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ABSTRACT. The effect of the spatial pattern of mass balance on the steady-state
geometry of a glacier is examined using a Vialov-Nye glacier-llow model based on non-
lincar internal deformation of the ice with no basal motion. Surface profiles are predicted
using a range of spatial variations of mass balance that include uniform shilis that cause a
change in the mean and spatial patterns with zero mean representing changes in balance
gradient and curvature. The corresponding effects on geometry induced by the different
mass-halance patterns are described in terms of the volume and measures of surface slope
and convexity. The change in glacier volume, slope and convexity induced by uniform
changes in mass balance with non-zero mean are more than one order of magnitude larger
than corresponding changes caused by spatial patterns of similar amplitude, but with zero
mean. These results show that the mean mass balance contains most of the mass-balance
information relevant to the dynamic changes of a glacier. An important consequence is
that the memory of a change in climate, which is controlled by the consequent volume
change, should be insensitive to the spatial pattern other than how that aflfects the mean.
The H]Jdl]d] pattern of mass balance does induce small changes in the shape of the steady-
state profile, which indicates the spatial pattern could affect the short time-scale response

Geometry response of glaciers to changes in spatial pattern

characteristics.

INTRODUCTION

This paper explores how the spatial pattern of mass balance
on a glacier or ice sheet affects its steady-state geometry.
Qualitatively, the sensitivity of the surface-elevation profile

to the mass balance is low because of the high sensitivity of

ice flow to thickness and slope (Paterson, 1994), Thus, differ-
ences in ice transport tend to be accomplished largely by
velocity variations driven by relatively small geometry

changes. Irom another perspective, the diffusive effect of

ice [low smoothes out spatial irregularities. These notions
indicate that spatial variations in mass balance would have

only a minor cffect on the steady-state elevation profile of

the surface ol a glacier. The principal purpose of this paper
is Lo test systematically and quantitatively how sensitive (or

insensitive) steady-state profile shapes are to the details of

the spatial pattern of mass balance.

The question is significant for several reasons. It is com-
mon to report measurements of the mass balance ol 'a glacier
in terms of one variable (the mean over the glacier area or
the total on that area). Observations indicate that year-to-
year changes in mass balance can be uniform over the arca
of some glaciers. On the other hand, there are examples
where inter-annual changes in mass balance do depend on
position. Energy-balance modeling of mass balance predicts
that the gradient of mass balance with altitude could be
expected to change substantially with a change in climate
regime (Oerlemans and Hoogendoorn, 1989). Therefore,
the question arises as to whether the mean balance is sufli-
cient to determine what will happen to a glacier in response
to climate change. The eflect on glacier volume is of particu-
lar interest because that would affect the response time to
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climate change (Johannesson and others, 1989) and is of
hydrological interest because it represents water storage, A
related question is what can be inferred about the mass-
balance pattern of a glacier from its geometry?

We were also motivated by the desire to test time-depen-
dent models to see whether they approached the correct
asymptotic steady state. 1o make such a test we had to have
an independent estimate of the final steady state.

In order to quantify the eflects [rom spatial variations in
mass balance, we examined the steady-state geometry pre-
dicted by a simple glacier-flow model for a sequence of pro-
gressively more complex mass-balance patterns.

MODEL DESCRIPTION

The flow 1s assumed to be two-dimensional (2-D) in a verti-
cal plane with X horizomal in the direction of flow. The
geometry of the glacier is then described by the elevations
ol the upper surface Z,(X) and the bed elevation Z;,(X).
The thickness is H(X) = Z,(X) — Z,(X). Tt is assumed
that the bed Z;,(X) and the mass balance B(X) are given
as functions of X and fixed independent of time. Then
H(X) is to be caleulated from the flow dynamics and
boundary conditions, which will also determine Z,(X).
Because B is specified to depend only on X and not on H,
there is no feedback between mass balance and thickness
changes. Iurthermore, the 2-D aspect of the model means
that only effects from along-flow (longitudinal) variations
in B are considered, and nothing is learned about effects
from across-flow variations in 3.

To set the boundaries of the model glacier, it is assumed
that the flow starts against a vertical clill or a fixed-llow
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divide at X = 0. The balance flux per unit width @ is then
defined as

wX
QX)= [ B(X)dx (1)
0

Q(X) increases through the accumulation area, where
B > 0, and decreases through the ablation area, where
B < 0. The maximum in @ occurs at X, which is the
location of the equilibrium line. The location of the termi-

nus X is determined by Q(X;) = 0 with X, > 0.
Steady state requires that the flux [rom ice motion is

equal to the balance [lux at all locations X. Introduction of

a dependence of ice flux on thickness and slope leads to

1
di = d7 i
N+<o l)

((U( i dX) A 43

dH dZ;,
dX  dX

Q(X)=-K

This form for the ice flux follows from vertically integrated
ice deformation neglecting surface-parallel stress gradients
and basal sliding. Tt is a commonly nsed variable in the
Jaterson, 1994). In
Equation (2), n is the power in the assumed ice-flow law
(Glens Law) and K is a variable depending on gravita-
tional-force density, (low-law parameters, enhancement

modeling of glaciers and ice sheets

factor [rom [abric, and vertically averaged temperature
with a weighting that accounts for variation of stress with
depth. These calculations assume that ice density, fabric
and temperature are independent of X, and K is constant.

