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SHIGEO TAKENAKA, IZUMI KUBO AND HAJIME URAKAWA

Introduction

P. Levy introduced a generalized notion of Brownian motion in his
monograph "Processus stochastiques et mouvement brownien" by taking
the time parameter space to be a general metric space. Let (M, d) be a
metric space and let O be a fixed point of M called the origin. Following
his definition, a Brownian motion parametrized with the metric space (M, d)
is a Gaussian system & = {B(m); meM} such that the difference B(m) —
B(m') is a random variable with mean zero and variance d(m, m')y and
that B(O) = 0.

There does not always exist a Brownian motion with (M, <2)-parameter
for an arbitrary metric space (M, d). To show the existence of a Brownian
motion there exist two methods (A) and (B) as follows:

(A) A Method Based upon the Positive Definiteness of the Function
v Defined in (i). Applying the general theory of Gaussian systems to our
problem, a necessary and sufficient condition for a Brownian motion Si to
exist is that the function

( i ) v(m, mr) = i(d(O, m) + d(O, m') - d(m, m'))

is positive definite.
In case the τz-dimensional Euclidean space Rn is taken to be the param-

eter space (M, d), P. Levy showed that the function v in (i) is positive
definite (P. Levy [8]). R. Gangolli discussed the case where Mis a homo-
geneous space. He has given an equivalent condition of the positive defi-
niteness of v in terms of spherical harmonic functions and has shown that
the function v is positive definite in the case of n-dimensional sphere
Sn(R. Gangolli [3]). According to his line, Γ. M. MojiπaH has shown that
in the case of hyperbolic space the function v is positive definite (Γ. M.
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[10]).
(B) A Constructive Method Using White Noise.
The ordinary 1-parameter Brownian motion {B(t); t>0} can be repre-

sented in the following integral form with respect to the white noise;

(ii) B(t) = ΐ
Jo

The white noise {dBjdt} has the simplest dependency, that is, the white
noise is independent at every point Availing this property, P. Levy
constructed the Brownian motion with Sn-parameter from the white noise
on Sn. H. H. HernjOB also constructed the Brownian motion with Rn-
parameter. In this case, the white noise is defined on the set

(iii) 2tf = {hyperplane of codimension 1 of Rn}

(H.H. HemjOB [12]).
In this paper three Riemannian spaces Q with constant curvature—

the sphere Sn, the Euclidean space Rn and the hyperbolic space Hn are
taken as the parameter space (M, d). By the natural way these three
spaces can be realized in the real projective space P \ Our main result
is that the Brownian motion with parameter space Sn, Rn, or Hn can be
represented by an integration of a white noise in the same manner. The
key point of our method is to construct the white noise using the fact
that the set of all totally geodesic submanifolds of codimension 1 of Q can
be identified with a subset of the set of all hyperplanes in Pn by the
natural way. For any point A of Q, set

fhyperplane which separates the point A of Q and
(iv) \SA =

 J

where i^ denotes the hyperplane of Pn at infinity. Then the Brownian
motion can be represented by

(v)

where {ξxy/dμ(x)} is a white noise defined on the set Jf. If Q is Sn or
Rn

9 this representation coincides with that of P. Levy or that of H. H.

As an application of the representation (v), we obtain the canonical
representation of the ΛfΓprocess which is defined as
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Mt = ί B(x)dS{x),
J \x\=t

where dS is the normalized uniform measure on the sphere S*'1.

§ 1. Preliminaries

Let (M, d) be a metric space with metric d(-, •) and O be an arbitrary
but fixed origin of M.

DEFINITION. A Gaussian system {B(m, ω) m e M, ω e Ω) defined on a
probability space (Ω, P) is called a Brownίan motion parametrized with the
metric space (M, d), or simply a Brownίan motion with (M, d)-parameter, if
it satisfies the following two conditions Bl) and B2);

Bl) 5(0) = 0,
B2) B(m) — B(mf) is subject to the Gaussian law N(0, d(m, m')) with

mean zero and variance d(m, mf).
That is, {B(m); meM} is a Gaussian system with mean 0 and covariance

v(m, mf) =: i(d(m, O) + d(m\ O) - d(m, mf)).

We are going to show the existence of Brownian motion by the con-
structive method (B) mentioned in the introduction. To this end, we
prepare some notations.

