Canad. Math. Bull. Vol. 16 (4), 1973

UNIQUENESS OF THE COEFFICIENT RING IN SOME GROUP RINGS

BY M. PARMENTER AND S. SEHGAL(¹)

1. Let $\langle x \rangle$ be an infinite cyclic group and $R_i \langle x \rangle$ its group ring over a ring (with identity) R_i , for i=1 and 2. Let $J(R_i)$ be the Jacobson radical of R_i . In this note we study the question of whether or not $R_1 \langle x \rangle \simeq R_2 \langle x \rangle$ implies $R_1 \simeq R_2$. We prove that this is so if Z_i , the centre of R_i , is semi-perfect and $J(Z_i \langle x \rangle) = J(Z_i) \langle x \rangle$ for i=1 and 2. In particular, when Z_i is perfect the second condition is satisfied and the isomorphism of group rings $R_i \langle x \rangle$ implies the isomorphism of R_i . The corresponding problem for polynomial rings was considered by Coleman and Enochs [2]. We like to thank the referee for pointing out that some of the techniques used in the proof of Theorem 1 were also used by Gilmer [3] in a different context.

2. Some lemmas.

LEMMA 1. Let G be a group. Then $(R_1 \oplus R_2)G \simeq R_1G \oplus R_2G$

Proof. Define $\sigma: (R_1 \oplus R_2)G \rightarrow R_1G \oplus R_2G$ by

$$\sigma\left(\sum_{i} (r_i, s_i)g_i\right) = \left(\sum_{i} r_i g_i, \sum_{i} s_i g_i\right).$$

It is clear that σ is an isomorphism.

REMARK. We shall identify the two isomorphic rings of this lemma whenever it is convenient to do so.

LEMMA 2. Let F and K be fields such that $\sigma: F\langle x \rangle \rightarrow K\langle x \rangle$ is an isomorphism. Then $\sigma(F) = K$.

Proof. Let $f \neq 0$, -1 be an element of F. Since $\sigma(f)$ is a unit of $K\langle x \rangle$, we have $\sigma(f) = kx^i$, $k \in K$. Therefore, $\sigma(1+f) = 1 + kx^i$. Since 1+f is a unit, i=0 and $\sigma(F) \subset K$. By using σ^{-1} , we conclude that $\sigma(F) = K$.

LEMMA 3. Let R and S be finite direct sums of fields such that $\sigma: R\langle x \rangle \rightarrow S\langle x \rangle$ is an isomorphism. Then $\sigma(R) = S$.

Received by the editors June 2, 1971 and, in revised form, November 19, 1971.

^{(&}lt;sup>1</sup>) This work is supported by National Research Council Grant A-5300.

[December

Proof. Let $R = F_1 \oplus \cdots \oplus F_n$, $S = K_1 \oplus \cdots \oplus K_m$, direct sums of fields F_i and K_j . With the identification of Lemma 1, $R\langle x \rangle = F_1\langle x \rangle \oplus \cdots \oplus F_n\langle x \rangle$ and $S\langle x \rangle = K_1\langle x \rangle \oplus \cdots \oplus K_m\langle x \rangle$. The only primitive idempotents in $R\langle x \rangle$ are $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$ and similarly for $S\langle x \rangle$. Hence $\sigma(F_i\langle x \rangle) = K_j\langle x \rangle$ for some j and m = n. By Lemma 2, $\sigma(F_i) = K_j$. Hence, it follows that $\sigma(R) = S$.

We need a few facts about the Jacobson radical of $R\langle x \rangle$. The proof of the next lemma is found in [1].

LEMMA 4 (Amitsur). J(R[x]) = N[x], where N is a nil ideal of R.

LEMMA 5. $J(R\langle x \rangle) \subseteq N\langle x \rangle$, where N is the same ideal as in the last lemma.

