mechanisms resulting in finite non-inductive toroidal current
on axis which is necessary for the steady state tokamak operation, see, e.g. Weening
& Boozer (1992). At the same time, mechanisms discussed here are rather weak for
that purpose which is better achieved with help of stellarator-tokamak hybrids (Ku
& Boozer 2009; Henneberg & Plunk 2024; Liang et al. 2025).

7. Conclusion

To sum up, we can conclude that the bootstrap current in arbitrary three-
dimensional toroidal fields does not converge to the asymptotic Shaing—Callen limit
in the 1/v transport regime. The collisional current off-set being the difference
between the actual bootstrap current and its collisionless asymptotic stays of the
order of the bootstrap current in the equivalent tokamak and only oscillates aperiod-
ically with changing log v,. Moreover, for a set of configurations with aligned local
magnetic field maxima (such that the global maximum is achieved at the flux surface
on a line rather than at one or few points) the bootstrap current off-set diverges
as v_'/2, as long as the condition of equivalent ripples (3.31) is not fulfilled (this
condition is naturally fulfilled in axisymmetric and exactly quasi-symmetric fields).
In turn, in the presence of orbit precession, in particular, due to a finite radial
electric field, the off-set current converges to zero with reducing collisionality as
v}/ |Q7|712, which is in agreement with the results of numerical modeling by vari-
ous codes (Beidler ez al. 2011). Also, in the case of aligned maxima, the off-set does
converge — not to zero but to a finite value which exceeds the equivalent tokamak
current by a large factor ~ (v/RQ?)Y/? ~ (vz)fl/z, where v;; =cE/(vB) <1 is the
perpendicular Mach number.

The missing convergence of bootstrap current in the 1/v regime to the analytical
collisionless asymptotic value is the consequence of two competing limits present
in the problem. Namely, analytical derivations assume explicitly or implicitly that
the field line is closed after a finite number of toroidal turns so that the mean
free path strongly exceeds the period of the field line closure. As a consequence, the
trapped-passing boundary layer width in velocity space 61, is assumed infinitesimal
such that all class-transition boundary layers centered around n = n. = 1/ B, coming
from local field maxima By, which are below the global maximum B, are clearly
separated from the trapped-passing boundary layer centered at n =17, = 1/Bpax.
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Obviously, this assumption cannot be fulfilled at irrational surfaces where the field
line closure period is indeed infinite but the mean free path length stays finite, and
where class-transition boundary layers inevitably interact with the trapped-passing
boundary layer, leading to the bootstrap current off-set. This contradiction between
two limits is manifested in the fractal spatial structure of the collisionless solutions
for the distribution function, which is the fractal within the irrational flux surface in
the adjoint approach (Helander et al. 2011) and has a fractal dependence on radius
(leading to bootstrap resonances) also in the direct approach (Shaing & Callen 1983;
Boozer & Gardner 1990).

The off-set which appears at any collisionality at irrational surfaces (or, equiva-
lently, long enough rational field lines) results from the collisional particle exchange
between trapped and passing particle domains in the velocity space. This exchange
occurs through the boundary layer which, in usual configurations with global mag-
netic field maximum achieved in one or few points, is localized at the flux surface in
some vicinity (contact region or ‘hot spot’) around this maximum such that field line
returns to this vicinity after N oc v !°> « 1 toroidal turns. The off-set of the distribu-
tion function formed between two return points is the largest from all configurations,
Zorr V%, but it does not lead to the divergence of bootstrap current because
the normalized integral of bounce-averaged velocity over the long off-set domain,
Wor X V2° K 1 is the smallest and balances the former in resulting bootstrap coeffi-
cient dg O gorrWorr. This compensation disappears in case of nearly aligned maxima,
where boundary layer contact regions turn into stripes with much larger area than
‘hot spot’ in the usual case. These contact regions cut the field lines into much shorter
off-set domains with the length about a single toroidal period, such that w.; does not
scale with collisionality anymore, but the distribution function still does, g o< v, /2.
Although this scaling is weaker than in the usual case, missing compensation leads
to v /2 divergence of the resulting bootstrap current. This diverging part is respec-
tively reduced if bounce-averaged drift is minimized for trapped particles, which is
naturally the case in quasi-symmetric configurations.

