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Cohomological divisibility and point count divisibility

Hélène Esnault and Nicholas M. Katz

Abstract

Let X ⊂ Pn be a closed scheme defined by r homogeneous equations of degrees d1 � d2 �
· · · � dr over the finite field Fq, with complement U := Pn\X. Let κ be the maximum of 0
and the integral part of the rational number (n − d2 − · · · − dr)/d1. We show that the
eigenvalues of the geometric Frobenius endomorphism acting on the �-adic cohomology
H i

c(U ×Fq Fq, Q�) with compact supports are divisible by qκ as algebraic integers.

1. Introduction

Nearly seventy years have passed since the theorem of Chevalley–Warning [Che36, War36]: over a
finite field k = Fq of characteristic p, if f ∈ k[X1, . . . ,Xn] is a polynomial in n � 1 variables of
degree d < n, then the number of solutions in An(k) of f = 0 is divisible by p. For d � 1, Ax [Ax64]
improved this to divisibility by qµ, where µ is the least non-negative integer that is � (n − d)/d.
Thus

µ = max
(

0,Ceiling
(

n − d

d

))
. (1.1)

In this form, the result remains true, if trivially so, without the assumption that n > d. Ax also
noted that, by an elementary inclusion–exclusion argument, his result implied that if one had r � 1
polynomials fi ∈ k[X1, . . . ,Xn], with fi of degree di � 1, then the number of solutions in An(k)
of the system of equations f1 = · · · = fr = 0 is divisible by qλ, where λ is the least non-negative
integer which is � (n − ∑

i di)/
∑

i di, i.e.

λ = max
(

0,Ceiling
(

n − ∑
i di∑

i di

))
. (1.2)

Katz [Kat71] improved this to divisibility by qµ, where µ is the least non-negative integer which is
� (n − ∑

i di)/maxi di, i.e.

µ := µ(n; d1, . . . , dr) := max
(

0,Ceiling
(

n − ∑
i di

maxi di

))
. (1.3)

An elementary proof of this result was given by Wan [Wan89]. Adolphson and Sperber [AS87]
gave a divisibility estimate for additive character sums which, they showed, included this result.
Wan [Wan95] gave a divisibility estimate for multiplicative character sums which, he showed,
included this result as well.

Del Angel noted in [dAn94] that, if one reverses the inclusion–exclusion argument which Ax
used to pass from a result for one polynomial to a result for several polynomials, then the estimate
(1.3) for several polynomials gives the following result for one polynomial which is reducible: if one
has r � 1 polynomials fi ∈ k[X1, . . . ,Xn], with fi of degree di � 1, then the number of solutions
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in An(k) of the single equation f1 · · · fr = 0 is divisible by qµ, for µ = qµ(n;d1,...,dr) as above. If one
replaces f1 · · · fr by any product fa1

1 · · · far
r with all ai � 1, one has the same solutions in An(k),

so the same divisibility. Notice that if one omits some of the factors in fa1
1 · · · far

r , i.e. if one allows
some ai to be zero, then the number of solutions of fa1

1 · · · far
r = 0 in An(k) remains divisible by the

same qµ [simply because if one removes some of the fi from consideration, the numerator n−∑
i di

of µ increases, and its denominator maxi di decreases].

With this result in hand, del Angel did inclusion–exclusion à la Ax and got the following result.
Suppose one has a list of r � 1 polynomials fi ∈ k[X1, . . . ,Xn], with fi of degree di � 1. Take any
R � 1, and any list of R � 1 polynomials gj ∈ k[X1, . . . ,Xn], such that gj is a product gj =

∏
i f

ai,j

i ,
with all ai,j � 0. Then the equations g1 = · · · = gR = 0 define a closed subscheme X ⊂ An, whose
number of k-points is divisible by qµ(n;d1,...,dr).

There is an obvious projective version of these affine results. If the fi are all homogeneous,
then all the gj are homogeneous, and the same equations g1 = · · · = gR = 0 also define a closed
subscheme Xproj ⊂ Pn−1 whose affine cone is the X above. The number of Fq-rational points of
U := Pn−1 \ Xproj is easily seen to be divisible by qµ(n;d1,...,dr).

