
Bull. Aust. Math. Soc. 85 (2012), 395–414
doi:10.1017/S000497271100298X

TWO NONTRIVIAL WEAK SOLUTIONS FOR THE
DIRICHLET PROBLEM ON THE SIERPIŃSKI GASKET
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Abstract

We study a Dirichlet problem involving the weak Laplacian on the Sierpiński gasket, and we prove the
existence of at least two distinct nontrivial weak solutions using Ekeland’s Variational Principle and
standard tools in critical point theory combined with corresponding variational techniques.
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1. Introduction

The word ‘fractal’ is derived from the Latin fractus, meaning broken, and is due to
Mandelbrot in 1975. A fractal often has the following properties: it has a simple
recursive definition, it has a fine structure at arbitrary small scales, it is self-similar,
and it has a Hausdorff dimension which is greater than its topological dimension. A
simple example of a fractal is the Sierpiński gasket (triangle). It was introduced in
1915 in an influential paper [12] by the Polish mathematician Waclaw Sierpiński and
it plays an important role in the theory of curves. It is one of the basic examples of
post critically finite fractals (see [9]). The complement of it is a union of triangles.

The basic differential operator in the theory of fractals is the Laplacian. Therefore,
when speaking of differential equations on fractals or fractal differential equations, one
means equations involving the Laplacian.

The pioneering works in analysis on fractal sets are the probabilistic approaches of
Kusuoka [11] and Barlow and Perkins [1]. They have constructed and investigated
Brownian motion on the Sierpiński gasket. In their standpoint, the Laplace operator
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has been formulated as the infinitesimal generator of the diffusion process. On the
other hand, a direct and natural construction of a Laplacian on the Sierpiński gasket as
a limit of difference quotients was given by Kigami [7], who later extended the method
to the class of post critically finite fractals; for details see [8, 9]. Kigami gives a general
construction of self-similar energies and Laplacians on a family of self-similar fractals
that includes the familiar Sierpiński gasket.

Many problems on fractal domains lead to nonlinear models, such as reaction–
diffusion equations and problems on elastic fractal media or fluid flow through fractal
regions.

Let V be the Sierpiński gasket in RN−1 (N ≥ 2) and V0 be the boundary of the
Sierpiński gasket V . In this paper we are concerned with the problem−∆u(x) = f (x)|u(x)|p−2u(x) + (1 − g(x))|u(x)|q−2u(x), for x ∈ V \ V0,

u(x) = 0, for x ∈ V0,
(1.1)

where ∆ is the Laplacian on V , 1 < p < 2 < q are real numbers, f , g ∈C(V) satisfy
f + = max{ f , 0} , 0 and 0 ≤ g(x) < 1 for all x ∈ V .

2. Preliminary results

We start by recalling the definition of the Sierpiński gasket in RN−1 for N ≥ 2. Let
q1, q2, . . . , qN ∈ R

N−1 satisfy |qi − q j| = 1 for i , j. For every i ∈ {1, . . . , N}, define the
map S i : RN−1→ RN−1 by

S i(x) = 1
2 (x − qi) + qi.

It is clear that S i is a similarity with ratio 1
2 . Let S := {S 1, . . . , S N} and define the map

F : P(RN−1)→P(RN−1) by

F(A) =

N⋃
i=1

S i(A) for every subset A of RN−1.

Theorem 9.1 in [5] shows that there exists a unique nonempty compact subset V of
RN−1 such that F(V) = V , that is, the set V is a fixed point of the map F. The set V is
called the Sierpiński gasket in RN−1.

The Sierpiński gasket V can be constructed inductively. Put V0 = {q1, . . . , qN},
Vm = F(Vm−1) for m ≥ 1 and V? =

⋃
m≥0 Vm. The points in Vm \ V0 are called junction

points. We note qi = S i(qi) for every i ∈ {1, . . . , N} and thus we have V0 ⊆ V1, hence
V? = F(V?). Since the maps S i are homeomorphisms for i ∈ {1, . . . , N}, we deduce
that V? is a fixed point of the map F. On the other hand, taking H to be the convex
hull of the set V0 we notice that S i(H) ⊆ H for i ∈ {1, . . . , N}. Thus, Vm ⊆ H for every
natural number m ≥ 0 and it follows that V? ⊆ H. Thus, we conclude that V? is a
nonempty and compact set, hence V = V?.

By [5, Theorem 9.3], the Hausdorff dimension d of V satisfies the equality∑N
i=1( 1

2 )d = 1. Hence d = ln N/ ln 2 and 0 <Hd(V) < +∞, where Hd is the d-
dimensional Hausdorff measure on RN−1. Let µ be the normalised restriction ofHd to
the subsets of V , so µ(V) = 1.
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The measure µ has the following property: µ(B) > 0, for every nonempty open
subset B of V . In other words, the support of µ coincides with V .

We recall from [6] the following notation:

C(V) = {u : V → R | u is continuous}

and
C0(V) = {u ∈C(V) | u|V0 = 0}.

The spaces C(V) and C0(V) are endowed with the sup-norm denoted by ‖ · ‖sup.
For each function v : V → R and each nonnegative integer m let

Wm(v) =

(N + 2
N

)m ∑
x,y∈Vm,
|x−y|=2−m

(v(x) − v(y))2.

Since for each nonnegative integer m we have Wm(v) ≤Wm+1(v), so we can define

W(v) = lim
m→∞

Wm(v),

(possibly W(v) = +∞).
We also recall the following lemma that plays an important role in our analysis

below.

L 2.1 (The Sobolev type inequality). For all v ∈C(V),

sup
x,y∈V?

x,y

|v(x) − v(y)|
|x − y|α

≤ (2N + 3)
√

W(v), (2.1)

where α = (1/(2 log 2)) log((N + 2)/N).