Let (E, &, μ) be an abstract σ-finite positive measure space and &0 be
the family of the J*-sets of finite measure, &0 = {V e @; μ(V)< oo}. Since
μ(yx Π V2), Vi, V2e &0, is positive definite, there exists a Gaussian system
X = {X(V,ω); Ve&o} with mean zero and covariance function E[X(Vuω)
X(V2, ω)] = ^(Vin V2). The Gaussian system is called a Gaussian random
measure associated with the measure space (E, μ). The stochastic integral

f(t)dX(t, ω)

of an element fe L2(E, μ) by the random measure X gives an isometry from
L2(E,μ) onto the closed linear hull of {X(V,ω); Ve^0} in L\Ω) (see J.L.
Doob [2], Chap. IX). It is more suggestive to use the following P. Levy's
notation

(2) dX(a, ω) = ξWdfta) .

Using this notation, we can regard that {ξa} is a Gaussian system which
is independent at every point and that the element ξa is subject to the
law N(0,1) (P. Levy [8]). It is known that in the following two cases the
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Brownian motion can be expressed as a stochastic integral by a certain

random measure.

Case 1. The case of 71-dimensional sphere Sn.

Let ds be the distance along the geodesic on Sn and set

(SI) SA = {Be Sn; ds(A, B) < π/2}.

Let {ξAVdS(A)} be the Gaussian random measure associated with the meas-

ure space (Sn, dS), where dS is the normalized uniform measure on Sn.

Fix an origin O of Sn arbitrarily. Then the Gaussian system

(Bl) BX{A) = </T {J ξMVdS(M) - J fM^dSW)}

is the Brownian motion with (Sn, ds)-parameter (P. Levy [8]).

Case 0. The case of ra-dimensional Euclidean space Rn.

Consider the Euclidean metric d(*, ) on Rn and let O be the origin

of Rn. Let {ξAVdH(A)} be the Gaussian random measure associated with

the measure space (̂ f7, cfa), where jf is the set of all hyperplanes of Rn

and dn denotes the canonical measure on jf (c.f. H. H. MeHUOB [12] and

S. Takenaka [11]). For any point A of Rn, set

(SO) SA = {he^f\ h separates the point A and the origin O}.

Then the Brownian motion B0(A) with Jίn-parameter is represented as the

following integral form;

(BO) B0(A) = f ξWd^A).

These two cases have a common character that Sn and Rn are the

Riemannian manifolds of constant curvature, although one is positive con-

stant and the other is constant zero. The remained case, the Case — 1, is

the Riemannian manifold of constant negative curvature, that is, the hy-

perbolic space Hn. In the following section we shall give a unified method

of integral representations of the Brownian motions for these three Rieman-

nian manifolds of constant curvature.

§2. Projective geometry and the integral representation

In this section we want to treat Riemannian space Q of constant cur-

vature—Sn, Rn or Hn, as the parameter space of Brownian motion, and to

construct the integral representation of Brownian motion will be discussed

in a unified manner. It is convenient to consider Q as a subset of the

projective space Pn(R).
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I. We define three submanifolds Qs, K = 1, 0, - 1 , of Rn+ί:

Q, ={xeRn+ί;x = (x1,. ,xn,x0), x\ + . . + x\ + x\ = 1} ,

( 3 ) Qo = {xeRn+1;x0 = 1} and

Q_x = {xe Rn+1; x\ + • + x\ - x\ = - 1 , x0 > 1} .

Introduce the Riemannian metric dκ of QΛ given by the quadratic form;

( 4) dβ2 = dx\+ - - + dx\ + κdx\ .

Then the number K is the sectional curvature of (Qs, dκ), and the Rieman-

nian metric space (Qκ, dκ) is the ̂ -dimensional unit sphere Sn, the n-dimen-

sional Euclidean space Rn or the n-dimensional hyperbolic space Hn

according to tc = 1, 0 or — 1.

Let Gκ be the subgroup of all elements of SL(n + 1, R) which keep

the quadratic form dκs
2 invariant. Then the action of Gκ on Rn+1 leaves

Qs stable and acts transitively on Qκ. Furthermore, for any pairs (A, A')

and (B, B') in Qκ with dκ(A, Af) = dκ(B, B'), there exists an element geGc

such that

(PI) gA = B and gA' = B'.

It is well known that:

( 5) Gx = SO(n + 1) and Q, = SO(n + ί)ISO(ή) .

( 6 ) G0 = M(ή) and Qo = M(n)ISO(ή) ,

where M(n) denotes the Euclidean motion group

M(n) = {ge SL(n + 1, R); g = Γ g ±\, ge SO(ή), aeRn) .
(7) I L0, , 0 1J )

G_x = Ln and Q_x = LJSO(ή) ,

where Ln is the ^-dimensional Lorentz group

.) is the diLn = ίge SL(n + 1, R); gI(n>1)tg" =
1 matrix with the diagonal (1, , 1, —1)

II. Let π be the projection from Rn+ί — {0} into the projective space

P",

\Xl9 X2, ' ' ' , Xn, XQ) I > \\Xi, Λ̂ 2> ' ' ' 9 %n> %θ)\ >

where the right hand side of (8) means the line passing through (xu x2,
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xn9 x0) and the origin O. Take a local coordinate (£7, φ) around the origin

as follows;

Φ;

where U = {[(xl9 x2, - -, *„, *„)] e Pn; x0 Φ 0}.

