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UNIQUENESS OF THE COEFFICIENT RING 
IN SOME GROUP RINGS 

BY 

M. PARMENTER AND S. SEHGALO 

1. Let (x) be an infinite cyclic group and R{(x) its group ring over a ring (with 
identity) Ri9 for z=l and 2. Let J(R{) be the Jacobson radical of Ri. In this note we 
study the question of whether or not R1(x)c^R2(x) implies R^R2. We prove that 
this is so if Zi9 the centre of Ri9 is semi-perfect and J(Zi{x))^=J{Z^{x) for i = l and 
2. In particular, when Z^ is perfect the second condition is satisfied and the iso­
morphism of group rings Rt(x) implies the isomorphism of R{. The corresponding 
problem for polynomial rings was considered by Coleman and Enochs [2]. We 
like to thank the referee for pointing out that some of the techniques used in the 
proof of Theorem 1 were also used by Gilmer [3] in a different context. 

2. Some lemmas. 

LEMMA 1. Let G be a group. Then {R^R^G^iR^^Rfi 

Proof. Define o:(R1®R2)G-+R1G®R2G by 

It is clear that a is an isomorphism. 

REMARK. We shall identify the two isomorphic rings of this lemma whenever it is 
convenient to do so. 

LEMMA 2. Let F and K be fields such that o:F{x)-*K(x) is an isomorphism. Then 
a(F)=K. 

Proof. L e t / ^ 0 , —1 be an element of F. Since c{f) is a unit of K(x)9 we have 
a(f)=kxi, keK. Therefore, o ' ( l + / ) = l + £ x i . Since l + / i s a unit, z=0 and 
a(F) c K. By using cr1, we conclude that a(F)=K. 

LEMMA 3. Let R and S be finite direct sums of fields such that a:R(x)-+S(x) is an 
isomorphism. Then o(R)=S. 
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Proof. Let R=F±®- • -@Fn9 S=K1®- • -®Km9 direct sums of fields F{ and Kt. 
With the identification of Lemma 1, R(x)=F1(x)®- • -®Fn(x) and S(x)=K1(x)® 
• • -®Km(x). The only primitive idempotents in R(x) are e~ (0 , . . . , 0, 1, 0 , . . . , 0) 
and similarly for S(x). Hence or(Fi(x))=Âi(x) for some y and m=n. By Lemma 2, 
a(Fi)=Kj. Hence, it follows that a(R)=S. 

We need a few facts about the Jacobson radical of R(x). The proof of the next 
lemma is found in [1]. 

LEMMA 4 (Amitsur). J(R[x])=N[x], where N is a nil ideal of R. 

LEMMA 5. J(R{x)) c N(x), where N is the same ideal as in the last lemma. 

Proof. Let a=^faix
i eJ(R(x)). We can assume that a=axx-\ Yanx

n by 
multiplying by a suitable power of x. Now a has a right quasi-inverse, say, 6 = 
2 bjX* G R(x). Since a+b+ab=0, we have 6 m =0 for m<0 . Thus 6 = 2 o ft,x>. Let 
A be the ideal of R[x] generated by a. Then A <=J(R(x)); so if j G ̂ 4, then y has a 
right quasi-inverse z in R(x). As above, we see that z G i£[x]. Hence A is a right 
quasi-regular ideal of R[x] and we have A ç /(lÊ[x])=JV|X|. 

COROLLARY. J(R(X)) C J(R)(X). 

LEMMA 6. Le£ i£ 6e a perfect commutative ring. Then J(R(x))=J(R)(x). 

Proof. Since R is perfect, /(if) is T-nilpotent. Since JR is commutative, J(R)(x) 
is nil. Hence J(R)(x) £ J(R(x)). Together with the corollary above, we have 
J(R)(x)=J(R(x)). 

REMARK. The above lemma can be proved for wider classes of rings but this is 
all we need. 

The next lemma is proved in [4]. 

LEMMA 7. Let R be a commutative ring with 1 such that R has no nontrivial nil-
potent or idempotent elements. Then y is a unit ofR(x)<=>y=uxi, where u is a unit of 
R. 

3. Rings with semi-perfect centres. 

THEOREM 1. Let Rt be a ring (with identity) for f = l , 2. Suppose that 

(1) Zi9 the centre ofRi9 is semi-perfect for i = l , 2. 

(2) J(Zi(x))=J(Zl)(x)for i = l , 2. 

Then R^x^R^x^R^R^ 
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Proof. Let a:R1(xy^R2(x) be the isomorphism. Then by restriction we have 
a:Z1(x)-^Z2(x). Due to the second condition of the hypothesis we have an induced 
isomorphism 

j&y j(z2y 
By Lemma 3, it follows that â(Z1//(Z1))=Z2//(Z2). Also, Lemma 1 gives 

/ ( z 2 r J ( Z 2 ) ^ -j(z2) 
where each ̂  is a primitive idempotent and each ̂ (Zg/^Zg)) is a field i^. Then we 
see that 

d(x) = (/ix*'1,...,/wxin) where i , = ± 1, 0 ^ /,• e F ; for all ;. 