Next, we define

H1
0(V) = {u | u ∈C0(V) and W(u) < +∞}.

The space H1
0(V) appears as a dense linear subspace of L2(V, µ) endowed with the

usual norm ‖ · ‖2. The space H1
0(V) is endowed with the norm

‖u‖ =
√

W(u).

Actually, there is an inner product defining this norm. For u, v ∈ H1
0(V) and each

nonnegative integer m we set

Wm(u, v) =

(N + 2
N

)m ∑
x,y∈Vm,
|x−y|=2−m

(u(x) − u(y))(v(x) − v(y)).
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It is easy to see using Cauchy’s inequality that the following limit

W(u, v) = lim
m→∞

Wm(u, v),

exists and is finite if u, v ∈ H1
0(V). The space H1

0(V) endowed with the inner product
W(·, ·) is a real Hilbert space. Following [4] we know that W(·, ·) is a densely defined
closed, nonnegative and symmetric bilinear form. Further, W(·, ·) is a Dirichlet form
on L2(V, µ).

By (2.1), for all v ∈ H1
0(V), we have

|v(x) − v(y)| ≤ (2N + 3)|x − y|α‖v‖,

and, taking y = q1, we readily get

|v(x)| ≤ (2N + 3)‖v‖. (2.2)

Furthermore, from Lemma 2.1 and the Ascoli–Arzéla Theorem, the embedding

(H1
0(V), ‖ · ‖) ↪→ (C0(V), ‖ · ‖sup) (2.3)

is compact.
Now we define the Laplacian on the Sierpiński gasket V . Let H−1(V) be the closure

of L2(V) with respect to the pre-norm

‖w‖−1 = sup
g∈H1

0 (V),
‖g‖=1

|〈w, g〉|,

where 〈w, g〉 =
∫

V
wg dµ, for w ∈ L2(V) and g ∈ H1

0(V). Then H−1(V) is a Hilbert space.
Now we have three Hilbert spaces H1

0(V), L2(V, µ) and H−1(V) and the embeddings

H1
0(V) ⊂ L2(V, µ) ⊂ H−1(V).

The relation
−W(u, v) = 〈∆u, v〉, for all v ∈ H1

0(V),

uniquely defines a function ∆u ∈ H−1(V) for all u ∈ H1
0(V) and we call ∆ the weak

Laplacian on V; see [10]. This operator is linear, self-adjoint and defined on a linear
subset of H1

0(V) which is dense in L2(V, µ) and also in (H1
0(V), ‖ · ‖). A complete

presentation of this operator in the general setting can be found in the books of
Kigami [9] and Strichartz [13].

3. Main results

A function u ∈ H1
0(V) is called a weak solution for Problem (1.1) if it satisfies the

equality

W(u, v) −
∫

V
f (x)|u|p−2uv dµ −

∫
V

(1 − g(x))|u|q−2uv dµ = 0

for all v ∈ H1
0(V).
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T 3.1. Problem (1.1) has at least two distinct nontrivial weak solutions, for
f ∈C(V) with f + , 0 and ‖ f +‖sup small enough.

We consider the following problem−∆u(x) = λ|u(x)|p−2u(x) + |u(x)|q−2u(x), for x ∈ V \ V0,

u(x) = 0, for x ∈ V0,
(3.1)

where p, q, λ are real numbers such that 1 < p < 2 < q and λ > 0.

C 3.2. There exists λ > 0 such that for every λ ∈ (0, λ), Problem (3.1) has at
least two nontrivial weak solutions.

4. Proofs

We consider the energy functional corresponding to Problem (1.1) defined as
I : H1

0(V)→ R,

I(u) =
1
2
‖u‖2 −

1
p

∫
V

f (x)|u|p dµ −
1
q

∫
V

(1 − g(x))|u|q dµ

for all u ∈ H1
0(V).

Proposition 2.19 in [6] shows that the functional I ∈C1(H1
0(V), R) and the Fréchet

derivative is given by

〈I′(u), v〉 = W(u, v) −
∫

V
f (x)|u|p−2uv dµ −

∫
V

(1 − g(x))|u|q−2uv dµ

for all u, v ∈ H1
0(V).

Thus, the weak solutions of Problem (1.1) are exactly the critical points of I. We
shall prove that the functional I possesses nontrivial critical points.

Since the energy functional I is not bounded on H1
0(V), it is useful to consider the

functional on the so called Nehari manifold, defined by

N = {u ∈ H1
0(V) \ {0} | 〈I′(u), u〉 = 0}.

Thus u ∈ N if and only if

‖u‖2 −
∫

V
f (x)|u|p dµ −

∫
V

(1 − g(x))|u|q dµ = 0. (4.1)

Furthermore, we have the following results.

L 4.1. The energy functional I is coercive and bounded below on N .
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P. For every u ∈ N ,

I(u) =
q − 2

2q
‖u‖2 −

( 1
p
−

1
q

) ∫
V

f (x)|u|p dµ

≥
q − 2

2q
‖u‖2 −

( 1
p
−

1
q

) ∫
V

f +(x)|u|p dµ

≥
q − 2

2q
‖u‖2 −

( 1
p
−

1
q

)
‖ f +‖sup‖u‖

p
sup

≥
q − 2

2q
‖u‖2 −

( 1
p
−

1
q

)
‖ f +‖sup(2N + 3)p‖u‖p,

where the latter inequality follows by (2.2). Thus, I is coercive and bounded below
on N . The proof of Lemma 4.1 is complete. �

For every u ∈ H1
0(V) we define the function hu : (0,∞)→ R by hu(t) = I(tu) for all

t > 0, that is,

hu(t) =
t2

2
‖u‖2 −

tp

p

∫
V

f (x)|u|p dµ −
tq

q

∫
V

(1 − g(x))|u|q dµ, for all t > 0.