Equations (1) and (2) define a first-order differential
equation that determines H(X) given B(X) and Z,(X).
This steady-state model is similar to the Vialov model for
an ice sheet (Paterson, 1994), but allows non-uniform I and
s

16 facilitate development of numerical solutions, we in-
troduce dimensionless variables {x, 21, 2., h, b, q} defined
as {X/[L], Zy/|H), Z/|H), H/[H)}, B/[B}, Q/([B][L))}.We
take [L] to be approximately the glacier length, [H] to be
approximately the elevation difference between the surface
at the head and the terminus, and [B] to be approximately
the mean accumulation rate in the accumulation area. In-
troduction of these scalings into Equation (2) gives

dh = dz : qy L
el ol h(u+ Mn — 7(7) 3
((lm' dr) k 3
where k = f\'[H]L}”ﬂ’/( [L]”Tl [B]). To mitigate the singular-
ity in Equation (3) at ; where h = 0, we introduce the sub-

stitution
9n +2 n/(2n+2)
hiz) = (gf{:)) (4)

T

which reduces Equation (3) to

(lf 2n + 2 f SRR dz (q) 1/n 5)
. B —_—=— - - '.)
(Lr o E dx i

Equation (5) was solved for n = 3 subject to the boundary
condition that f(z) = 0, which is equivalent to h(x;) = 0.
Commercial solution packages with adaptive gridding were
used to produce numerical solutions. Accuracy was tested
by comparison to known analytical solutions for spatially
uniform or stepped-balance distributions {Paterson, 1994)
and by checking the sensitivity of the results to error toler-
ances in the solution packages.
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SPATIAL RESPONSE

We are concerned with the change in thickness  caused by a
change in balance b. Therefore, we set up a reference state
(z1,, b, h) for a given zj, described by b (equivalently q as
defined by Equation (1)) and h. Tt is understood that the spa-
tial pattern of this reference state could, in principle, be
complex. However, we will consider only the reference
states described in Figures 1 and 2. These are denoted by
azl, a2, hal, ..., d:2, where the number refers to the balance
pattern (Fig. 1) and the letter to the bed geometry (IFig. 2).
We then examine the steady-state deviations in A [rom a
given reference state forced by a change in b The
deviations are represented as b and h. We examine different
b(z) with varying degrees of spatial complexity and deter-
mine what characteristics of h(ir) they cause. The actual cal-
culations are done by solving Equations (4) and (5)
numerically with band f, so it is not necessary for the devia-
tions b and f to be small compared to the reference values b

and h.
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Fig. 1. Example distributions of reference balance b(x)
(labeled I and 2).

We choose [L] = X as defined by the reference balance
D, so that the dimensionless reference length is 1.
Legendre polynomials Pj(x) are used to represent the

spatial characteristics of both b and h over the reference
length [0, 1]. The P;(x) are normally defined on [—1,1] as

(i + 1) Pu(z) = (2j + L)zPj(x) — jPia(x)  (6)

with Py =1 and P, = . For our purpose, the P;(x) are

shifted and compressed to [0, 1] by delining
pilz) = P2z - 1), (7)

Figure 3 shows that increasing orders of p;(x) represent
increasingly fine spatial structure. The p;(2) form a com-
plete orthogonal set on [0, 1] with the property

s
/“ pi(x)pj(x)da =0, i#j. (8)

Figure 3 illustrates several other important properties of the
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Fig. 2. Model results for reference surface profiles z(x)
resulting from several combinations of reference bed geometry
() (labeled a, b, cand d ) and b(x) (1and 2 in Fig. 1). The
different surfaces z, () for a given bed zy,(x) associated with
the balance distributions I and 2 are nol distinguishable at the
Plotting scale.

pi(x): py(x) = 1; the average over [0, 1] denoted by < Pi >|1,
is0for ) > 0;p;(1) = 1fory > O

