MULTIPLIERS OF BERGMAN SPACES INTO LEBESGUE SPACES

by DANIEL H. LUECKING*

(Received 23rd May 1985)

1. Introduction

Let U be the open unit disk in the complex plane \mathbb{C} endowed with normalized Lebesgue measure m. L^p will denote the usual Lebesgue space with respect to m, with $0 . The Bergman space consisting of the analytic functions in <math>L^p$ will be denoted L^p . Let μ be some positive finite Borel measure on U. It has been known for some time (see [6] and [9]) what conditions on μ are equivalent to the estimate: There is a constant C such that

$$(\int |f|^q d\mu)^{1/q} \le C(\int |f|^p dm)^{1/p} \quad \text{for all} \quad f \in L_a^p; \tag{1.1}$$

provided 0 . It has been of considerable interest (to the author at least) to obtain a similarly complete result for the remaining cases, namely <math>0 < q < p. One way the study of (1.1) arises is through consideration of the multiplier problem for Bergman spaces. That is, what conditions on a measurable function g are equivalent to $gL_a^p \subseteq L^q$? This reduces, via the closed graph theorem, to the estimate $(\int |gf|^q dm)^{1/q} \le C(\int |f|^p dm)^{1/p}$, which is (1.1) with $d\mu = |g|^q dm$. For g analytic, the problem was solved by K. R. M. Attele in [2] (see also [3]) where the obvious sufficient condition $g \in L_a^p$, 1/r = 1/q - 1/p, was shown to be necessary. For a general measure μ , a sufficient condition is easy to come by. It can be shown that $\int |f|^q d\mu \le C \int |f|^q k dm$ where k(z) is a function obtained from μ by averaging μ over a hyperbolic neighborhood of z (see the next section). The sufficient condition arises from Holder's inequality and is simply $k \in L^q$, 1/s + q/p = 1. In this paper, I show that this condition is necessary.

2. Background

For $z, w \in U$ let $\rho(z, w) \equiv |(z - w)/(1 - \bar{w}z)|$, the pseudohyperbolic distance between z and w. In this metric two points are far apart if the distance between them is nearly 1.

If $0 < \varepsilon < 1$ and $a \in U$, let $D_{\varepsilon}(a) = \{z : \rho(z, a) < \varepsilon\}$. Occasionally, when the exact value of ε is unimportant, I will write D(a) for $D_{\varepsilon}(a)$. $D_{\varepsilon}(a)$ is an actual disk (i.e., in the Euclidean metric) with centre at

$$\frac{1-\varepsilon^2}{1-\varepsilon^2|a|^2}a \quad \text{and radius} \quad \varepsilon \frac{1-|a|^2}{1-\varepsilon^2|a|^2}.$$

*Supported in part by NSF Grant No. DMS 8201603 and by a J. William Fulbright College of Arts and Sciences full-time research appointment at the University of Arkansas.

Thus, if a is fixed, $D_{\varepsilon}(a)$ behaves like a disk of radius $\sim \varepsilon$. And if ε is fixed the radius behaves like $1-|a|^2$. Its normalized area is

$$m(D_{\varepsilon}(a)) = \varepsilon^{2} \left(\frac{1 - |a|^{2}}{1 - \varepsilon^{2} |a|^{2}} \right)^{2}.$$

Because $|f|^q$ is subharmonic for $f \in L^q_a$, it follows that $\int_{D(a)} |f|^q dm/m(D(a))$ exceeds the value of $|f|^q$ at the centre of D(a). If ε is fixed, the distance from a to the centre of $D_{\varepsilon}(a)$ is at most $\varepsilon |a|$ times the radius of $D_{\varepsilon}(a)$. By subharmonicity again, there is a constant C depending only on ε such that

$$C \int_{D(a)} |f|^q dm/m(D(a)) \ge |f(a)|^q. \tag{2.1}$$

(This inequality is also valid for harmonic functions, except that C will also depend on q if q < 1. Indeed, the proof of Lemma 2, page 152 of [5], shows that one only needs |f| to be subharmonic.) Using (2.1) to estimate $|f|^q$ in $\int |f|^q d\mu$ and applying Fubini's theorem, one obtains

$$\int |f|^q d\mu \leq C \int |f(z)|^q \int_{D(z)} \frac{1}{m(D(w))} d\mu(w) dm(z).$$