We have

h′u(t) = t‖u‖2 − tp−1
∫

V
f (x)|u|p dµ − tq−1

∫
V

(1 − g(x))|u|q dµ, for all t > 0

and

h′′u (t) = ‖u‖2 − (p − 1)tp−2
∫

V
f (x)|u|p dµ − (q − 1)tq−2

×

∫
V

(1 − g(x))|u|q dµ, for all t > 0.

It is easy to see that

th′u(t) = ‖tu‖2 −
∫

V
f (x)|tu|p dµ −

∫
V

(1 − g(x))|tu|q dµ, for all t > 0

and so, for u ∈ H1
0(V) \ {0} and t > 0,

h′u(t) = 0 if and only if tu ∈ N , (4.2)

that is, the positive critical points of hu correspond to points on the Nehari manifold.
In particular, h′u(1) = 0 if and only if u ∈ N . Thus, it is natural to divide N into
three subsets corresponding to the local minima, the local maxima and the points of
inflection. Accordingly, we define

N+ = {u ∈ N | h′′u (1) > 0},

N0 = {u ∈ N | h′′u (1) = 0},

N− = {u ∈ N | h′′u (1) < 0}.
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L 4.2. Suppose that u is a local minimiser for I onN and u <N0. Then I′(u) = 0
in H−1(V).

P. If u is a local minimiser for I on N , then u is a solution of the optimisation
problem

minimise I(u) subject to γ(u) = 0, u ∈ H1
0(V),

where

γ(u) = ‖u‖2 −
∫

V
f (x)|u|p dµ −

∫
V

(1 − g(x))|u|q dµ.

Since u ∈ N ,

‖u‖2 =

∫
V

f (x)|u|p dµ +

∫
V

(1 − g(x))|u|q dµ;

thus

〈γ′(u), u〉 = 2‖u‖2 − p
∫

V
f (x)|u|p dµ − q

∫
V

(1 − g(x))|u|q dµ

= ‖u‖2 − (p − 1)
∫

V
f (x)|u|p dµ − (q − 1)

∫
V

(1 − g(x))|u|q dµ,

so
〈γ′(u), u〉 = h′′u (1). (4.3)

We notice that γ′(u) , 0. Otherwise, if γ′(u) = 0, we have 〈γ′(u), u〉 = 0 and taking into
account (4.3) we deduce that it is a contradiction with u <N0.

Hence, by the theory of Lagrange multipliers, there exists a ∈ R such that

I′(u) = aγ′(u). (4.4)

Accordingly,
〈I′(u), u〉 = a〈γ′(u), u〉. (4.5)

Since u ∈ N it follows that 〈I′(u), u〉 = 0, and since 〈γ′(u), u〉 , 0 by (4.5) we deduce
that a = 0; therefore by (4.4) we conclude that I′(u) = 0 in H−1(V). Thus, Lemma 4.2
is proved. �

L 4.3. (i) For any u ∈ N+ we have
∫

V
f (x)|u|p dµ > 0.

(ii) For any u ∈ N0 we have
∫

V
f (x)|u|p dµ > 0 and

∫
V

(1 − g(x))|u|q dµ > 0.

(iii) For any u ∈ N− we have
∫

V
(1 − g(x))|u|q dµ > 0.

P. We get

h′′u (1) = ‖u‖2 − (p − 1)
∫

V
f (x)|u|p dµ − (q − 1)

∫
V

(1 − g(x))|u|q dµ

for every u ∈ H1
0(V). If u ∈ N , by condition (4.1), we deduce that

h′′u (1) = (2 − q)‖u‖2 − (p − q)
∫

V
f (x)|u|p dµ (4.6)
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and

h′′u (1) = (2 − p)‖u‖2 − (q − p)
∫

V
(1 − g(x))|u|q dµ. (4.7)

If u ∈ N+, by (4.6), ∫
V

f (x)|u|p dµ >
q − 2
q − p

‖u‖2 (4.8)

so (i) holds.
If u ∈ N0, by (4.6), ∫

V
f (x)|u|p dµ =

q − 2
q − p

‖u‖2 (4.9)

and, by (4.7), ∫
V

(1 − g(x))|u|q dµ =
2 − p
q − p

‖u‖2. (4.10)

Therefore (ii) is true.
If u ∈ N−, by (4.7), ∫

V
(1 − g(x))|u|q dµ >

2 − p
q − p

‖u‖2 (4.11)

so we find (iii). The proof of Lemma 4.3 is complete. �

Let

M :=
q − 2
q − p

(2 − p
q − p

)(2−p)/(q−2)

(2N + 3)−2(q−p)/(q−2) > 0.

L 4.4. The set N0 is empty for all f ∈C(V) with f + , 0 and ‖ f +‖sup < M.

P. We assume by contradiction that there exists f ∈C(V) with f + , 0 and
‖ f +‖sup < M such that N0 is not empty. For u ∈ N0, using (4.9),

‖u‖2 =
q − p
q − 2

∫
V

f (x)|u|p dµ ≤
q − p
q − 2

∫
V

f +(x)|u|p dµ ≤
q − p
q − 2

‖ f +‖sup(2N + 3)p‖u‖p

or

‖u‖2 ≤
(q − p

q − 2
(2N + 3)p‖ f +‖sup

)2/(2−p)

.

Similarly, by (4.10),

‖u‖2 =
q − p
2 − p

∫
V

(1 − g(x))|u|q dµ ≤
q − p
2 − p

(2N + 3)q‖u‖q

or

‖u‖2 ≥
(2 − p
q − p

(2N + 3)−q
)2/(q−2)

.