Proof. Let $a=\sum a_i x^i \in J(R\langle x \rangle)$. We can assume that $a=a_1x+\cdots+a_nx^n$ by multiplying by a suitable power of x. Now a has a right quasi-inverse, say, $b=\sum b_j x^j \in R\langle x \rangle$. Since a+b+ab=0, we have $b_m=0$ for m<0. Thus $b=\sum_{i=0}^{s} b_j x^j$. Let A be the ideal of R[x] generated by a. Then $A \subseteq J(R\langle x \rangle)$; so if $y \in A$, then y has a right quasi-inverse z in $R\langle x \rangle$. As above, we see that $z \in R[x]$. Hence A is a right quasi-regular ideal of R[x] and we have $A \subseteq J(R[x])=N[x]$.

COROLLARY. $J(R\langle x \rangle) \subseteq J(R)\langle x \rangle$.

LEMMA 6. Let R be a perfect commutative ring. Then $J(R\langle x \rangle) = J(R)\langle x \rangle$.

Proof. Since R is perfect, J(R) is T-nilpotent. Since R is commutative, $J(R)\langle x \rangle$ is nil. Hence $J(R)\langle x \rangle \subseteq J(R\langle x \rangle)$. Together with the corollary above, we have $J(R)\langle x \rangle = J(R\langle x \rangle)$.

REMARK. The above lemma can be proved for wider classes of rings but this is all we need.

The next lemma is proved in [4].

LEMMA 7. Let R be a commutative ring with 1 such that R has no nontrivial nilpotent or idempotent elements. Then y is a unit of $R\langle x \rangle \Leftrightarrow y = ux^i$, where u is a unit of R.

3. Rings with semi-perfect centres.

THEOREM 1. Let R_i be a ring (with identity) for i=1, 2. Suppose that

(1) Z_i , the centre of R_i , is semi-perfect for i=1, 2.

(2) $J(Z_i \langle x \rangle) = J(Z_i) \langle x \rangle$ for i = 1, 2.

Then $R_1\langle x \rangle \simeq R_2\langle x \rangle \Rightarrow R_1 \simeq R_2$.

552

1973] UNIQUENESS OF THE COEFFICIENT RING IN SOME GROUP RINGS 553

Proof. Let $\sigma: R_1(x) \to R_2(x)$ be the isomorphism. Then by restriction we have $\sigma: Z_1(x) \to Z_2(x)$. Due to the second condition of the hypothesis we have an induced isomorphism

$$\bar{\sigma}: \frac{Z_1}{J(Z_1)} \langle x \rangle \to \frac{Z_2}{J(Z_2)} \langle x \rangle.$$

By Lemma 3, it follows that $\bar{\sigma}(Z_1/J(Z_1)) = Z_2/J(Z_2)$. Also, Lemma 1 gives

$$\frac{Z_2}{J(Z_2)}\langle x\rangle = \bar{e}_1 \frac{Z_2}{J(Z_2)}\langle x\rangle \oplus \cdots \oplus \bar{e}_n \frac{Z_2}{J(Z_2)}\langle x\rangle,$$

where each \bar{e}_i is a primitive idempotent and each $\bar{e}_i(Z_2/J(Z_2))$ is a field F_i . Then we see that

$$\bar{\sigma}(x) = (f_1 x^{i_1}, \dots, f_n x^{i_n})$$
 where $i_j = \pm 1$, $0 \neq f_j \in F_j$ for all j .

This follows because $\bar{\sigma}(Z_1/J(Z_1))$ and $\bar{\sigma}(x)$ together must generate $(Z_2/J(Z_2))\langle x \rangle$.

