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MULTIPLIERS OF BERGMAN SPACES
INTO LEBESGUE SPACES

by DANIEL H. LUECKING*

(Received 23rd May 1985)

1. Introduction

Let U be the open unit disk in the complex plane C endowed with normalized
Lebesgue measure m. IF will denote the usual Lebesgue space with respect to m, with
0 < p < + o o . The Bergman space consisting of the analytic functions in IS will be
denoted Lp. Let n be some positive finite Borel measure on U. It has been known for
some time (see [6] and [9]) what conditions on \i are equivalent to the estimate: There
is a constant C such that

for all feUa; (1.1)

provided 0<p^q. It has been of considerable interest (to the author at least) to obtain
a similarly complete result for the remaining cases, namely 0<q<p. One way the study
of (1.1) arises is through consideration of the multiplier problem for Bergman spaces.
That is, what conditions on a measurable function g are equivalent to gLp £ 151 This
reduces, via the closed graph theorem, to the estimate ($\gf\qdm)llqSC($\f\pdm)llp,
which is (1.1) with dfi = \g\"dm. For g analytic, the problem was solved by K. R. M.
Attele in [2] (see also [3]) where the obvious sufficient condition g e Ua, 1/r = l/q — l/p,
was shown to be necessary. For a general measure n, a sufficient condition is easy to
come by. It can be shown that \\f\q dn^C\\f\qkdm where k(z) is a function obtained
from fi by averaging (i over a hyperbolic neighborhood of z (see the next section). The
sufficient condition arises from Holder's inequality and is simply keE, l/s + q/p = l. In
this paper, I show that this condition is necessary.

2. Background

For z ,weU let p(z,w) = |(z — w)/(l — wz)|, the pseudohyperbolic distance between z and
w. In this metric two points are far apart if the distance between them is nearly 1.

If 0 < e < l and aeU, let De(a) = {z:p(z, a)<e}. Occasionally, when the exact value of e
is unimportant, I will write D(a) for De(a). De(a) is an actual disk (i.e., in the Euclidean
metric) with centre at

l-*2 A A' I ' M 2

a and radius e-1— e2\a\2 1 — £2\a\2
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Thus, if a is fixed, DE(a) behaves like a disk of radius ~e. And if e is fixed the radius
behaves like 1 — \a\2. Its normalized area is

12 \ 2

l - e 2 a

Because
value of \f

f\" is subharmonic for feL"a, it follows that |D(a) \f\
q dm/m(D(a)) exceeds the

at the centre of D(a). If e is fixed, the distance from a to the centre of De(a)
is at most e\a\ times the radius of De(a). By subharmonicity again, there is a constant C
depending only on e such that

C J |/|«dm/m(D(a))£|/(fl)|«. (2.1)
D(a)

(This inequality is also valid for harmonic functions, except that C will also depend on q
if q<l. Indeed, the proof of Lemma 2, page 152 of [5], shows that one only needs | / |
to be subharmonic.) Using (2.1) to estimate | / |* in J|/|*d/z and applying Fubini's
theorem, one obtains

It is easy to verify that if w e D(z) then

w(P(z))<

m(D(w)) =

with C depending on s. Thus, putting k{z) = (i(D(z))/m(D(z)), one gets

(2.2)

An immediate result is the following:
If k belongs to E for s = p/(p — q), then

(i\f\"dfi)ll^C(i\f\pdm)1" for all feUa. (2.3)

The constant C depends only on E, q, and the value of J kf dm. The main theorem is the
converse of (2.3):

Theorem. Let n be a positive measure on U and let k(z) = fi(D(z))/m(D(z)) where D(z)
= DE(z) for some convenient ee(0,1). Let 0<q<p. Then a necessary and sufficient
condition for there to exist a constant C satisfying

(2-4)

for all f'eLJ is that k belong to E, where l/s + q/p = l.
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This will be proved in Section 3. The remainder of this section is devoted to showing
that the condition keE is independent of the choice of ee(0,1).