Thus,

‖ f +‖sup ≥
q − 2
q − p

(2 − p
q − p

)(2−p)/(q−2)

(2N + 3)−2(q−p)/(q−2) = M,

which is a contradiction. This completes the proof of Lemma 4.4. �
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We consider, for any u ∈ H1
0(V), the function φu : (0,∞)→ R defined by

φu(t) = t2−p‖u‖2 − tq−p
∫

V
(1 − g(x))|u|q dµ, for all t > 0.

Clearly,

tu ∈ N if and only if φu(t) =

∫
V

f (x)|u|p dµ. (4.12)

Moreover,

φ′u(t) = (2 − p)t1−p‖u‖2 − (q − p)tq−p−1
∫

V
(1 − g(x))|u|q dµ, (4.13)

and so it is easy to see that if tu ∈ N then

tp−1φ′u(t) = h′′u (t). (4.14)

Thus, tu ∈ N+, respectively tu ∈ N−, if and only if φ′u(t) > 0, respectively φ′u(t) < 0.
We assume that u ∈ H1

0(V) \ {0}. By (4.13), φu has a unique critical point at t = t0,
where

t0 =

( (2 − p)‖u‖2

(q − p)
∫

V
(1 − g(x))|u|q dµ

)1/(q−2)

> 0

and φu is strictly increasing on (0, t0) and strictly decreasing on (t0,∞). Moreover,
limt→0 φu(t) = 0 and limt→∞ φu(t) = −∞. Furthermore,

φu(t0) =
q − 2
q − p

(2 − p
q − p

)(2−p)/(q−2)

‖u‖p
(

‖u‖q∫
V

(1 − g(x))|u|q dµ

)(2−p)/(q−2)

≥ ‖ f +‖−1
sup

q − 2
q − p

(2 − p
q − p

)(2−p)/(q−2)

(2N + 3)−2(q−p)/(q−2)
∫

V
f (x)|u|p dµ

>

∫
V

f (x)|u|p dµ,

since

‖ f +‖sup < M =
q − 2
q − p

(2 − p
q − p

)(2−p)/(q−2)

(2N + 3)−2(q−p)/(q−2).

L 4.5. For each f ∈C(V) with f + , 0, ‖ f +‖ < M and each u ∈ H1
0(V) \ {0}, we

have the following results.

(i) If
∫

V
f (x)|u|p dµ ≤ 0, then there exists a unique t1 = t1(u) > t0 such that t1u ∈ N−

and hu is increasing on (0, t1) and decreasing on (t1,∞). Moreover,

I(t1u) = sup
t≥0

I(tu). (4.15)
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(ii) If
∫

V
f (x)|u|p dµ > 0, then there exist unique 0 < t2 = t2(u) < t0 < t1 such that

t2u ∈ N+, t1u ∈ N− and hu is decreasing on (0, t2), increasing on (t2, t1) and
decreasing on (t1,∞). Moreover,

I(t2u) = inf
0≤t≤t0

I(tu), I(t1u) = sup
t≥t0

I(tu). (4.16)

(iii) t1(u) is a continuous function for u ∈ H1
0(V) \ {0}.

(iv) N− = {u ∈ H1
0(V) \ {0} : (1/‖u‖)t1(u/‖u‖) = 1}.

P. We fix an arbitrary u ∈ H1
0(V) \ {0} and we have

∫
V

(1 − g(x))|u|q dµ > 0.
(i) We assume that

∫
V

f (x)|u|p dµ ≤ 0. Since φu is strictly increasing on (0, t0) and
limt→0 φu(t) = 0 it follows that φu(t) > 0 ≥

∫
V

f (x)|u|p dµ on (0, t0), so the equation with
respect to t,

φu(t) =

∫
V

f (x)|u|p dµ, (4.17)

has no solution on (0, t0).
Since φu(t0) >

∫
V

f (x)|u|p dµ, φu is strictly decreasing on (t0,∞) and limt→∞ φu(t) =

−∞, (4.17) with respect to t has a unique solution t1 on (t0,∞) and φ′u(t1) < 0, which
depends on u. Taking into account the above facts we get t1 as the unique solution on
(0,∞) of (4.17).

Thus, by (4.12), we have t1u ∈ N which is equivalent, by (4.2), to h′u(t1) = 0.
Therefore, hu has a unique critical point at t = t1 on (0,∞). Using (4.14) and φ′u(t1) < 0
it follows that h′′u (t1) < 0, so t1u ∈ N− and t1 is a maximum point of hu on (0,∞). Given
that, we deduce that hu is increasing on (0, t1) and decreasing on (t1,∞), and

hu(t1) = sup
t≥0

hu(t).

This means that (4.15) holds.
(ii) We assume that

∫
V

f (x)|u|p dµ > 0. Since φu(t0) >
∫

V
f (x)|u|p dµ, φu is strictly

increasing on (0, t0) and limt→0 φu(t) = 0, (4.17) with respect to t has a unique solution
t2 on (0, t0). Also, since φu(t0) >

∫
V

f (x)|u|p dµ, φu is strictly decreasing on (t0,∞)
and limt→∞ φu(t) = −∞, Equation (4.17) with respect to t has a unique solution t1 on
(t0,∞). Thus, the equation with respect to t,

φu(t) =

∫
V

f (x)|u|p dµ,

has exactly two solutions t1, t2 depending on u with 0 < t2 < t0 < t1 such that φ′u(t2) > 0
and φ′u(t1) < 0. Therefore, there exist two multiples of u such that t2u ∈ N+ and
t1u ∈ N−. Hence, hu has two critical points at t = t2 and t = t1 such that h′′u (t2) > 0 and
h′′u (t1) < 0. It follows that t2 is a minimum point of hu and t1 is a maximum point of hu.
This yields that hu is decreasing on (0, t2), increasing on (t2, t1), decreasing on (t1,∞)
and hu(t2) = inf0≤t≤t0 hu(t), hu(t1) = supt≥t0 hu(t). The above facts imply that (4.16)
holds.
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[11] Two nontrivial weak solutions 405