Then

φ π(Qk) = i?% for Λ = 1 or 0 and

φ *(Q-d = {«6 B»; |z|2 = z\ + + z\ < 1} .

Let ^ be the set of all hyperplanes of codimension 1 in P \ Then there

exists a one-to-one map * between Pn and ^ called the protective inver-

sion (c.f. W. Blaschke [1]);

x\—>x* = {yePn; (x,y) = xxyx + x2y2 + + xnyn + xoyo = 0} .

By this map *, we can identify Pn with Jf. Let

(10) Jfe = {h € ^f A Π Qκ Φ 0} .

Then for any element h e Jfκ, the intersection I — hf)Qκ is a hyperplane

of Qκ, that is, a totally geodesic submanifold of Qκ of codimension 1. Con-

versely, for any hyperplane t of Qκ there exists an element h of Jfκ such

that A includes I (c.f. M. Kurita [7]).

Applying the inversion map *, we can identify fflΛ with a subset

of Pn;

'?* = Pn, for K == 1, 0 and
! ^r / rV i . . . . J- fv /rV N 11

The action of Gκ on ζ), induces the action of the group G* = {'#; ^ € Gκ}

on f̂Λ as follows;

(12) g*x* = ^x* = (gx)*, geGκ, xeQκ.

It is well known that there exists a measure μκ on 3f* which is invariant

under the action of G*. Using the local coordinate (φ, U), the measure

μκ is given explicitely in the following form φ*(μκ) in φ(j4ff) C Rn;

dx
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(13)

where xeR71, dx is the Lebesgue measure on Rn and \x\ is the Euclidean

norm of x.

III. In this part we construct the Brownian motion parametrized with

space (OΛ, dκ) in the sense of P. Levy. For a point A of Qκ9 set

(S) SA = {h* e <#*; h separates the point A and the origin O

= [(0, ...,0,1)]}.

Note that the set φ(SA) is one of the two connected components of Rn — {A*}

which does not contain the origin O.

Consider three points Al9 A2 and A3 lying in a same geodesic line in

this order, then the following equalities hold;

(P2) g*(SA£SJ = SgA£SgA2, geG,

(P2) SA£SAΛ + SA%ΔSA9 = SA£SM (mode μκ),

where Δ denotes the symmetric difference.

THEOREM 1. In the case of K = 0 or —1, the Gaussian system

(B)

is the Brownian motion of (Qκ, d^-parameter, where {ζxVdμκ(x)} is a Gaussian

random measure associated with the invariant measure μκ of jf* and cκ is

the normalizing constant given by the equation (18) or (19). In case of tz

= 1 we restrict the variable A in a hemisphere and apply the formula (B).

Set B^A) — —BX{A), where A denotes the antipodal point of A, then we

obtain the Brownian moίton on the whole sphere.

Proof. The condition Bl) in the definition of the Brownian motion in

§ 1, is obvious. The condition B2) is that the variance

(14) E(BXA) - BXA')f = <*μASΛASΛ.)

is a linear function of the geodesic distance s = dκ(A, Af). Let (A, Af) and

(Aj, Aί) be any pairs in Qκ with dκ(A, A') = dκ(Au A[) = s. Then, by the

virtue of (PI) there exists an element g e Gκ which satisfies that gA = Au

gAr = A[. Since μκ is invariant under g*, by (P2) we have;

(15) μASASΛ.) = μAg*(SASA,)) = μASgAΔSgΛ,) = ftίS^ΔS^) .
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Therefore, μ£SAΔSA,) depends only on d£A, A'), say μ£SAΔSA,) = u(d£A, A%

where u is a function. Let Al9 A2, As be three points lying on a geodesic

line in this order. Then by (P3)

u(dXAu AJ) = μXSAιASJ = μ<(SAASJ + μXSMASJ

u A,)) + u(dXA2> A3)) .