It is easy to verify that if $w \in D(z)$ then

$$\frac{m(D(z))}{m(D(w))} \leq C$$

with C depending on ε . Thus, putting $k(z) = \mu(D(z))/m(D(z))$, one gets

$$\int |f|^q d\mu \le C \int |f|^q k dm. \tag{2.2}$$

An immediate result is the following:

If k belongs to L's for s = p/(p-q), then

$$(\int |f|^q d\mu)^{1/q} \le C(\int |f|^p dm)^{1/p} \text{ for all } f \in L_a^p.$$
 (2.3)

The constant C depends only on ε , q, and the value of $\int k^s dm$. The main theorem is the converse of (2.3):

Theorem. Let μ be a positive measure on U and let $k(z) = \mu(D(z))/m(D(z))$ where $D(z) = D_{\varepsilon}(z)$ for some convenient $\varepsilon \in (0, 1)$. Let 0 < q < p. Then a necessary and sufficient condition for there to exist a constant C satisfying

$$(\int |f|^q d\mu)^{1/q} \le C(\int |f|^p dm)^{1/p} \tag{2.4}$$

for all $f \in L_a^p$ is that k belong to L^s , where 1/s + q/p = 1.

This will be proved in Section 3. The remainder of this section is devoted to showing that the condition $k \in \mathcal{E}$ is independent of the choice of $\varepsilon \in (0, 1)$.

Lemma. Let $0 < \delta < \varepsilon < 1$ and let $k_{\varepsilon}(z) = \mu(D_{\varepsilon}(z))/m(D_{\varepsilon}(z))$ with k_{δ} defined similarly. If $s \ge 1$, then $k_{\varepsilon} \in L^s$ if and only if $k_{\delta} \in L^s$.

Proof. Clearly $k_{\delta}(z) \leq k_{\epsilon}(z) [m(D_{\epsilon}(z))/m(D_{\delta}(z))]$ and the formula for the area of pseudohyperbolic disks shows that $m(D_{\epsilon}(z))/m(D_{\delta}(z))$ is a bounded function of z. Thus $k_{\epsilon} \in E$ implies $k_{\delta} \in E$. Now suppose $k_{\delta} \in E$ and let $\phi(z) = \int_{D_{\epsilon}(z)} k_{\delta} \, dm/m(D_{\epsilon}(z))$. It is an easy exercise with Fubini's theorem to show that if k_{δ} is in E then so is ϕ and it is even clearer that if k_{δ} is bounded so is ϕ . By any of a variety of interpolation theorems it follows that if $k_{\delta} \in E$, then also $\phi \in E$, $1 \leq s < \infty$. Finally, the following estimates show that ϕ dominates k_{ϵ} :

$$\int_{D_{\varepsilon}(z)} k_{\delta} dm = \int_{D_{\varepsilon}(z)} \int_{D_{\delta}(w)} d\mu(t)/m(D_{\delta}(w)) dm(w)$$

$$= \iint \chi_{D_{\varepsilon}(z)}(w) \chi_{D_{\delta}(w)}(t) m(D_{\delta}(w))^{-1} dm(w) d\mu(t)$$

$$\geq c \iint \frac{m(D_{\varepsilon}(z) \cap D_{\delta}(t))}{m(D_{\delta}(t))} d\mu(t).$$

It is clear that the integrand exceeds 1/3 when t lies in $D_{\varepsilon}(z)$, so

$$\int_{D_{\varepsilon}(z)} k_{\delta} dm \ge c \mu(D_{\varepsilon}(z)). \quad \blacksquare$$