(iii) By the uniqueness of t1(u) and the extremal property of t1(u), we deduce that
t1(u) is a continuous function for u ∈ H1

0(V) \ {0}.
(iv) For u ∈ N−, we consider w = u/‖u‖. We claim that w ∈ H1

0(V) \ {0}. Taking
h : R→ R, h(t) = t/‖u‖ (that is a Lipschitz function with constant L ≥ 0 and h(0) = 0)
it follows by [2, Lemma 3.1] that w = h ◦ u = u/‖u‖ ∈ H1

0(V). Also w , 0 since u , 0.
Our claim is proved.

By (i) and (ii) there exists a unique t1(w) > 0 such that t1(w)w ∈ N− or
(u/‖u‖)t1(u/‖u‖) ∈ N−. Since u ∈ N− it follows that (1/‖u‖)t1(u/‖u‖) = 1 and this
implies that

N− ⊂

{
u ∈ H1

0(V) \ {0} :
1
‖u‖

t1
( u
‖u‖

)
= 1

}
.

Conversely, we assume that u ∈ H1
0(V) \ {0} is such that (1/‖u‖)t1(u/‖u‖) = 1. Then

u
‖u‖

t1
( u
‖u‖

)
∈ N−,

so u ∈ N−.
We conclude that

N− =

{
u ∈ H1

0(V) \ {0} :
1
‖u‖

t1
( u
‖u‖

)
= 1

}
.

Lemma 4.5 is proved. �

For all f ∈C(V) with f + , 0 and ‖ f +‖sup < M, by Lemma 4.5 we deduce that the
setsN+ andN− are nonempty, and combining this result with Lemma 4.4 we conclude
that

N =N+ ∪ N−.

We define
I1 = inf

u∈N+
I(u) and I2 = inf

u∈N−
I(u)

and we try to see if they are attained.

L 4.6. The following assertions hold.

(i) I1 < 0 for all f ∈C(V) with f + , 0 and ‖ f +‖sup < M.
(ii) If ‖ f +‖sup < M := (p/2)M, then I2 >C > 0 for some constant C. In particular,

I1 = infu∈N I(u) for all f ∈C(V) with f + , 0 and ‖ f +‖sup < M.

P. (i) We consider u ∈ N+ and taking into account (4.8) we obtain

‖u‖2 <
q − p
q − 2

∫
V

f (x)|u|p dµ.

Thus, using the above inequality and Lemma 4.3(i),

I(u) =
q − 2

2q
‖u‖2 −

( 1
p
−

1
q

) ∫
V

f (x)|u|p dµ < −
(q − p)(2 − p)

2pq

∫
V

f (x)|u|p dµ < 0

so I1 < 0.
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(ii) Let u ∈ N−. By (4.11), we get

‖u‖2 <
q − p
2 − p

∫
V

(1 − g(x))|u|q dµ ≤
q − p
2 − p

(2N + 3)q‖u‖q

and this yields that

‖u‖2 >
(2 − p
q − p

(2N + 3)−q
)2/(q−2)

.

Therefore

I(u) =
q − 2

2q
‖u‖2 −

( 1
p
−

1
q

) ∫
V

f (x)|u|p dµ

≥ ‖u‖p
(q − 2

2q
‖u‖2−p −

( 1
p
−

1
q

)
‖ f +‖sup(2N + 3)p

)
>

(2 − p
q − p

(2N + 3)−q
)p/(q−2)

×

(q − 2
2q

(2 − p
q − p

(2N + 3)−q
)(2−p)/(q−2)

−

( 1
p
−

1
q

)
‖ f +‖sup(2N + 3)p

)
.

If ‖ f +‖sup < (p/2)M = M, then I2 >C > 0 for some constant C. This completes the
proof of Lemma 4.6. �

L 4.7. We assume that f ∈C(V) with f + , 0 and ‖ f +‖sup < M.

(i) For each u ∈ N , there exist τ > 0 and a differentiable function ω : B(0, τ) ⊂
H1

0(V)→ [0, +∞) such that ω(0) = 1, ω(w)(u − w) ∈ N for all w ∈ B(0, τ) and

〈ω′(0), v〉 =
2W(u, v) − p

∫
V

f (x)|u|p−2uv dµ − q
∫

V
(1 − g(x))|u|q−2uv dµ

(2 − p)‖u‖2 − (q − p)
∫

V
(1 − g(x))|u|q dµ

(4.18)
for all v ∈ H1

0(V).
(ii) For each u ∈ N−, there exist τ > 0 and a differentiable function ω : B(0, τ) ⊂

H1
0(V)→ [0, +∞) such that ω(0) = 1, ω(w)(u − w) ∈ N− for all w ∈ B(0, τ) and

〈ω′(0), v〉 =
2W(u, v) − p

∫
V

f (x)|u|p−2uv dµ − q
∫

V
(1 − g(x))|u|q−2uv dµ

(2 − p)‖u‖2 − (q − p)
∫

V
(1 − g(x))|u|q dµ

(4.19)
for all v ∈ H1

0(V).

P. (i) For u ∈ N , we define a function that depends on u, ψu : [0, +∞) × H1
0(V)→

R by

ψu(t, w) = 〈I′(t(u − w)), t(u − w)〉

= t2‖u − w‖2 − tp
∫

V
f (x)|u − w|p dµ − tq

∫
V

(1 − g(x))|u − w|q dµ.

