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UNIQUENESS OF THE COEFFICIENT RING
IN SOME GROUP RINGS

BY
M. PARMENTER AND S. SEHGAL()

1. Let {x) be an infinite cyclic group and Ry(x) its group ring over a ring (with
identity) R;, for i=1 and 2. Let J(R;) be the Jacobson radical of R;. In this note we
study the question of whether or not R;(x)~R,(x) implies R;~R,. We prove that
this is so if Z;, the centre of R;, is semi-perfect and J(Z,(x))=J(Z;)(x) for i=1 and
2. In particular, when Z; is perfect the second condition is satisfied and the iso-
morphism of group rings R,(x) implies the isomorphism of R;. The corresponding
problem for polynomial rings was considered by Coleman and Enochs [2]. We
like to thank the referee for pointing out that some of the techniques used in the
proof of Theorem 1 were also used by Gilmer [3] in a different context.

2. Some lemmas.
LemMma 1. Let G be a group. Then (Ry®R,)G=~R,GOR,G
Proof. Define o:(R;®R,)G—R,GOR,G by
(3 008) = (3 300
It is clear that ¢ is an isomorphism.

ReMARK. We shall identify the two isomorphic rings of this lemma whenever it is
convenient to do so.

LeMMA 2. Let F and K be fields such that o:F(x)—K(x) is an isomorphism. Then
o(F)=K.

Proof. Let f30, —1 be an element of F. Since o(f) is a unit of K(x), we have
o(f)=kx', k € K. Therefore, o(14f)=1+kx*. Since 14f is a unit, i=0 and
o(F) = K. By using ¢, we conclude that o(F)=XK.

LeMMA 3. Let R and S be finite direct sums of fields such that o: R(x)—S(x) is an
isomorphism. Then o(R)=S.
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Proof. Let R=F, @'« ‘®F,, S=K,®" ‘- -®K,,, direct sums of fields F; and K.
With the identification of Lemma 1, R(x)=F,(x)®- + ‘®F,{x) and S{x)=K;{x)®
+ + @K, (x). The only primitive idempotents in R(x) are e,=(0,...,0,1,0,...,0)
and similarly for S(x). Hence o(F;(x))=K;(x) for some j and m=n. By Lemma 2,
o(F;)=K;. Hence, it follows that o¢(R)=S.

We need a few facts about the Jacobson radical of R(x). The proof of the next
lemma is found in [1].

LeMMA 4 (Amitsur). J(R[x])=NI[x], where N is a nil ideal of R.
LEMMA 5. J(R(x)) < N{(x), where N is the same ideal as in the last lemma.

Proof. Let a= ax’ € J(R(x)). We can assume that a=a;x+---+a,x* by
multiplying by a suitable power of x. Now a has a right quasi-inverse, say, b=
> b;x?! € R(x). Since a+b+ab=0, we have b,,=0 for m<0. Thus b=, b,x’. Let
A be the ideal of R[x] generated by a. Then 4 <J(R(x)); so if y € 4, then y has a
right quasi-inverse z in R(x). As above, we see that z € R[x]. Hence 4 is a right
quasi-regular ideal of R[x] and we have 4 = J(R[x])=N[x].

COROLLARY. J(R(x)) < J(R)(x).
LEMMA 6. Let R be a perfect commutative ring. Then J(R(x))=J(R)(x).

Proof. Since R is perfect, J(R) is T-nilpotent. Since R is commutative, J(R)(x)
is nil. Hence J(R)(x) < J(R(x)). Together with the corollary above, we have
J(RYx)=J(R(x)).

REMARK. The above lemma can be proved for wider classes of rings but this is
all we need.
The next lemma is proved in [4].

LEMMA 7. Let R be a commutative ring with 1 such that R has no nontrivial nil-
potent or idempotent elements. Then y is a unit of R(x)<>y=ux’, where u is a unit of
R.

3. Rings with semi-perfect centres.

THEOREM 1. Let R; be a ring (with identity) for i=1, 2. Suppose that

1) Z,, the centre of R;, is semi-perfect for i=1, 2.
©2) J(Z{x)=J(Z)x) for i=1, 2.
Then Ry{(x)~Ry(x)=>R;~R,.

https://doi.org/10.4153/CMB-1973-090-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1973-090-5

1973] UNIQUENESS OF THE COEFFICIENT RING IN SOME GROUP RINGS 553

Proof. Let o: R;(x)—Ry(x) be the isomorphism. Then by restriction we have
0:Z,(x)—Zyx). Due to the second condition of the hypothesis we have an induced
isomorphism
Z,

- 2
AT AN
By Lemma 3, it follows that 6(Z,[J(Z,))=Z,/J(Z;). Also, Lemma 1 gives
Z2 — D Z2 PR o Zz
7z (x) =26 @) @ -@é, 1z (x),

where each ¢, is a primitive idempotent and each é,(Z,/J(Z,)) is a field F;. Then we
see that

&(x) = (fix", ...,f,x") where i;= 41, O0sf;e€F; forallj.