3. Interpolating sequences

In order to obtain an integrability condition on k from an inequality like (1.1), it has to be shown $|f|^q$ can be made "sufficiently arbitrary". Think of a discrete version of k obtained by decomposing the disk into hyperbolically "equal"-sized pieces $\{D_i\}$ as in [4] and putting k on each of these pieces equal to the average of μ on that piece. It is not hard to show that the condition on μ ($k \in E^s$) is equivalent to

$$\sum \left(\frac{\mu(D_i)}{m(D_i)}\right)^s m(D_i) < +\infty.$$

Then $\int |f|^q d\mu$ ought to be roughly $\sum \int_{D_i} |f|^q dm \mu(D_i)/m(D_i)$, so we would like to make $\int_{D_i} |f|^q dm/m(D_i)$ dominate an arbitrary sequence in the weighted f' space with weights $m(D_i)$, s' = p/q. This can be done by making sure each D_i contains a point a_i so that $\{a_i\}$ is an interpolation sequence for L_a^p . The rest of the proof of the main theorem consists of making this intuition precise.

Definition. A sequence $\{a_i\}$ in U is said to be separated if there exists a $\delta > 0$ such that $\rho(a_i, a_j) > \delta$ when $i \neq j$. A separated sequence $\{a_i\}$ is called an interpolation sequence

for L_a^p if whenever $\{c_i\}$ is a sequence of complex numbers such that $\sum |c_i|^p (1-|a_i|^2)^2 < +\infty$, then there exists $f \in L_a^p$ satisfying $f(a_i) = c_i$.

Because $|f(a_i)|^p m(D_\delta(a_i)) \le C \int_{D_\delta(a_i)} |f|^p dm$, it follows that if $\{a_i\}$ is 2δ -separated, then the operator $Rf = \{f(a_i)\}$ is a bounded map of L_a^p into the weighted sequence space $l^p \{(1-|a_i|^2)^2\}$. A sequence $\{a_i\}$ is an interpolation sequence if R is onto. It follows from the open mapping theorem that a constant M may be associated with any given interpolation sequence $\{a_i\}$ such that any $\{c_i\} \in l^p \{(1-|a_i|^2)^2\}$ with $\sum |c_i|^p (1-|a_i|^2)^2 \le 1$ is the image under R of a function $f \in L_a^p$ with $(\int |f|^p dm)^{1/p} \le M$. This M will be referred to as the interpolation constant of $\{a_i\}$.

It is a result of Eric Amar [1] (but see also [10]) that if $\{a_i\}$ is a separated sequence, then it is the union of finitely many interpolation sequences. Specifically, the following was shown.

Theorem. (E. Amar) If $\{b_i\}$ is a δ -separated sequence, then $\{b_i\}$ is the union of $N = N(\delta, \eta)$ η -separated sequence, and if η is near enough to 1 then each η -separated sequence is an interpolation sequence for L^p_a . The size of η will depend on p and the interpolation constant M will depend only on η and p.

Now fix $\eta > \frac{1}{2}$ once and for all, so near to 1 that any η -separated sequence is an interpolation sequence. This fixes an interpolation constant M. Let $\delta \in (0, 1)$ be a small number; its actual size will be specified later and will depend only on η , M and the constant C in the estimate (2.4) of the main theorem. Construct a $\delta/2$ -lattice, that is, a $\delta/2$ -separated sequence $\{b_i\}$ such that the disks $\{D_{\delta/2}(b_i)\}$ cover U. Here is a simple construction: let $b_1 = 0$, and once b_1 through b_{n-1} are obtained, pick $b_n \notin \bigcup_{1}^{n-1} D_{\delta/2}(b_i)$ which minimizes $|b_n|$. Clearly $\{b_i\}$ will be $\delta/2$ -separated. If $z_0 \notin \bigcup D_{\delta/2}(b_i)$ then all b_i lie in $\{z:|z|<|z_0|\}$ or else z_0 was needlessly overlooked in the selection. A contradiction has been reached in that infinitely many disjoint $D_{\delta/4}(b_i)$ have their centres in $|z|<|z_0|$. The proof of the following lemma is quite similar to arguments used in [7] and [8].

Lemma. There is a constant A depending only on q and η such that if $\{a_i\}$ is an η -separated sequence and δ is sufficiently small, then for every $f \in L^p_a$

$$\sum_{D_{\delta}(a_{i})} |f(z) - f(a_{i})|^{q} d\mu(z) \leq A \delta^{q} ||f||_{L^{p}}^{q} (\sum \mu(D_{\delta}(a_{i}))^{s} m(D_{i})^{1-s})^{1/s}$$
(3.1)

where $D_i = D_{n/2}(a_i)$.