Then ψu(1, 0) = 〈I′(u), u〉 = 0 since u ∈ N .
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Using the fact that u ∈ N and N0 is empty, we have

∂

∂t
ψu(1, 0) = 2‖u‖2 − p

∫
V

f (x)|u|p dµ − q
∫

V
(1 − g(x))|u|q dµ

= (2 − p)‖u‖2 − (q − p)
∫

V
(1 − g(x))|u|q dµ = h′′u (1) , 0.

According to the implicit function theorem, there exist τ > 0 and a differentiable
function ω : B(0, τ) ⊂ H1

0(V)→ [0, +∞) such that ω(0) = 1 and

ψu(ω(w), w) = 0, for all w ∈ B(0, τ),

which is equivalent to

〈I′(ω(w)(u − w)), ω(w)(u − w)〉 = 0, for all w ∈ B(0, τ);

that means ω(w)(u − w) ∈ N for all w ∈ B(0, τ). We also have

〈ω′(0), v〉 =
2W(u, v) − p

∫
V

f (x)|u|p−2uv dµ − q
∫

V
(1 − g(x))|u|q−2uv dµ

(2 − p)‖u‖2 − (q − p)
∫

V
(1 − g(x))|u|q dµ

for all v ∈ H1
0(V).

(ii) Similarly, there exist τ > 0 and a differentiable function ω : B(0, τ) ⊂ H1
0(V)→

[0, +∞) such that ω(0) = 1, ω(w)(u − w) ∈ N for all w ∈ B(0, τ) and

〈ω′(0), v〉 =
2W(u, v) − p

∫
V

f (x)|u|p−2uv dµ − q
∫

V
(1 − g(x))|u|q−2uv dµ

(2 − p)‖u‖2 − (q − p)
∫

V
(1 − g(x))|u|q dµ

for all v ∈ H1
0(V). Since u ∈ N− we have

h′′u (1) = (2 − p)‖u‖2 − (q − p)
∫

V
(1 − g(x))|u|q dµ < 0

and thus, by the continuity of the function ω, we obtain

h′′ω(w)(u−w)(1) = (2 − p)‖ω(w)(u − w)‖2 − (q − p)
∫

V
(1 − g(x))|ω(w)(u − w)|q dµ < 0,

for τ small enough, and this implies that ω(w)(u − w) ∈ N− for all w ∈ B(0, τ). �

R 4.8. Since ω(0) = 1 it follows that ω(w) , 0 for all w ∈ B(0, τ) with τ
sufficiently small.

L 4.9. We assume that f ∈C(V) with f + , 0 and ‖ f +‖sup < M.

(i) There exists a minimising sequence (un) ⊂ N such that

I(un)→ I1 and I′(un)→ 0 in H−1(V).
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(ii) There exists a minimising sequence (vn) ⊂ N− such that

I(vn)→ I2 and I′(vn)→ 0 in H−1(V).

P. Since I is bounded from below on N (by Lemma 4.1) and by Ekeland’s
variational principle (see [3]), there exists a minimising sequence (un) ⊂ N such that

I(un) < inf
N

I +
1
n

= I1 +
1
n
, (4.20)

I(un) ≤ I(w) +
1
n
‖w − un‖, for each w ∈ N . (4.21)

Since I is coercive on N , (un) is bounded in H1
0(V).

We will show that I′(un)→ 0 in H−1(V). Applying Lemma 4.7(i), for un,
we obtain for every τn > 0 functions ωn : B(0, τn) ⊂ H1

0(V)→[0, +∞) satisfying
ωn(w)(un − w) ∈ N . For a fixed n, we choose 0 < δ < τn and for u ∈ H1

0(V) \ {0}
arbitrarily fixed we set

wδ = δ
u
‖u‖
∈ B(0, δ) ⊂ H1

0(V)

and wδ , 0. We denote
Ωδ := ωn(wδ)(un − wδ) ∈ N .

By (4.21),

I(Ωδ) − I(un) ≥ −
1
n
‖Ωδ − un‖,

and by the mean value theorem we obtain

〈I′(un),Ωδ − un〉 + o(‖Ωδ − un‖) ≥ −
1
n
‖Ωδ − un‖,

which is equivalent to

〈I′(un), −wδ〉 + (ωn(wδ) − 1)〈I′(un), un − wδ〉 ≥ −
1
n
‖Ωδ − un‖ + o(‖Ωδ − un‖).

Taking into account that Ωδ ∈ N and ωn(wδ) , 0 for δ small enough (by Remark 4.8),
the above inequality implies

−δ
〈
I′(un),

u
‖u‖

〉
+ (ωn(wδ) − 1)〈I′(un) − I′(Ωδ), un − wδ〉

≥ −
1
n
‖Ωδ − un‖ + o(‖Ωδ − un‖).

Thus,〈
I′(un),

u
‖u‖

〉
≤
‖Ωδ − un‖

nδ
+

o(‖Ωδ − un‖)
δ

+
ωn(wδ) − 1

δ
〈I′(un) − I′(Ωδ), un − wδ〉.

(4.22)
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Since Ωδ − un = (ω(wδ) − 1)un − ωn(wδ)wδ, we have ‖Ωδ − un‖ ≤ |ω(wδ) − 1|‖un‖ +

δ|ωn(wδ)| and, taking into account the facts that

lim
δ→0

|ωn(wδ) − 1|
δ

≤ ‖ω′n(0)‖

and (un) is bounded, passing to the limit in (4.22) as δ→ 0 we deduce that there exists
a constant C1 = C1(δ) > 0 such that〈

I′(un),
u
‖u‖

〉
≤

C1

n
(1 + ‖ω′n(0)‖).