Lemma. Let 0 < 5 < e < 1 and let ke(z) = /i(De(z))/»j(De(z)) with ks defined similarly. If
s^ l , then kceE if and only ifkdeE.

Proof. Clearly kd(z)^kl.(z)[m{De(z))/m(Di(z))'] and the formula for the area of
pseudohyperbolic disks shows that m(De(z))/m(Ds(z)) is a bounded function of z. Thus
kEeE implies kdeE. Now suppose kdeE and let (f>(z) = jDt{1!)kidm/m(Dc(z)). It is an easy
exercise with Fubini's theorem to show that if ks is in L1 then so is (f> and it is even
clearer that if kt is bounded so is (j>. By any of a variety of interpolation theorems it
follows that if kdeE, then also (peE, l^s<oo. Finally, the following estimates show
that </> dominates fc£:

J ksdm= J | ^(0M^(w))dm(w)
Dt(z) Dt(z) Dt(w)

= J J XDc(:)(w)xDliw)(t)m{Ds(w))'l dm(w) dfi(t)

It is clear that the integrand exceeds 1/3 when t lies in De{z), so

J Mm^c/i(£>5(z)). I

3. Interpolating sequences

In order to obtain an integrability condition on k from an inequality like (1.1), it has
to be shown |/|* can be made "sufficiently arbitrary". Think of a discrete version of k
obtained by decomposing the disk into hyperbolically "equal"-sized pieces {Dj as in [4]
and putting k on each of these pieces equal to the average of \i on that piece. It is not
hard to show that the condition on n(keE) is equivalent to

:+oo.

Then \\f\qdn ought to be roughly ^J"D.|/|«dm/x(Di)/m(D(), so we would like to make
JD.|/|*dm/m(D,) dominate an arbitrary sequence in the weighted /*' space with weights
m(Di), s'=p/q. This can be done by making sure each D, contains a point at so that {a,}
is an interpolation sequence for Lf. The rest of the proof of the main theorem consists
of making this intuition precise.

Definition. A sequence {a,} in U is said to be separated if there exists a <5>0 such
that p(ahaj)>8 when i^j. A separated sequence {a,} is called an interpolation sequence
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for Lp if whenever {c,} is a sequence of complex numbers such that Zlc.l'Xl —|a;|2)2<
+ 00, then there exists feLp satisfying /(a()=c,-.

Because |/(a;)|pnj(Da(a,))^CjDj(Oi)|/|
pdm, it follows that if {a,} is 2(5-separated, then

the operator i?/ = {/(a,)} is a bounded map of Lp into the weighted sequence space
/P{(1 —|af|

2)2}. A sequence {aj is an interpolation sequence if/? is onto. It follows from
the open mapping theorem that a constant M may be associated with any given
interpolation sequence {a,} such that any {c,}e/p{(l —|aj|2)2} with £|c;|p(l — |aj|2)2^l is
the image under R of a function f sLp with (j\f\"dm)llp^M. This M will be referred to
as the interpolation constant of {a,}.

It is a result of Eric Amar [1] (but see also [10]) that if {a,} is a separated sequence,
then it is the union of finitely many interpolation sequences. Specifically, the following
was shown.

Theorem. (E. Amar) / / {ft,} is a 5-separated sequence, then {b;} is the union of
N = N(5, n) n-separated sequence, and if n is near enough to 1 then each n-separated
sequence is an interpolation sequence for Lp. The size of n will depend on p and the
interpolation constant M will depend only on r\ and p.

Now fix n>\ once and for all, so near to 1 that any ^-separated sequence is an
interpolation sequence. This fixes an interpolation constant M. Let <5E(0, 1) be a small
number; its actual size will be specified later and will depend only on n, M and the
constant C in the estimate (2.4) of the main theorem. Construct a <5/2-lattice, that is, a
<5/2-separated sequence {b,} such that the disks {Dij2{b)} cover U. Here is a simple
construction: let &!=(), and once bt through bn_x are obtained, pick fc^U""1 Da/2(bj)
which minimizes \bn\. Clearly {£>,} will be <5/2-separated. If z0 ̂  uDi/2(ftf) then all fc, lie in
{z:|z|<|zo|} or else z0 was needlessly overlooked in the selection. A contradiction has
been reached in that infinitely many disjoint Da/4(ft,) have their centres in |z|<|zo|. The
proof of the following lemma is quite similar to arguments used in [7] and [8].