Fora given relerence state (2, b, h), we consider distribu-
tions of b(:r) that are represented by 3p;(x) one order at a
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Fig. 5. Spatial pattern of the scaled Legendre polynomials
pi(x) defined by Equations (6) and (7) for order 0 to 3.
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time for j = 0.1,2, ..; p;(r) represents the spatial pattern
and /3 gives the amplitude. Since p;(1) = 1, there is a
decrease in the ablation rate at the terminus (2 = 1), when
3 >0, and 3 < 0 gives the opposite cffect. Furthermore,
since < p; >} =0 for j > 0, b(zx) derived from p;(x) with
J = 0donot change the mean balance () over the reference
length, and therefore do not cause a change in length, More
dircetly in terms of balance: +py () is a spatially uniform
shiflt causing an increase in the mean balance on the
reference length; +py (@) decreases the balance eradient;
+po(x) decreases the down-glacier increase in balance gra-
dient, which we refer to here as balance curvature.

Figure 4 shows examples of h calculated for b equal to
0.2py(x), 0.2p(x) and 0.2ps(x) applied to the reference
state a:l (Figs | and 2). Notice that all three of the changes
in mass balance correspond to a reduction of ablation at the
terminus by 10%. The deviations h are largest for
b = 0.2py(x). which has a non-zero mean (0.2). This balance
deviation causes an increase in length of 10% and an
increase in volume of 18%. Even though the balance devia-
tions 0.2p () and 0.2p2(x) have zero means and do not
alter the length, they both cause a reduction in glacier
volume. The balance deviations 0.2pg(x) and 0.2p; ()
result in a reduction in surface slope, and all cause a
decrease in the upward convexity of the surface profile over
most of the glacier length.
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Fig. 4. Thickness deviations h produced by balance deviations
b/m the reference state a : 1 ( Figs Land 2) (linear variation of
b and flat bed 21, = 0). In the upper panels, solid lines rep-
resent veference balance b and dashed eurves represent dis-
turbed balance b + D,

We desceribe the I;(.r) that results from 6( ) =

Z 2 (B)pil) 9)

1=l

Bpj(x) as

h(j. 3:z)

The quantity C ( ) represents the topographic response to
a pjdeviation in b of size 3 projected onto p;, and is given by

Ay /ll ARy T, g ; /.] 2 ; ¢
e = h(j, B: x)pi(a )d.r/ pi-(x)da (10)
Jo Jo

By reference to Figure 3 and Equation (10), [,",{'” fori=0,1,2
can be interpreted in terms of gcometrical changes induced
l)\ b = Bpj(x) as follows: C:,‘” gives the increase in volume,
Q| is a measure of the decrease in slope and (i‘” is related
to the decrease in upward convexity of the surface.

Figure 3 shows how Cf'” depend on 4 for the reference
(Figs 1 and 2). For 3 > 0. Figure 5 shows the fea-
tures concerning change in volume, slope and convexity
carlier illustrated in Figure 4 for 8= 0.2. The opposite
effects are pu dicted for 3 <0 when |3] is small. For
( 7) are approximately linear in 3. For larger

state a:l
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Fig. 5. lopographic response coefficients defined in Equations
(9) and (10) calculated for balance deviations b(x) =
Bpj(x) corresponding to changes in balance mean (j = 0,
top panel), gradient (j = 1, center panel) and curvature
(7 =2, bottom panel). Solid curves show topographic res-
ponse cogfficients (Equation (10)) for volwme increase
Q)(-“ i = 0), slope decrease () W i=1) and convexily
decrease GV (i = 2). The resulls shown are for reference
state a:1 (Figs 1 and 2) (linear variation of b and flat bed
z—b=0)

T
1

A3, the linearity can break down, as is apparent in Figure 5.
Of course, this is expected, because Equation (3) 1s non-lin-
ear. (In this regard, it is important to recognize that in gen-
eral h can not be represented as the superposition of the
effects from individual p;(x) components of an arbitrary
mass-balance change. Such a superposition would be valid
only in the case that f; are small enough to remain in the
linear range for all j)

The sensitivity of volume, slope and convexity to differ-
ent spatial patterns of b can be represented for small (3
through sensitivity parameters defined as

o b(1)de (o)
.i;_.') o ___—f_i
5, a3 ()
where

&= .AJ h(:r)p.,(.x)d;r:/ /“l pi(z)dx (12)

represents the projection of h(a) on p;(). These parameters
are the slopes of the curves in Figure 5 at 3 = 0, scaled to
give the fractional change in geometry characteristics of
the surface profile (e.g. volume i = 0, slope i = 1 or convex-
ity i = 2) caused by a unit fractional change in terminus
balance for the different spatial patterns of balance change
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(e.g. mean j = 0, gradient j = 1 or curvature j = 2). For
example, sqM gives the fractional changes in volume caused
by unit fractional change in balance at the terminus asso-
ciated with a change in balance gradient. The results for
relerence state a:l (Figs 1 and 2) are shown in Figure 6.