Our aim is to show that ‖ω′n(0)‖ is uniformly bounded in n. By (4.18) and using the
fact that the sequence (un) is bounded, we have

〈ω′n(0), v〉 ≤
C2‖v‖

(2 − p)‖un‖
2 − (q − p)

∫
V

(1 − g(x))|un|
q dµ

for some C2 > 0.

Thus, we must show that (2 − p)‖un‖
2 − (q − p)

∫
V

(1 − g(x))|un|
q dµ >C3 for a

constant C3 > 0 and n sufficiently large. Arguing by contradiction we assume that
there exists a subsequence of (un), still denoted by (un), such that

(2 − p)‖un‖
2 − (q − p)

∫
V

(1 − g(x))|un|
q dµ = o(1). (4.23)

Since un ∈ N , by (4.23), we have∫
V

f (x)|un|
p dµ = ‖un‖

2 −

∫
V

(1 − g(x))|un|
q dµ =

q − 2
2 − p

∫
V

(1 − g(x))|un|
q dµ + o(1)

(4.24)
and

‖un‖ ≤

(q − p
q − 2

‖ f +‖sup(2N + 3)p
)1/(2−p)

+ o(1). (4.25)

Let K :N → R be defined by

K(u) =
q − 2
2 − p

(2 − p
q − p

)(q−1)/(q−2)( ‖u‖2(q−1)∫
V

(1 − g(x))|u|q dµ

)1/(q−2)

−

∫
V

f (x)|u|p dµ.

We have K(un) = o(1). Indeed, from (4.23) and (4.24) we obtain

K(un) =
q − 2
2 − p

(2 − p
q − p

)(q−1)/(q−2)(q − p
2 − p

)(q−1)/(q−2) ∫
V

(1 − g(x))|un|
q dµ

−
q − 2
2 − p

∫
V

(1 − g(x))|un|
q dµ + o(1)

= o(1).
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We show that (un) does not converge to 0. Assuming the contrary, the facts that (un)
converges to 0 and I ∈C1(H1

0(V), R) imply that I(un) converges to I(0) = 0, which is a
contradiction with (4.20) and I1 < 0. On the other hand, by (4.25) we deduce that

K(un) ≥ ‖un‖
p
( q − 2
2 − p

(2 − p
q − p

)(q−1)/(q−2)( ‖un‖
2(q−1)∫

V
(1 − g(x))|u|q dµ

)1/(q−2)

‖un‖
−p

− ‖ f +‖sup(2N + 3)p
)

≥ ‖un‖
p
( q − 2
2 − p

(2 − p
q − p

)(q−1)/(q−2)( ‖un‖
2(q−1)

(2N + 3)q‖un‖
q

)1/(q−2)

‖un‖
−p

− ‖ f +‖sup(2N + 3)p
)

= ‖un‖
p
( q − 2
2 − p

(2 − p
q − p

)(q−1)/(q−2)

(2N + 3)−q/(q−2)‖un‖
1−p − ‖ f +‖sup(2N + 3)p

)
≥ ‖un‖

p
( q − 2
2 − p

(2 − p
q − p

)(q−1)/(q−2)

(2N + 3)−q/(q−2)

×

(q − p
q − 2

‖ f +‖sup(2N + 3)p
)(1−p)/(2−p)

− ‖ f +‖sup(2N + 3)p
)

> C4,

where C4 is a positive constant, since ‖ f +‖sup < M < M and (un) does not converge to
0. This inequality contradicts the fact that K(un) = o(1). Thus, our supposition is false
and consequently we have proved that〈

I′(un),
u
‖u‖

〉
≤

C1

n

for every n and every u ∈ H1
0(V) \ {0}, and this implies that I′(un)→ 0 in H−1(V).

(ii) The proof is similar to (i), but in this case we use Lemma 4.7(ii) instead of
Lemma 4.7(i). �

L 4.10. For each f ∈C(V) with f + , 0 and ‖ f +‖sup < M, there exists ũ ∈ N+ that
is a minimiser of I. Moreover, ũ is a nontrivial weak solution of Problem (1.1) and
satisfies

I( ũ )→ 0 as ‖ f +‖sup→ 0.

P. By Lemma 4.9(i), there exists a sequence (un) ⊂ N such that

lim
n→∞

I(un) = I1 < 0 (4.26)

and
I′(un)→ 0 in H−1(V). (4.27)

Since I is coercive on N , (un) is bounded in H1
0(V). As H1

0(V) is a Hilbert space,
there exist a subsequence of (un), still denoted by (un), and ũ ∈ H1

0(V) such that (un)
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weakly converges to ũ in H1
0(V), and by the compact embedding (2.3) we infer that

(un) strongly converges to ũ in (C0(V), ‖ · ‖sup).
Taking into account that (un) strongly converges to ũ in (C0(V), ‖ · ‖sup) it follows

that

lim
n→∞

∫
V

f (x)|un|
p dµ =

∫
V

f (x)| ũ |p dµ

and

lim
n→∞

∫
V

(1 − g(x))|un|
q dµ =

∫
V

(1 − g(x))| ũ |q dµ.

Using (4.26),
I( ũ ) ≤ lim inf

n→∞
I(un) = I1 < 0 = I(0)

and we deduce that ũ , 0. Moreover, by (4.27),

0 = lim
n→∞
〈I′(un), w〉 = 〈I′(̃u), w〉, for all w ∈ H1

0(V).

Hence ũ ∈ N .
Now we prove that (un) strongly converges to ũ in H1

0(V). Assuming by
contradiction that the sequence (un) does not strongly converge to ũ in H1

0(V) we infer
that

‖ ũ ‖2 < lim inf
n→∞

‖un‖
2.