The common feature of these results is that one has a separated k-scheme X/k of finite type,
and an integer κ � 1, such that for each finite extension Fqν of Fq, |X(Fqν )| is divisible by qν·κ.
Some years ago, Deligne posed the problem of characterizing those situations (X/k, κ) in which the
divisibilities of numbers of points result from corresponding divisibilities of all the eigenvalues of
Frobenius on all the compact �-adic cohomology groups, � any prime other than p, of the variety
X/k in question. As explained by Ax [Ax64], such divisibilities of numbers of points imply (and
indeed are equivalent to) the corresponding divisibility of all reciprocal zeros and poles of the zeta
function. But for any given � �= p, the �-adic cohomological expression of the zeta function may well
have cancellation: the problem is that there might be pairs of Frobenius eigenvalues on different
�-adic groups which cancel, but which both have insufficient divisibility. An example of such an X is
the disjoint union of a point of degree one over Fq with Gm ×Pn−1. Then it has exactly qn rational
points while Frobenius acts trivially on the zeroth and the first cohomology with compact supports.

In this paper, we show that, if (X/k, κ) arises as an instance of the point count divisibility
theorems [Kat71] explained above, then in fact all its Frobenius eigenvalues have the corresponding
divisibility.

We should emphasize that in proving the asserted divisibilities of Frobenius eigenvalues, we are
not giving a new proof of the above-cited divisibilities of point counts. Rather, those point count
divisibilities are an essential starting point of our proof; see (3.6). (For another approach to these
questions, see [Esn03], which treats the case of projective complete intersections. For a discussion
of a motivic approach, see the survey [BE02].) In § 5.3, we explain how our methods can be used
to sharpen known results on the analogous question of Hodge type of complex projective varieties
defined by equations of low degree, cf. [DD90, Esn90, ENS92, dAn94, EW03].

2. Statement of results: the affine case

We fix a finite field k = Fq of characteristic p and a prime number � �= p. For a separated scheme
X/k of finite type, we abbreviate

H i(X) := H i(X ×k k, Q�), H i
c(X) := H i

c(X ×k k, Q�). (2.1)
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We denote by F = Fk the geometric Frobenius endomorphism of these cohomology groups. By the
Grothendieck–Lefschetz trace formula [Gro65],

|X(k)| =
∑

i

(−1)i Trace(F ;H i
c(X)),

|X(kν)| =
∑

i

(−1)i Trace(F ν ;H i
c(X)),

(2.2)

for kν = Fqν . Recall [Del73b, Corollaire 5.5.3], that all the eigenvalues of F acting on H i
c(X) are

algebraic integers, i.e. elements of Q� which are integral over Z.

Theorem 2.1. Suppose one has a list of r � 1 polynomials fi ∈ k[X1, . . . ,Xn], with fi of degree
di � 1. Take any integer R � 1, and any list of R � 1 polynomials gj ∈ k[X1, . . . ,Xn], such that
each gj is a product gj =

∏
i f

ai,j

i , with all ai,j � 0. Denote by X/k the closed subscheme of An(k)
defined by g1 = · · · = gR = 0. Then every eigenvalue of F on every compact cohomology group
H i

c(X) is divisible as an algebraic integer by qµ(n;d1,...,dr).

From the excision sequence

· · · → H i
c(A

n \ X) → H i
c(A

n) → H i
c(X) → · · · , (2.3)

and the well-known cohomological structure of An, namely

H i
c(A

n) = 0 for i �= 2n, H2n
c (An) = Q�(−n), (2.4)

where Q�(−n) is the one-dimensional vector space over Q� on which F acts as qn, one sees that
Theorem 2.1 is equivalent to the following theorem.

Theorem 2.2. Under the hypotheses of Theorem 2.1, every eigenvalue of F on every compact
cohomology group H i

c(A
n \ X) is divisible as an algebraic integer by qµ(n;d1,...,dr).

Theorem 2.2 itself results from the following slightly sharper result, suggested by [Del73b, Corol-
laire 5.3.3, (ii)], and by [Wan02] and [EW03]. For each integer j � 0, let us define

µj(n; d1, . . . , dr) := j + µ(n − j; d1, . . . , dr). (2.5)

Thus

µ0(n; d1, . . . , dr) = µ(n; d1, . . . , dr), (2.6)

and we have the obvious inequalities

µj+1(n; d1, . . . , dr) � µj(n; d1, . . . , dr). (2.7)

Theorem 2.3. Under the hypotheses of Theorem 2.1, we have the following results:

1) Every eigenvalue of F on every group H i
c(An \ X) is divisible as an algebraic integer by

qµ(n;d1,...,dr).