Since Z_2 is semi-perfect, we can lift the idempotents \bar{e}_i of $Z_2/J(Z_2)$ to primitive orthogonal idempotents e_i in Z_2 such that $1 = e_1 + e_2 + \cdots + e_n$. Then

$$R_2\langle x\rangle = e_1R_2\langle x\rangle \oplus \cdots \oplus e_nR_2\langle x\rangle.$$

Define an R_2 -algebra automorphism $\beta: R_2(x) \rightarrow R_2(x)$ by

$$\beta(x) = (x^{i_1}, x^{i_2}, \ldots, x^{i_n}).$$

It is not too difficult to check that β is indeed an automorphism and therefore induces an automorphism $\overline{\beta}$ of $Z_2/J(Z_2)\langle x \rangle$. Notice that

$$\bar{\beta}\bar{\sigma}(x) = (f_1x, \ldots, f_nx) = (f_1, \ldots, f_n)x = ux$$

where u is a unit in $Z_2/J(Z_2)$. Since $J(Z_2\langle x \rangle) = J(Z_2)\langle x \rangle$, it follows from Lemma 5 that $J(Z_2)$ is a nil ideal. Hence we see that

$$\beta\sigma(x) = u_1 x + \sum_{i \neq 1} a_i x^i$$

where u_1 is a unit of Z_2 and a_i are nilpotent elements of Z_2 .

We now claim that $R_2 \langle \beta \sigma(x) \rangle = R_2 \langle x \rangle$. We may assume that $u_1 = 1$. Note that

$$(\beta\sigma(x))^{-1} = x^{-1} \left(1 + \sum_{i \neq 0} a_{i+1} x^i \right)^{-1} = x^{-1} (1 - r + r^2 + \dots + (-1)^s r^s),$$

where $r = \sum_{i \neq 0} a_{i+1} x^i$ and $r^{s+1} = 0$. We proceed by induction on the index of nilpotency of A, the ideal of R_2 generated by $\{a_i\}$. If this index is one then $\beta\sigma(x) = x$ and we are finished. Now we can suppose that this index is greater than one. Observing that

$$(\beta\sigma(x))^i = x^i + \sum_j b_j x^j, \qquad b_j \in A$$

we obtain

$$\beta \sigma(x) - \sum_{i \neq 1} a_i (\beta \sigma(x))^i = x - \sum a_i b_j x^j, \quad a_i, b_j \in A.$$

6

Since A is nilpotent,

$$\beta\sigma(x) - \sum_{i \neq 1} a_i (\beta\sigma(x))^i = vx - \sum_{j \neq 1} a_i b_j x^j$$

where v is a unit in Z_2 and $a_i b_j \in A^2$ which is of smaller index of nilpotency than A. Hence,

$$R_2 \langle \beta \sigma(x) - \sum_{i \neq 1} a_i (\beta \sigma(x))^i \rangle = R_2 \langle x \rangle$$

and therefore,

$$R_2 \langle \beta \sigma(x) \rangle = R_2 \langle x \rangle.$$

Thus we have proved that the R_2 -homomorphism $\alpha: R_2\langle x \rangle \rightarrow R_2\langle x \rangle$ defined by $x \xrightarrow{\alpha} \beta \sigma(x)$ is an epimorphism.

To see that α is one to one, we must show that $\sum c_i(\beta\sigma(x))^i = 0 \Rightarrow c_i = 0$ for all *i*. Now let $\sum_i c_i(\beta\sigma(x))^i = 0$. In $R_2/A\langle x \rangle$, we have

$$\sum \bar{c}_i (\beta \sigma(x))^i = 0.$$

However, $\overline{\beta\sigma(x)} = \overline{u}_1 x$ and therefore $\overline{c}_i \overline{u}_1^i = 0$. Since u_1 is unit it follows that $\overline{c}_i = 0$ and $c_i \in A$ for all *i*. Assume that $c_i \in A^k$, $k \ge 1$ for all *i*. Then in $R_2/A^{k+1}\langle x \rangle$

$$\sum \overline{c_i(\beta\sigma(x))^i} = 0.$$

However, $c_i(\beta\sigma(x))^i \equiv c_i u_1^i x^i \pmod{A^{k+1}\langle x \rangle}$ and we have