Lemma. There is a constant A depending only on q and n such that if {a,} is an n-
separated sequence and 5 is sufficiently small, then for every feLp

Z J \f(z)-f(ad\9dKz)^A3''\\f\\lXZKDs(al)ym(Dl)
l-ris (3.1)

W

where D( = 0^2(0,).

Proof. It is clear by normal families and scaling that if \z\ <d < n/4 and D = {z: \z\ < t\/2},
then

where C depends only on q, if that. Thus \f(z)-f(O)\"^CdqjD\f\qdm. The change of
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variables z^(z — at)/(l — dtz) gives

(3.2)

where the estimate (1 — |a,|2)2/|l —a,z|4^constantm(D^~1 has been used for zeDt. The
constant depends only on r\. Integrating (3.2) with respect to ft over Ds(a,), and
summing, one sees that the left-hand side of (3.1) is at most

J \f\pdm

\«/p

\f\"dm)

(recall s is just the conjugate exponent of p/q).

Since the Z), are disjoint, the expression in the first parentheses is at most

The proof of the main theorem may now be completed. To this end let \i be a
measure satisfying the integral inequality (2.4) of the theorem. If we replace \i with
X{\z\<r)H> then (2.4) is still valid with the same constant. If we show that the estimate on
H/cjfjr,, is independent of r, we may let r—>1 to obtain the theorem. Thus, without any loss
of generality, fi is compactly supported in U and all of the sums below involving /i are
finite. Let {b,} be the <5/2-lattice constructed earlier and let {ak} be one of the N((d/2), rj)
^-separated sequences whose union is {bt}. Let M be its interpolation constant. From
the lemma, if / e L J , | | / | L ^ M , and q g l then

E J |/(«*)|'«fo-£ | \f-f(ak)\"d^
D l ) D ( )

7k))m{Dk)'-y (3.3)

where Dk = Dn,2(ak) as in the lemma. Since f(ak) may assume the values of any sequence
{ck} with J jc* p(l —|ajk|)

2)2 = l, the sum X|/(a*)|*^(^(a*)) m a v a s sume the value
(^/i(D3(at))

s(l— at|
2)2(1"s))1/s^/S(^^(D^(ak))m(Dfc)

1"s)1/s. Here ft depends only on r\.
Thus we have
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We now choose 5q = p(2AMq), and sum over the N sequences {ak} to get

)1 -s)lls<2NC>MVP, (3.4)

where Di = Dnl2(bi). It remains to be shown that (3.3) implies keE. Set e = d/2 and define
k(z) = n(De(z))/m(De(z)). If zeDE(bd, then DE(z) <= Da(fo.) and so k{z)^n{D5(b?j)
constant ^ ( ^ ( ^ M D , ) . Thus £ JDf(t|) fc* dm g constant £ fHDJbdYm(Dd ~
constant ^ ^ ( D ^ b ^ ^ D i ) 1 s < constant by (3.3). Since the disks De(b() cover [/ we get
\uk

sdm^constant, where the constant depends only on N, C, M, q, fi, r\, and 5. That is,
ultimately only on C, q, and p. If q>l only minor changes are needed in (3.3). The
proof is completed.

4. Remarks

It should come as no surprise that the theorem remains valid, mutatis mutandis, when
the disk is replaced by the unit ball in C , Lebesgue measure m is replaced by a
weighted measure ma(l —|z|2)am, and analytic functions are replaced by pluriharmonic
functions. In fact, thanks to Richard Rochberg's extension [10] of Eric Amar's result on
interpolation sequences, there is a formulation, left to the reader, of the theorem that is
valid in weighted Bergman spaces on bounded symmetric domains in C .

Acknowledgement. Thanks are due to the Department of Mathematics at the
University of North Carolina at Chapel Hill for their hospitality while the research for
this paper was done.
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