2) For each j � 1, every eigenvalue of F on Hn+j
c (An \ X) is divisible as an algebraic integer by

qµj(n;d1,...,dr).
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3. The proof of Theorem 2.3

We first reduce to the case R = 1. For j, with 1 � j � R, we denote by Gj ⊂ An the hypersurface
in An defined by gj = 0. Then

X =
R⋂

j=1

Gj , hence

An \ X =
R⋃

j=1

Uj , with Uj = An \ Gj .

(3.1)

One considers the Mayer–Vietoris spectral sequence for compact cohomology (see [Ver66] and
[Del73a, 6.2.10.3]),

E−a,b
1 =

⊕
1�j1<j2<···<ja+1�R

Hb
c

( a+1⋂
i=1

Uji

)
⇒ Hb−a

c (An \ X), (3.2)

which is the cohomological incarnation of inclusion–exclusion. Thus every eigenvalue of F on a given
group Hb

c(An \X) is an eigenvalue of F on some group Hb+a
c (

⋂a+1
i=1 Uji) for some a � 0. So it suffices

to show the following two statements:

1) For every b � 0 and every a � 0, every eigenvalue of F on every group Hb
c(

⋂a+1
i=1 Uji) is divisible

as an algebraic integer by qµ(n;d1,...,dr).
2) For every j � 1 and every a � 0, every eigenvalue of F on every group Hn+j

c (
⋂a+1

i=1 Uji) is
divisible as an algebraic integer by qµj(n;d1,...,dr).

But an (a + 1)-fold intersection
⋂a+1

i=1 Uji is the complement of the hypersurface of the equation∏a+1
i=1 gji = 0, which falls under the case R = 1 of Theorem 2.3. So it suffices to prove Theorem 2.3

for R = 1. We use the weak Lefschetz theorem and induction on n, the number of variables. For
n = 1, we have µ(1; d1, . . . , dr) = 0 (because

∑
i di � 1), so assertion 1 of the theorem is an (easy)

instance of Deligne’s integrality theorem [Del73b, Corollaire 5.5.3]. Assertion 2 of the theorem holds
for n = 1 because the only possibly non-zero group H1+j

c (A1 \X) with j � 1 is H2
c (A1 \X), which

is Q�(−1). So suppose the theorem universally true for n − 1, in the case R = 1.
Whatever the non-empty hypersurface G ⊂ An, An \ G is smooth and geometrically connected

of dimension n, so Poincaré duality tells us that the cup product

H i
c(A

n \ G) × H2n−i(An \ G) → H2n
c (An \ G) ∼= Q�(−n) (3.3)

is a perfect pairing of F -modules. Since An \G is affine of dimension n, the affine Lefschetz theorem
tells us that

H i(An \ G) = 0 for i > n. (3.4)
So by duality we have

H i
c(A

n \ G) = 0 for i < n. (3.5)
We now take G defined by

∏
i f

ai
i = 0.

We first prove assertion 1 of the theorem. As noted by Wan and exploited in [BEL04, Introduc-
tion], and in [Esn03], given the divisibility of

|(An \ G)(kν)| =
∑
i�n

(−1)i Trace(F ν ;H i
c(A

n \ G)) (3.6)

by qν·µ for every ν � 1, it suffices to prove that for all but a single value of i we have the asserted
divisibility of Frobenius eigenvalues on H i

c(An \ G). We choose i = n. So we need only show the
divisibility by qµ(n;d1,...,dr) of Frobenius eigenvalues on Hj

c (An \ G) for j > n.