This follows because d(Zx\J{Z^) and cr(x) together must generate (Z2jJ{Z2)){x). 
Since Z2 is semi-perfect, we can lift the idempotents ^ of Z2/J(Z2) to primitive 

orthogonal idempotents et in Z2 such that l=ei+e2H \~en- Then 

JR2(x> = exR2(x) 0 • • • © enR2(x). 

Define an i^2-algebra automorphism f}:R2(x)->R2(x) by 

p(x) = (x*\ x% . . . , xfa). 

It is not too difficult to check that /? is indeed an automorphism and therefore 
induces an automorphism /? of Z2//(Z2)(x). Notice that 

M x ) = (Ax, . . . ,fnx) = ( A , . . . , / J x = MX 

where w is a unit in Z2//(Z2). Since J(Z2(x))=/(Z2)(x), it follows from Lemma 5 that 
J(Z2) is a nil ideal. Hence we see that 

(5a(x) = MjX + 2 fl^x* 

where ux is a unit of Z2 and at are nilpotent elements of Z2. 
We now claim that R2((3a(x))=R2(x). We may assume that Uy=\. Note that 

(M*))"1 = W l + 2 «*fi^r= x"1(l-r+^+- • -+(-l)V), 

where r=2*#o a*+i^ anc^ rs+1=0. We proceed by induction on the index of nil-
potency of A, the ideal of R2 generated by {a J. If this index is one then f}a(x)=x 
and we are finished. Now we can suppose that this index is greater than one. Ob­
serving that 

(pa(x))i = xi+2bjx
j
9 bjeA 

j 

we obtain 

M * ) - 2 fl*(M*))* = x - 2 *<M'> <*»> b; G ^ » 
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Since A is nilpotent, 

M * ) - 2 ai(Pa(x)Y = vx~ 2 fl<6i*' 

where v is a unit in Z2 and 0 ^ G A2 which is of smaller index of nilpotency than A. 
Hence, 

iMM*)-Itfi(M*)y> = #2<*> 
i # l 

and therefore, 

#2<M*)> = *2<*>. 

Thus we have proved that the i^-homomorphism OL:R2(X)-+R2(X) defined by 

x-^->Pa(x) is an epimorphism. 

To see that a is one to one, we must show that 2 ci(^a(x))i=0=>ci=0 for all 1. 

Now let J* c,(M*))<==50- In R*IA(x), we have 

2*«(M*))' = o. 

However, ^o(x)=ù1x and therefore ciûî=0. Since wx is unit it follows that ^ = 0 
and c{eA for all i. Assume that c{ e Ak, k>\ for all 1. Then in R2lA

k+1(x) 

2c,(M*))' = o. 

However, ^( jScr^))*^^^* (mod V4&+1(JC)) and we have 

0 = 2 ^ ' . 

Again it follows that c~0 and c,- G Ak+1 for all 1. Since A is nilpotent, c t =0 for all 
1 and a is one to one. We have a ring isomorphism, or1j3<j:R1(x)-+R2(x) such that 
( o r 1 / ^ * ) — * and therefore ( a ^ / t o ^ A ^ ^ ^ A ^ ^ ) ) , where A denotes the 
augmentation ideal. We have 

R^x) _ R2(x) 
Rr C^. ^ CZ jR2. 

A ^ x » («,<x» 

COROLLARY 1. Lef iÊ1} i?2 be rings with perfect centres. Then 

R±(x) ~ R2(x) =>R±c^ R2. 

Proof. Lemma 6 and Theorem 1. 
Since a left artinian ring is left perfect we also have the following. 

COROLLARY 2. Let Rl9 R2 be rings with artinian centres. Then 

R^x) ~ R2(x) => R± ~ R2. 

Of a somewhat different nature is the next theorem. 
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THEOREM 2. Let Rx be a ring with identity such that its centre Z1 has no nontrivial 
idempotent or nilpotent elements. Suppose that all units ofZ± are algebraic over the 
prime subring ofZv Then 

R1(x)^iR2(x)=>R1^R2. 

Proof. We first remark that since Zx{x) has no nontrivial nilpotent or idempotent 
elements the same holds for Z2(x). Here Z2 is the centre of R2. By Lemma 7, the 
units of Z{(x) are of the form uxj, ueZ{ for / = 1, 2. If z1 is a unit in Zl9 then we 
have that 2 ^ î = 0 for some ai in the prime subring of Zx. Let o(z1)=uxj for some 
unit u eZ 2 . Then 2 a^ux^y^O. Since u is a unit, this implies t ha t /=0 and hence 
that o(z1)eZ2. It follows that a(x)=vxl for some veZ2, / = ± 1 . Define 
r:R2(x)-+R2(x)by 

(i) T(X)=U~1X1 

and 

(ii)r(2^0=2^(^« 
Then T is an jR2-algebra automorphism and ra(x)=x. Also, 

which implies that R^R^ 
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