This follows because &(Z,/J(Z,) and &(x) together must generate (Z,/J(Z,))(x).

Since Z, is semi-perfect, we can lift the idempotents &; of Z,/J(Z,) to primitive
orthogonal idempotents e; in Z, such that 1=e;4-e,+* * *+e,. Then

Ry(x) = &;Ry(x) @ * - * @ e,Ry(x).
Define an Ry-algebra automorphism f: Ry(x)—Ry(x) by
B(x) = (x™, x™, ..., x™).

It is not too difficult to check that § is indeed an automorphism and therefore
induces an automorphism § of Z,/J(Z,)(x). Notice that

Bo(x) = (fix, o+ s fuX) = (fis o -, fu)x = ux
where u is a unit in Z,/J(Z,). Since J(Zy(x))=J(Z,)(x), it follows from Lemma 5 that
J(Z,) is a nil ideal. Hence we see that

Bo(x) = u;x + Y ax’
i¥#1

where u; is a unit of Z, and a; are nilpotent elements of Z,.
We now claim that Ry(fa(x))=Ry(x). We may assume that u;=1. Note that

(ﬁa(x))_l =x"! (1 + ;o a,.+1x")_1= x"l(l —r+ 7‘2+ e +(_ l)srs)’

where r=72,_,a;.,x* and r**1=0. We proceed by induction on the index of nil-
potency of A4, the ideal of R, generated by {a,}. If this index is one then fo(x)=x
and we are finished. Now we can suppose that this index is greater than one. Ob-
serving that
(Bo(x))' = x"+ T bx!, b;ed
we obtain ’
Bo(x)— zlai(ﬂa(x))" =x— Y abyx’, a,b,eA
i*
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Since A is nilpotent,

Bo(x)— 3 a(po(x))’ = vx— 3 abyx’

where v is a unit in Z, and a;b; € A% which is of smaller index of nilpotency than 4.
Hence,

Ry (o(9)— 3 aBo(x)’) = Re(x)
and therefore,
Ry(Bo(x)) = Ry(x).
Thus we have proved that the R,-homomorphism a:R,(x)—>R,(x) defined by
x—=>po(x) is an epimorphism.
To see that « is one to one, we must show that > c¢,(8o(x))=0=>c,=0 for all i.
Now let >, ¢,(Bo(x))'=0. In R,/A4(x), we have

Z ¢(Bo(x))' = 0.
However, fo(x)=i,x and therefore ¢;ii=0. Since u, is unit it follows that ¢;=0
and ¢, € A for all i. Assume that ¢; € 4%, k>1 for all i. Then in R,/4*(x)

S e(fo(x)) = o.
However, ¢;(Bo(x))=cuix’ (mod A*(x)) and we have

0= iyx’.
Again it follows that ¢,=0 and ¢, € A*+! for all i. Since 4 is nilpotent, ¢,=0 for all
i and o is one to one. We have a ring isomorphism, «~*fo: R,;{(x)—R,(x) such that
(«2B0)(x)=x and therefore (¢'B0): A(R(x))—>A(Rxx)), where A denotes the
augmentation ideal. We have
 R® R
A(R((x))  (Rx(x))

1 2

COROLLARY 1. Let Ry, R, be rings with perfect centres. Then
R(x) =~ Ry(x)= R; =~ R,.

Proof. Lemma 6 and Theorem 1.
Since a left artinian ring is left perfect we also have the following.

COROLLARY 2. Let Ry, R, be rings with artinian centres. Then

Ry(x) =~ Ry(x)= R, ~ R,.

Of a somewhat different nature is the next theorem.
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THEOREM 2. Let R, be a ring with identity such that its centre Z, has no nontrivial
idempotent or nilpotent elements. Suppose that all units of Z, are algebraic over the
prime subring of Z,. Then

Ry(x) = Ry(x)=> R, ~ R,.

Proof. We first remark that since Z,(x) has no nontrivial nilpotent oridempotent
elements the same holds for Z,(x). Here Z, is the centre of R,. By Lemma 7, the
units of Z,(x) are of the form ux’, u € Z, for i=1, 2. If z, is a unit in Z;, then we
have that 3y, a;2;=0 for some a; in the prime subring of Z;. Let o(z,)=ux’ for some
unit u € Z,. Then > a,(ux?)*=0. Since u is a unit, this implies that j=0 and hence
that o(z,) €Z,. It follows that o(x)=vx' for some veZ,, [/=x+1. Define
71 Ry(x)—Ry(x) by

@) T(x)=u"'x?
and
(i) (X ax)=3 a;r(x)’.
Then 7 is an R,-algebra automorphism and ro(x)=x. Also,

70(A(R(x))) = A(Ry(x))
which implies that R;~R,.
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