96

https://doi.org/10.1112/S0010437X04000934 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000934


Cohomological divisibility

This divisibility is invariant under finite extension of the ground field; after a degree-d extension
of the ground field, both eigenvalues and q are replaced by their dth power. For a sufficiently general
affine linear hyperplane A ⊂ An defined by an equation of the form

A :
n∑

i=1

αiXi + βi = 0 (3.7)

with coefficients in a finite extension of k (which, by extending k, we may assume to be k itself),
the restriction maps on ordinary cohomology

H i(An \ G) → H i(A \ A ∩ G) (3.8)

are injective for i < n. This is an instance of the weak Lefschetz theorem (see [Kat93, 3.4.1], applied
to V = An \ G, with π the inclusion and f the function 0). The Poincaré dual of this injection is a
surjection

H i−2
c (A \ A ∩ G)(−1) � H i

c(A
n \ G) (3.9)

for i > n. For A general, each fi|A will be a polynomial of the same degree di. So by induction on n,
we know that every eigenvalue of F on every group H i−2

c (A \ A ∩ G) is divisible by qµ(n−1;d1,...,dr).
So every eigenvalue of F on every group H i−2

c (A \ A ∩ G)(−1) is divisible by qµ(n−1;d1,...,dr)+1. But
we have the inequality

µ(n − 1; d1, . . . , dr) + 1 = µ1(n; d1, . . . , dr) � µ(n; d1, . . . , dr). (3.10)

This concludes the proof of assertion 1 of Theorem 2.3.
This same induction proves assertion 2 of Theorem 2.3. Indeed, for any integer j � 1, the

induction shows that, for i = n + j, every eigenvalue of F on Hn+j
c (An \G) is also an eigenvalue of

F on

H(n−1)+(j−1)(A \ G ∩ A)(−1). (3.11)

By induction, every eigenvalue of F on (3.11) is divisible by q1+µj−1(n;d1,...,dr). Also by definition we
have

1 + µj−1(n; d1, . . . , dr) = µj(n; d1, . . . , dr). (3.12)

This concludes the proof of Theorem 2.3.

4. The projective case

Here is the projective version. Suppose now that the fi are all homogeneous forms. Then each gj is
again homogeneous, and the closed X/k in An defined by g1 = · · · = gR = 0 is the affine cone over
a closed Xproj in Pn−1, defined by the same equations.

Theorem 4.1. Under the hypotheses of Theorem 2.1, suppose in addition that all the fi are
homogeneous. Then we have the following results:

1) Every eigenvalue of F on every group H i
c(Pn−1 \ Xproj) is divisible as an algebraic integer by

qµ(n;d1,...,dr).

2) For each j � 1, every eigenvalue of F on Hn+j
c (Pn−1 \Xproj) is divisible as an algebraic integer

by qµj(n;d1,...,dr).

Proof. To prove the theorem, repeat the proof of Theorem 2.3 essentially verbatim. First reduce to
the case R = 1 by the same spectral sequence argument. Then do induction on n. Again, the case
n = 1 holds trivially. The open variety Pn−1 \ Xproj is affine, smooth, and geometrically connected
of dimension n − 1. The appropriate reference for the weak Lefschetz theorem in this context
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is [Kat93, Appendix (d’après Deligne), A5], applied with its X := Pn−1 \Xproj, and f the inclusion
into Pn−1.

5. Concluding remarks

5.1 Concordance
In other work on this subject, e.g. in [Esn90, ENS92, EW03], one sees a different but equivalent
expression of the divisibility, in terms of the floor or integral part [x] of a real number x. One
renumbers so that d1 � d2 � · · · � dr, and then one defines

κ(n; d1, . . . , dr) := max
(

0,
[
n − d2 − · · · − dr

d1

])
. (5.1)

This κ is related to µ by the identity

κ(n; d1, . . . , dr) = µ(n + 1; d1, . . . , dr), (5.2)

whose verification we leave to the reader.

5.2 Axiomatization
The arguments we give here could easily be axiomatized, and then applied to any pair of cohomology
theories (H�,H�

c ), defined on smooth separated k-schemes of finite type, with values in finite-
dimensional vector spaces over a field K of characteristic zero, which have the following properties:

i) zeta function formula for H�
c ,

ii) Poincaré duality between H� and H�
c ,

iii) affine Lefschetz and weak Lefschetz theorems for H�,
iv) Mayer–Vietoris spectral sequence of an open covering for H�

c .