The same process was followed for the other reference
states by imposing a similar selection of b on them. The
corresponding sensitivity diagrams are also shown in
Figure 6. All of these examples show the same systematics
with regard to effects on volume, slope and convexity of the
thickness profile. The apparently reversed slope effects for
the concave bed (geometry c) arises because the reference
state is thickest in the lowest part of the profile and the thick-
ness gradient is opposite to the other examples, which are

thickest in their upper reaches (Fig. 2).

DISCUSSION

The main result shown in Figure 6 is that the effects on
volume, slope and convexity are one order of magnitude
larger for a spatially uniform variation in b compared to a
change in b that has non-zero mean with the same change at
the terminus. A uniform change in b causes changes in thick-
ness that are concentrated in the lower part of the glacier
profile, which results in large changes in slope and convex-
ity of the surface (Fig 4). Changes in hwith zero mean cause
changes in thickness that are largest in the mid- to upper-
parts of the glacier profile (Fig. 4). The effect on volume has
the opposite sense when comparing zero and non-zero mean
changes that have the same change in b at the terminus.

The details of shape sensitivities do not depend signifi-
cantly on the reference mass-balance pattern (compare
columns 1 and 2 in Fig, 6), but there is considerable depen-
dence on the bed geometry (compare rows a, b, ¢ and d in
Fig, 6). An important example is that the fractional change
in volume per unit change in mean balance in units of termi-
nus ablation rate varies from about 1 to 2 (s5'? in Fig, 6).
The larger numbers are associated with low bed slope
(geometry a) especially near the terminus (geometry c).

It has long been recognized that the change in stcady-
state length of a glacier is related to the change in mean mass
balance by continuity without regard to flow dynamics
(Nye, 1960). The time-scale to complete the change in Iength
is controlled primarily by the volume change required to
reach the new steady state (Johannesson and others, 1989).
This time-scale describes how long a glacier “remembers”™
prior climate. Evidently, it is very insensitive to the spatial
pattern of mass balance that causes the changes.

It is of interest to ask whether information about the spa-
tial pattern of the mass-balance change might be found in
the changes in glacier geometry up-glacier from the termi-
nus. The results of these calculations indicate that while the
glacier shape is affected by the spatial pattern of mass
balance, the effects arve very small and are likely to be
obscured by factors in nature that are not accessible to pre-
cise analysis (for example, details of the bed geometry, the
physical controls of flow or transient response to climate
change). In this regard, it is important to recognize that
the conclusions of these calculations can not be extended to
short-length scales, where longitudinal coupling (Kamb
and Echelmeyer, 1986) suppresses diffusion effects that
smooth the profile (Langdon and Raymond, 1978). It is also
important to keep in mind that these calculations specify
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Fig. 6. Shape sensitivily paramelers $;') defined in Equations (10}, (11) and (12). Columns show resulls for different veference
balance { Fig. 1). Rows show resulls for different reference bed ( Fig. 2). Note that sensitivity to shifls in the mean balance shown as
83" are divided by 10 for display in this figure.

balance as a [unction of position, and the feedback between
mass balance and geometry can be different than when
balance is specified as a function of altitude and the slope
of the bed is low.

The most important potential change in b with a zero
mean is a change in balance gradient, which would have
similarity to a deviation of the form 3p;(x). For example,
in many cases a likely effect of climate warming is an
increase in balance gradient (Oerlemans and Hoogen-
doorn, 1989), which corresponds to 3 < 0 and predicts a
consequent increase in volume. The volume increase is ne-
cessary 1o allow a larger flux ¢ in the central part of the
profile. The volume sensitivity to a change in balance gradi-
(1)

ent is about 0.1-0.2 (sy'") in Fig. 6), which is much smaller

than the volume sensitivity to change in mean mass balance
ol about 1-2 (55" in Fig, 6).

In reality a change in balance gradient may he larger in
the ablation area than the accumulation area (Oerlemans
and Hoogendoorn, 1989). This would have an added effect
of increasing the curvature of the spatial pattern of mass
balance described like Gps () with 3 < 0. The consequence
would still be to increase the volume slightly, but at a sensi-
(2)

tivity that is yet smaller (s in Fig 6).

CONCLUSIONS

The principal conclusion is that most of the information

https://doi.org/10.3189/50260305500014361 Published online by Cambridge University Pr

-1

0.2

0.2
0.4
06
0.8

-1

ES

Johannesson. 1.,

Boudreaux and Raymond: Glacier geometry and mass balance

relevant to the geometry of a glacier is contained in the
mean mass balance. Details of the spatial pattern of mass
balance affect the geometry, but the eflects are more than
one order ol magnitude smaller than those driven by the
mean.
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