For the analysis of boundary layer effects and resulting off-set of bootstrap cur-
rent we have developed a simplified propagator method, and obtained with its help,
besides the condition of equivalent ripples (3.31) formulated earlier in Helander
et al. (2011) as a property of ideal quasi-isodynamic stellarators leading there to a
tokamak-like bootstrap effect, also the expression (3.53) for the off-set of the dis-
tribution function in the case of imperfectly aligned local maxima and a slightly
violated ripple equivalence condition (3.53) together with the respective estimate
(4.22) of the resulting off-set of bootstrap coefficient in the case of the devices with
non-optimized bounce-averaged radial drift of trapped particles. Actually, the case of
nearly aligned maxima is the most interesting from the point of view of good fusion
alpha particle confinement. This is naturally the case in quasi-symmetric configura-
tions and in quasi-isodynamic configurations with poloidally closed of contours of
B. As can be seen from condition (4.22), the way to avoid the off-set of bootstrap
current in such configurations is to align the maxima accurately and to realize ripple
equivalence condition (3.31). The latter condition is almost the same as the con-
dition of being tied to the flux surface contours of the parallel adiabatic invariant
J) for barely passing particles which, once realized in the case of perfectly aligned
maxima, would prevent collisionless trapped—passing particle transitions and result-
ing stochastic transport. The essential difference of the respective integral /; from
Jy=m ¢ dl v is only in an extra 1/B factor in the sub-integrand. Both conditions are
naturally satisfied if quasi-symmetry conditions are realized exactly, which, however,
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cannot be achieved at all flux surfaces (Garren & Boozer 1991). More generally,
these conditions are fulfilled simultaneously for perfectly omnigeneous fields (Cary
& Shasharina 1997; Helander & Niithrenberg, 2009) being also an idealization (Cary
& Shasharina 1997).

As a curious consequence of bootstrap off-set, we have shown in § 6 a possibility of
a bootstrap effect at the magnetic axis due to a rather large radial correlation length
of the orbits ér. at low plasma collisionalities where it scales in the 1/v regime as
dr. o« pr /v, and strongly exceeds the Larmor radius p;. Thus, the bootstrap current
on axis being vanishingly small in axisymmetric fields where, due to a vanishing
gradient and 8r, ~ p,, it scales as p;,/L; = (p;)*, can have much larger values in
the presence of three-dimensional perturbations (essentially, of a field ripple) on axis.

Since the bootstrap effect is often not desired in stellarators where it modifies the
¢ profile and thus affects the position of an island divertor located at the plasma
edge, the minimization of the bootstrap coefficient X, is usually one of the goals in
stellarator optimization. The presence of a bootstrap off-set which is rather sen-
sitive to plasma collisionality and the ¢ value does not make this task simpler,
and there is little hope that the off-set effect fully vanishes at finite radial electric
fields, thus allowing to use the Shaing-Callen limit alone for the reactor optimiza-
tion. For typical reactor parameters, B =5-10* G, n, = 10" cm™, T;, = 10 KeV,
L,=a=300 cm and ¢ =a/R=0.1, we obtain v, =7 Rv,/v and p*=p/L, as
V¢ =2v, =0.001 = 0.1 for the range contributing 95 % to the convolution (2.9) of
bootstrap coefficient D, and as p~2-107 and p; ~ 1073, respectively. Thus,
using in (5.6) Q" =Qg = p}v/(Re,) together with (4.6) we obtain the maximum
value of the attenuation factor 8z ~ (&,v,/ (N,o*))l/ 2 as §p* ~1 for the electrons,
i.e. attenuation is practically unimportant for them and they mostly stay in the 1/v
regime, and 0.08 < 8, < 1.4 for the ions which are, therefore, significantly affected
by the precession but still cannot be fully described by the collisionless limit.

As follows from § 4.3, the strongest bootstrap current off-set due to nearly aligned
maxima appears for the above parameters, gy ~ ¢, t =1 and Ny, =5 if the mis-
match of maxima is around AB/B ~ 2.5 % for the middle of the collisionality range
(around 8 % for the highest collisionality). According to (4.22), bringing this off-
set back to the level of bootstrap current in the equivalent tokamak would require
to align the maxima better than AB/B ~ 0.3 % for the lowest collisionality and to
fulfill ripple equivalence condition to within AA, < 50 %. The latter condition does
not appear to be too restrictive and can probably be achieved already when tying to
the flux surface J; contours for barely passing particles.

Unfortunately, the off-set in the distribution function cannot be further minimized
by better fulfilling the above conditions because there remains a residual off-set con-
taining the term o< log v, not accounted for in this paper. Nevertheless, the resulting
bootstrap current off-set can still be minimized by reducing the integral bounce-
averaged drift represented by factors Iy, (3.59), which are well defined in the case
of aligned maxima by magnetic field geometry alone. Certain minimization of these
factors can be achieved at mild collisionalities where off-set wells are relatively short
already as a by-product of minimization of 1/v transport coefficients (2.29) via .
This appears to be the case in W-7X ‘standard’ configuration where the off-set in
Dj, shown in figure 3 of (Kernbichler ef al. 2016) is of the order of the Shaing-
Callen value (10% of the equivalent tokamak value) for collisionalities v* > 107>,
and where g is reduced by about an order of magnitude compared with a standard
stellarator (see figure 10 in (Beidler et al. 2011)). Strong D3, off-set of the order one
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shows up there only at very low collisionalities where it is due to the (non-optimized)
bounce-averaged drift of long bananas (off-set wells are long).