An initial run through our arguments with µ = 0 shows that all Frobenius eigenvalues on H�
c in

any such theory are algebraic integers. Berthelot’s rigid cohomology and rigid cohomology with
compact supports are conjecturally such a pair of theories. At present, properties i, ii and iv are
proven in [ELS93], [Ber97b] and [Ber97a] respectively. Only property iii remains open. Once iii has
been proven, then Theorems 2.3 and 4.1 will hold for the eigenvalues of Frobenius on compact rigid
cohomology, with divisibility by qµ as algebraic integers and hence with slopes of Frobenius � µ.

5.3 Application to Hodge type
Deligne has also formulated a Hodge theoretic version of the problem considered here. Given a non-
empty separated C-scheme X/C of finite type, recall that its compact support Hodge type α(X/C)
is the largest integer α such that the Hodge filtration Fil, for the mixed Hodge structure on H�

c (X),
satisfies

FilαH�
c (X) = H�

c (X). (5.3)
We can also ‘spread out’ X/C to a separated scheme X/A of finite type, with A a subring of C

which is finitely generated as a Z-algebra. For each such spreading out X/A, we define β(X/A) to
be the largest integer β with the following property: for every finite field Fq, and for every ring
homomorphism φ : A → Fq, the number of points on the scheme Xφ/Fq obtained from X/A by the
extension of scalars φ is divisible by qβ. We then define β(X/C) to be the maximum of β(X/A) for all
spreadings out of X/C. One sees easily that β(X/C) � dim(X). The problem is to characterize those
X/C for which α(X/C) = β(X/C). (Presumably, when this equality holds, it holds because α(X/C)
and β(X/C) are both equal to some intrinsic ‘motivic’ invariant γ(X/C) cf. [Gro68, sections 9–10],
for Grothendieck’s discussion of this sort of question.) In general, not much is known. There are
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simple cases where this equality fails, e.g. the disjoint union of a rational point with the product
Gm × Pn−1. But in cases where the divisibility theorems of Ax et al. give an estimate β(X/C) � κ,
one knows that α(X/C) � κ (cf. [DD90, ENS92, dAn94, EW03]).

The methods we use here allow us to sharpen these last results. Given the known results on
the Hodge type of hypersurfaces as input [DD90, Esn90], the arguments proving Theorems 2.3
and 4.1 also prove their analogues over C, with eigenvalue divisibility replaced by Hodge type. We
should emphasize that we are not giving a new proof of the known results on the Hodge type of
hypersurfaces, but rather using them as a starting point.

Consider first the projective case. The first assertion of the Hodge analogue of Theorem 4.1 is
the result [DD90, Esn90, ENS92, dAn94]. To prove the second assertion, reduce to the R = 1 case
by the spectral sequence, and then use induction and the weak Lefschetz theorem exactly as in the
finite field case. Consider now the affine case, i.e. the Hodge analogue of Theorem 2.3. The spectral
sequence reduces us to the case R = 1. Once we know the first assertion in the case R = 1, we
get the second assertion in that case by using induction and the affine weak Lefschetz theorem,
exactly as in the finite field case. To prove the first assertion in the R = 1 case, we reduce it to the
projective case. For this reduction, for each fi ∈ C[X1, . . . ,Xn], with fi of degree di � 1, denote by
Fi ∈ C[X0, . . . ,Xn] the homogeneous form of the same degree di such that

fi(X1, . . . ,Xn) = Fi(1,X1, . . . ,Xn), (5.4)

and denote by Fi,0 ∈ C[X1, . . . ,Xn] the leading form of fi, i.e.

Fi,0(X1, . . . ,Xn) = Fi(0,X1, . . . ,Xn). (5.5)

Given G the hypersurface in An defined by
∏

i f
ai
i = 0, denote by Gproj the hypersurface in Pn

defined by
∏

i F
ai
i = 0, and denote by Gproj

0 the hypersurface in Pn−1 defined by
∏

i F
ai
i,0 = 0. Then

we have an excision sequence

· · · → H i−1
c (Pn−1 \ Gproj

0 ) → H i
c(A

n \ G) → H i
c(P

n \ Gproj) → · · · . (5.6)

But H�
c (Pn−1 \ Gproj

0 ) has Hodge type at least µ(n; d1, . . . , dr), and H�
c (Pn \ Gproj) has Hodge type

at least

µ(n + 1; d1, . . . , dr) � µ(n; d1, . . . , dr). (5.7)

Thus H�
c (An \ G) has Hodge type at least µ(n; d1, . . . , dr), as required.
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