Proof. It is clear by normal families and scaling that if $|z| < \delta < \eta/4$ and $D = \{z: |z| < \eta/2\}$, then

$$\left| \frac{f(z) - f(0)}{z} \right|^{q} \leq C \int_{D} |f|^{q} dm$$

where C depends only on q, if that. Thus $|f(z)-f(0)|^q \le C\delta^q \int_D |f|^q dm$. The change of

variables $z \rightarrow (z - a_i)/(1 - \bar{a}_i z)$ gives

$$|f(z) - f(a_i)|^q \le C\delta^q \int_{D_i} |f|^q \frac{(1 - |a_i|^2)^2}{|1 - \tilde{a}_i z|^4} dm$$

$$\le A\delta^q \int_{D_i} |f|^q dm/m(D_i)$$
(3.2)

where the estimate $(1-|a_i|^2)^2/|1-\bar{a}_iz|^4 \le \operatorname{constant} m(D_i)^{-1}$ has been used for $z \in D_i$. The constant depends only on η . Integrating (3.2) with respect to μ over $D_{\delta}(a_i)$, and summing, one sees that the left-hand side of (3.1) is at most

$$A\delta^{q} \sum_{D_{i}} |f|^{q} dm \mu(D_{\delta}(a_{i})) m(D_{i})^{-1} \leq A\delta^{q} \sum_{D_{i}} \left(\int_{D_{i}} |f|^{p} dm \right)^{q/p} \mu(D_{\delta}(a_{i})) m(D_{i})^{1/s-1}$$

$$\leq A\delta^{q} \left(\sum_{D_{i}} |f|^{p} dm \right)^{q/p} \left(\sum_{D_{i}} \mu(D_{\delta}(a_{i}))^{s} m(D)^{1-s} \right)^{1/s},$$

(recall s is just the conjugate exponent of p/q).

Since the D_i are disjoint, the expression in the first parentheses is at most $||f||_{L^p}^p$.

The proof of the main theorem may now be completed. To this end let μ be a measure satisfying the integral inequality (2.4) of the theorem. If we replace μ with $\chi_{\{|z| < r\}}\mu$, then (2.4) is still valid with the same constant. If we show that the estimate on $||k||_{L^r}$ is independent of r, we may let $r \to 1$ to obtain the theorem. Thus, without any loss of generality, μ is compactly supported in U and all of the sums below involving μ are finite. Let $\{b_i\}$ be the $\delta/2$ -lattice constructed earlier and let $\{a_k\}$ be one of the $N((\delta/2), \eta)$ η -separated sequences whose union is $\{b_i\}$. Let M be its interpolation constant. From the lemma, if $f \in L^p_a$, $||f||_{L^p} \subseteq M$, and $q \subseteq 1$ then

$$\sum_{D_{\delta}(a_{k})} |f|^{q} d\mu \ge \sum_{D_{\delta}(a_{k})} |f(a_{k})|^{q} d\mu - \sum_{D_{\delta}(a_{k})} |f - f(a_{k})|^{q} d\mu$$

$$\ge \sum |f(a_{k})|^{q} \mu(D_{\delta}(a_{k})) - A\delta^{q} M^{q} (\sum \mu(D_{\delta}(a_{k})) m(D_{k})^{1-s})^{1/s}$$
(3.3)

where $D_k = D_{\eta/2}(a_k)$ as in the lemma. Since $f(a_k)$ may assume the values of any sequence $\{c_k\}$ with $\sum |c_k|^p (1-|a_k|)^2)^2 = 1$, the sum $\sum |f(a_k)|^q \mu(D_\delta(a_k))$ may assume the value $(\sum \mu(D_\delta(a_k))^s (1-|a_k|^2)^{2(1-s)})^{1/s} \ge \beta(\sum \mu(D_\delta(a_k))m(D_k)^{1-s})^{1/s}$. Here β depends only on η . Thus we have

$$C^{q}M^{q} \ge \sum_{D_{\delta}(a_{k})} |f|^{q} d\mu$$

$$\ge (\beta - A\delta^{q}M^{q})(\sum \mu(D_{\delta}(a_{k}))^{s} m(D_{k})^{1-s})^{1/s}.$$