Since un ∈ N for every natural n, we have

‖ ũ ‖2 −
∫

V
f (x)| ũ |p dµ −

∫
V

(1 − g(x))| ũ |q dµ

< lim inf
n→∞

(
‖un‖

2 −

∫
V

f (x)|un|
p dµ −

∫
V

(1 − g(x))|un|
q dµ

)
= 0,

which contradicts the fact that ũ ∈ N . Thus, (un) strongly converges to ũ in H1
0(V). We

have ‖ ũ ‖2 = lim infn→∞ ‖un‖
2. Therefore,

I (̃u) = lim
n→∞

I(un) = I1 < 0,

which means ũ is a minimiser of I. Since ũ ∈ N and I (̃u) < 0,∫
V

f (x)| ũ |p dµ >
p(q − 2)
2(q − p)

‖ ũ ‖2 > 0.

Now we show that ũ ∈ N+. Otherwise, if ũ ∈ N−, we have I1 < 0 < I2 ≤ I (̃u) = I1,
which is a contradiction. Thus, ũ ∈ N+.

By Lemma 4.2, we infer that ũ is a nontrivial weak solution of Problem (1.1).
By (4.8), we obtain

‖ ũ ‖2 <
q − p
q − 2

∫
V

f (x)| ũ |p dµ ≤
q − p
q − 2

‖ f +‖sup(2N + 3)p‖ ũ ‖p

https://doi.org/10.1017/S000497271100298X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271100298X


412 D. Stancu-Dumitru [18]

or

‖ ũ ‖2−p <
q − p
q − 2

‖ f +‖sup(2N + 3)p,

and this yields that ‖ ũ ‖ → 0 as ‖ f +‖sup→ 0 so I( ũ )→ 0 as ‖ f +‖sup→ 0. Hence,
Lemma 4.10 is proved. �

L 4.11. For each f ∈C(V) with f + , 0 and ‖ f +‖sup < M, there exists û that is a
minimiser of I on N−. Moreover, û is a nontrivial weak solution of Problem (1.1).

P. By Lemma 4.9(ii), there exists a sequence (vn) ⊂ N− such that

lim
n→∞

I(vn) = inf
u∈N−

I(u) = I2 > 0 (4.28)

and

I′(vn)→ 0 in H−1(V). (4.29)

Since I is coercive, (vn) is bounded in H1
0(V). As H1

0(V) is a Hilbert space, there exist
a subsequence of (vn), again denoted by (vn), and û ∈ H1

0(V) such that (vn) weakly
converges to û in H1

0(V), and by the compact embedding (2.3) we deduce that (vn)
strongly converges to û in (C0(V), ‖ · ‖sup).

Taking into account that (vn) strongly converges to û in (C0(V), ‖ · ‖sup) it follows
that

lim
n→∞

∫
V

f (x)|vn|
p dµ =

∫
V

f (x)|̂u|p dµ (4.30)

and

lim
n→∞

∫
V

(1 − g(x))|vn|
q dµ =

∫
V

(1 − g(x))|̂u|q dµ. (4.31)

We claim that û , 0. We first notice that

I(un) −
1
2
〈I′(vn), vn〉 =

(1
2
−

1
p

) ∫
V

f (x)|vn|
p dµ +

(1
2
−

1
q

) ∫
V

(1 − g(x))|vn|
q dµ.

Using (4.28), (4.29), (4.30) and (4.31),

I2 =

(1
2
−

1
p

) ∫
V

f (x)|̂u|p dµ +

(1
2
−

1
q

) ∫
V

(1 − g(x))|̂u|q dµ.

If û = 0, it follows that I2 = 0, which is a contradiction since I2 > 0. Our claim is
proved.

Moreover by (4.29), we have

0 = lim
n→∞
〈I′(vn), w〉 = 〈I′(̂u), w〉, for all w ∈ H1

0(V).
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Hence û ∈ N . Since vn ∈ N
−, it follows that

h′′û (1) = (2 − p)‖̂u‖2 − (q − p)
∫

V
(1 − g(x))|̂u|q dµ

≤ lim inf
n→∞

(
(2 − p)‖vn‖

2 − (q − p)
∫

V
(1 − g(x))|vn|

q dµ
)

= lim inf
n→∞

h′′vn
(1) < 0;

thus û ∈ N−.
Now we prove that (vn) strongly converges to û in H1

0(V). Otherwise,

‖̂u‖2 < lim inf
n→∞

‖vn‖
2.

Since vn ∈ N for every natural n, we have

‖̂u‖2 −
∫

V
f (x)|̂u|p dµ −

∫
V

(1 − g(x))|̂u|q dµ

< lim inf
n→∞

(
‖vn‖

2 −

∫
V

f (x)|vn|
p dµ −

∫
V

(1 − g(x))|vn|
q dµ

)
= 0,

which contradicts the fact that û ∈ N . Therefore, (vn) strongly converges to û in H1
0(V).

This implies that
I (̂u) = lim

n→∞
I(vn) = I2 > 0,

which means û is a minimiser of I on N−. By Lemma 4.2, we deduce that û is a
nontrivial weak solution of Problem (1.1). This concludes the proof of Lemma 4.11. �

P   3.1 By Lemmas 4.10 and 4.11 we conclude that there exist ũ ∈ N+

and û ∈ N− such that
I (̃u) = I1 < 0 < I2 = I (̂u).

Thus ũ and û are distinct. Therefore ũ ∈ N+ and û ∈ N− are two distinct nontrivial
weak solutions of Problem (1.1). This completes the proof of Theorem 3.1. �

P   3.2 If we take f (x) = λ > 0 and g(x) = 0 for every x ∈ V , Problem
(1.1) becomes Problem (3.1). Thus, by Theorem 3.1, we deduce that the conclusion of
Corollary 3.2 is valid. �
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