Of course, the above simple recipes assuming independent minimization of purely
geometrical quantities (asymptotic A,z and Iy,) do not apply in the general case
without strong alignment of field maxima where multiple off-set well types con-
tribute simultaneously with their relative contributions depending on collisionality
and precession velocity. Minimization of bootstrap current in such cases requires
direct numerical evaluation of all transport coefficients and the resulting plasma
parameter profiles at finite plasma collisionality (Geiger et al. 2015). For the evalu-
ation of bootstrap coefficient in such cases, computations of A,z in the 1/v regime
would be useful if one accounts for the precession by bounce-averaged approach
outlined in § 5. A particular tool for this is NEO-2 which has been specially designed
for the effective evaluation of bootstrap current. Another option would be a fast
neoclassical code MONKES (Escoto et al. 2024, 2025) which, similarly to NEO-2,
has an efficiently parallelizable algorithm.

It should be noted that the two above geometric criteria are naturally met in
the case of quasi-poloidal symmetry (Spong et al. 2001). For such an exact sym-
metry, A,z X By =0 in the absence of auxiliary current, while I,, =0 for all exact
quasi-symmetries which can actually be approached very closely (Landreman &
Paul 2022). More generally, these criteria are met by ideal (omnigeneous) quasi-
isodynamic fields (Helander & Niihrenberg, 2009; Helander et al. 2011). Recent
realizations of a quasi-isodynamic field which are rather close to such an ideal field
(Goodman et al. 2023, 2024) do indeed show very low values of the bootstrap coef-
ficient. Note that mis-alignment of maxima in these configurations is clearly below
2.5%.
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Appendix A. Fourier amplitudes V;,,, of high harmonics.

Integration by parts can be used to check that Fourier coefficients of the analytical
periodic function (whose derivatives of any order are finite) decay with harmonic
index m faster than any power m % where k is an arbitrary positive integer, i.e. their
decay is exponential. Power law decay of Fourier amplitude appears if some finite-
order derivative turns into infinity at one or few points whose close vicinity mainly
determines this amplitude at high m. This is the case of function V' given by (3.60)
with 7 set to 7, so that first- and higher-order derivatives of V over angles are

loc

infinite at the global maximum point. Using a simple model field
B = By (1 + ¢, cos v + &, cos (N @0)) (A1)

which differs from (2.57) by terms quadratic in &, and &y = 2¢, and shift of the
angles by m, and ignoring angular dependence of non-singular factors we present
the Fourier amplitudes of V as

b

2m 1
Vo = =5 U, Upn = do | de e "U (9, A2
g - / o e 0.9 (A2

where coefficients U,,, are real due to stellarator symmetry of
U@, ¢) = (¢ (1 —cos®) + &, (1 — cos (Norp))) . (A.3)

Integrating in (A.2) by parts over both angles and explicitly computing the resulting
second derivative 9*U /(39 d¢) we present

381811Ntor

Umn = 16mn (W/m-}—l,n-&-Nwr + Wm—l,n—Ntor - Wm+1,n—N[0r - u/m—l,n-&-Nmr) ) (A4)

where coefficients

1 b4 T ' '
Won = ) / do / dp e 7" (&, (1 — cos ) + &, (1 — cos (Nior))) ™2,
T

(A.5)

differ from zero for n = kN,,;, where k is an integer. Reducing the integration over ¢
for such n to a single field period expanding in the sub-integrand (1 — cos ) ~ 2/2
and 1 — cos (Nior¢) = N2 9?/2 and then extending the integration over both angles
to the infinite limits, which is justified for large m and n, we get

Nior / /o.o —im®— 2 1/2
Win & dd dep e ™7 (g9 + ¢ Norgo
2x/_7'[2 ( h )

. NtorIW
2m2/2(e,n2 + £, N2m?)

(A.6)
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where we changed the integration variables from (¢, ¢) to polar variables (o, ¢) as

follows:
) —172 3 A N\ =172
N,
ﬁ=<m2+ ng;) p cos p, <p=<n2+m> psing, (A7)
8th0r 8;
in order to get
Iy =/ d,o/ dg e SO0 =27 / dpJy(p) =27. (A.8)
0 - 0

Here, x =atan ((e4/&,)"/*mNy:/n) and Jy(p) is Bessel function of the first kind. For
large m and n finite differences in (A.4) can be approximated by derivatives

2
~ RENIY\

52 9eleiNy,
4 T W ¥ e 572 A.9)
mn omon 47‘[\/5 (8,712 + ShN&)rm2)

mn

Expressing here modulation amplitudes via second derivatives of the field at the
global maximum
1 9°B 1 9°B 1 9°B

-, N2 = =— , A.10
O T Bgyavr T T B a9 BBy 097 (.10)

where § is defined in (4.1) and approximating 1, &~ 1/ By, we present (A.9) as

U ~ 9ﬁ1/2 )72/2 Ntor
VNG (m>+ pn2)*?
which, together with 1, &~ 1/ By in the first (A.2), results in (4.11).

9B |

902

(A.11)
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