We now choose $\delta^q = \beta(2AM^q)$, and sum over the N sequences $\{a_k\}$ to get

$$(\sum \mu(D_{\delta}(b_{i}))^{s} m(D_{i})^{1-s})^{1/s} < 2NC^{q} M^{q}/\beta,$$
 (3.4)

where $D_i = D_{\eta/2}(b_i)$. It remains to be shown that (3.3) implies $k \in \mathcal{E}$. Set $\varepsilon = \delta/2$ and define $k(z) = \mu(D_{\varepsilon}(z))/m(D_{\varepsilon}(z))$. If $z \in D_{\varepsilon}(b_i)$, then $D_{\varepsilon}(z) \subseteq D_{\delta}(b_i)$ and so $k(z) \subseteq \mu(D_{\delta}(b_i))/m(D_{\varepsilon}(z)) \subseteq \text{constant } \mu(D_{\delta}(b_i))/m(D_i)$. Thus $\sum \int_{D_{\varepsilon}(b_i)} k^s dm \subseteq \text{constant } \sum \mu(D_{\delta}(b_i))^s m(D_i)^{-s} m(D_{\varepsilon}(b_i)) \subseteq \text{constant } \sum \mu(D_{\delta}(b_i))^s m(D_i)^{1-s} < \text{constant by (3.3)}$. Since the disks $D_{\varepsilon}(b_i)$ cover U we get $\int_U k^s dm \subseteq \text{constant}$, where the constant depends only on N, C, M, q, β , η , and δ . That is, ultimately only on C, q, and p. If q > 1 only minor changes are needed in (3.3). The proof is completed.

4. Remarks

It should come as no surprise that the theorem remains valid, mutatis mutandis, when the disk is replaced by the unit ball in \mathbb{C}^n , Lebesgue measure m is replaced by a weighted measure $m_{\alpha}(1-|z|^2)^{\alpha}m$, and analytic functions are replaced by pluriharmonic functions. In fact, thanks to Richard Rochberg's extension [10] of Eric Amar's result on interpolation sequences, there is a formulation, left to the reader, of the theorem that is valid in weighted Bergman spaces on bounded symmetric domains in \mathbb{C}^n .

Acknowledgement. Thanks are due to the Department of Mathematics at the University of North Carolina at Chapel Hill for their hospitality while the research for this paper was done.

REFERENCES

- 1. E. AMAR, Suites d'interpolation pour les class de Bergman de la boule et du polydisque de \mathbb{C}^n , Canad. J. Math. 30 (1978), 711-737.
- 2. K. R. M. Attele, Analytic multipliers of Bergman spaces, Mich. Math. J. 31 (1984), 307-319.
 - 3. S. Axler, Zero multipliers of Berman spaces, Canad. Math. Bull. 28 (1985), 237-242.
- 4. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions, Astérisque 77 (1980), 11-65.
 - 5. C. Fefferman and E. Stein, H^p spaces of severable variables, Acta Math. 129 (1972), 128-193.
- 6. W. W. HASTINGS, A Carleson measure theorem for Bergman spaces, *Proc. Amer. Math. Soc.* 52 (1975), 237-241.
- 7. D. H. Luecking, Forward and reverse Carleson inequalities for functions in the Bergman spaces and their derivatives, *Amer. J. Math.* 107 (1985), 85–111.
- 8. D. H. Luecking, Representation and duality in weighted spaces of analytic functions, *Indiana Univ. Math. J.* 34 (1985), 319-336.

- 9. V. L. OLEINIK and B. S. PAVLOV, Embedding theorems for weighted classes of harmonic and analytic functions, J. Soviet Math. 2 (1974), 135–142 (a translation of Zap. Nauch. Sem. LOMI Steklov 22 (1971)).
- 10. R. Rochberg, Interpolation by functions in the Bergman spaces, Mich. Math. J. 29 (1982), 229-236.

University of Arkansas Fayetteville Arkansas 72701