$$0=\sum \bar{c}_i \bar{u}_1^i x^i.$$

Again it follows that $\bar{c}_i=0$ and $c_i \in A^{k+1}$ for all *i*. Since A is nilpotent, $c_i=0$ for all *i* and α is one to one. We have a ring isomorphism, $\alpha^{-1}\beta\sigma: R_1\langle x \rangle \rightarrow R_2\langle x \rangle$ such that $(\alpha^{-1}\beta\sigma)(x)=x$ and therefore $(\alpha^{-1}\beta\sigma):\Delta(R_1\langle x \rangle)\rightarrow\Delta(R_2\langle x \rangle)$, where Δ denotes the augmentation ideal. We have

$$R_1 \simeq rac{R_1 \langle x
angle}{\Delta(R_1 \langle x
angle)} \simeq rac{R_2 \langle x
angle}{(R_2 \langle x
angle)} \simeq R_2.$$

COROLLARY 1. Let R_1 , R_2 be rings with perfect centres. Then

$$R_1\langle x\rangle \simeq R_2\langle x\rangle \Rightarrow R_1 \simeq R_2.$$

Proof. Lemma 6 and Theorem 1.

Since a left artinian ring is left perfect we also have the following.

COROLLARY 2. Let R_1 , R_2 be rings with artinian centres. Then

$$R_1\langle x\rangle \simeq R_2\langle x\rangle \Rightarrow R_1 \simeq R_2.$$

Of a somewhat different nature is the next theorem.

https://doi.org/10.4153/CMB-1973-090-5 Published online by Cambridge University Press

[December

554

THEOREM 2. Let R_1 be a ring with identity such that its centre Z_1 has no nontrivial idempotent or nilpotent elements. Suppose that all units of Z_1 are algebraic over the prime subring of Z_1 . Then

$$R_1\langle x\rangle \stackrel{\sigma}{\simeq} R_2\langle x\rangle \Rightarrow R_1 \simeq R_2.$$

Proof. We first remark that since $Z_1\langle x \rangle$ has no nontrivial nilpotent or idempotent elements the same holds for $Z_2\langle x \rangle$. Here Z_2 is the centre of R_2 . By Lemma 7, the units of $Z_i\langle x \rangle$ are of the form ux^j , $u \in Z_i$ for i=1, 2. If z_1 is a unit in Z_1 , then we have that $\sum a_i z_1^i = 0$ for some a_i in the prime subring of Z_1 . Let $\sigma(z_1) = ux^j$ for some unit $u \in Z_2$. Then $\sum a_i(ux^j)^i = 0$. Since u is a unit, this implies that j=0 and hence that $\sigma(z_1) \in Z_2$. It follows that $\sigma(x) = vx^i$ for some $v \in Z_2$, $l = \pm 1$. Define $\tau: R_2\langle x \rangle \rightarrow R_2\langle x \rangle$ by

(i) $\tau(x) = u^{-l} x^{l}$

and

(ii) $\tau(\sum a_j x^j) = \sum a_j \tau(x)^j$.

Then τ is an R_2 -algebra automorphism and $\tau\sigma(x)=x$. Also,

$$\tau\sigma(\Delta(R_1\langle x\rangle)) = \Delta(R_2\langle x\rangle)$$

which implies that $R_1 \simeq R_2$.

REFERENCES

1. S. A. Amitsur, Radicals of polynomial rings, Canad. J. Math. 8 (1956), 355-361.

2. D. B. Coleman and E. E. Enochs, *Isomorphic polynomial rings*, Proc. Amer. Math. Soc. 27 (1971), 247–252.

3. R. Gilmer, R-automorphisms of R[x], Proc. London Math. Soc. (3) 18 (1968), 328-336.

4. S. K. Schgal, Units in commutative integral group rings, Math. J. Okayama Univ. 14 (1970), 135–138.

MEMORIAL UNIVERSITY OF NEWFOUNDLAND, St. John's, Newfoundland