Since the function u(s) is continuous in s, u(s) is a linear function. The

normalizing constants are taken as the following equalities hold;

(17) JL = tan"11 = cj f dφ) ,
4 J SAW

(18) 1 = c*0 f dμo(x), a n d

(19) — In 3 = tanh" 1 — = cl, f ^ . . (x) ,
2 2 t/£.4(1/2)

where A(ί) = [(£, 0, , 0,1)]. All the coefficients cκ are finite, because

(20) SA c {A'; | # A 0 | > inf I^A'OI} ,

and the definition of the measures μκ in (13). q.e.d.

Remark. Our representation (B) coinsides with (Bl) in the case of

K = 1 or with (BO) in the case of K — 0.

§3. The M r process

Define a new Gaussian process L\ from the white noise

(21) L ; = f ξ.VZϊφc),
J \χ\>i/t

for £ e [0, oo) in the case K = 1 or 0, and for t e [0,1) in the case of K = — 1,

where, |# | 2 = (Xιlx0)
2 + + (xjxo)

2 Then the process Lj becomes a process

with independent increments and its covariance is

(22)

pan-i
Ωn-Ίo

Λtanh-i

Ω !
JO

-i(ίΛs)

cos71"1 θdθ

1

cosh71"1 u

, for

for

for

K =

* =

Λ: =

1,

o,

- i ,

https://doi.org/10.1017/S0027763000019322 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019322


BROWNIAN MOTION 139

where Ωn_1 is the volume of n — 1 sphere. Note that L\ is the ordinary

(1-parameter) Brownian motion.

Take continuous versions of Bκ(x) and Lκ

t. And consider the process

M\ which is the mean of the process Bκ(x) on the sphere of radius t and

center O in φ(U) = Rn, that is,

(23) M\ = f B,(x)dS(x) ,

where dS is the normalized uniform measure on {t-x; xe S71'1}. By the

change of the order of integrations of the expression (23), we get the fol-

lowing;

(24) M\ = cκ f dS(x) ί ξy^dfϋy) = c. Γ p ( i - W ,
J|a?|=ί JSX JO \ t /

where

(25) P(u) = Ωn_2

In the case of odd n, it is well known that P is a polynomial of order

(n + l)/2 and that for any ατ(s) e L2(R+, ds), if

(26) f(t) = Γ P(—Ws)cfe = 0, for any ί > 0 ,

then a(-) = 0. As the measure d£?(L;)2 has non zero density, in case the

measure dE(Lf)2 is taken in (26) in stead of ds, this fact is also true. That

is, the representation (24) is canonical, and the process M\ has (n + l)/2-

ple Markov property (see T. Hida [4a]). Thus, we obtain

THEOREM 2. In the case of odd dimension n, the process M\ is a

(n + ί)/2-ple Markov process and its canonical representation is

Recently, an advanced investigation of MΓprocess has been done by A.

Noda is connection with Theorem 2. A new characterization of Brownian

motion Bκ with (Qt9 dΛ)-parameter has been given by K. Inoue. They have

investigated interesting properties of conjugate sets of the parameter in

the sense of P. Levy ([8]) for Bκ. Their results were reported in the General

Meeting of the Japanese Mathematical Society, April 1979 (c.f. [13], [14]).

https://doi.org/10.1017/S0027763000019322 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019322


140 SHIGEO TAKENAKA, IZUMI KUBO AND HAJIME URAKAWA

REFERENCES

[ 1 ] Blaschke, W., Vorlesungen ϋber Diίferentialgeometrie III, Springer (1929).
[ 2 ] Doob, J. L., Stochastic Processes, John Wiley & Sons (1953).
[ 3 ] Gangolli, R., Positive definite kernels on homogeneous spaces and certain stochastic

processes related to Levy's Brownian motion of several parameters, Ann. Inst.
Henri Poincare 3 sec. B (1967), 121-225.

[4a] Hida, T., Canonical representations of Gaussian processes and their applications,
Mem. of the College of Sci. Univ. of Kyoto, ser. A 33 (1960), 109-155.

[4b] , Brownian Motion (in Japanese), Iwanami, Tokyo (1975), English edition,
Springer (1980).

[ 5 ] Hida, T. and Hitsuda, M., Gaussian Processes (in Japanese), Kinokuniya, Tokyo
(1976).

[ 6 ] Kubo, I., Topics on Random Fields (in Japanese), Seminar on Probability, 26
(1967).

[ 7 ] Kurita, M., Integral Geometry (in Japanese), Kyόritsu, Tokyo (1956).
[ 8 ] Levy, P., Processus stochastiques et mouvement brownien, Gauthier-Villars (1965).
[ 9 ] McKean Jr., H. P., Brownian motion with a several-dimensional time. TeopHH

BepθHTHθcτefl H ee ΠpHMeHeHHH, 8 (1963), 355-378.
[10] MojiπaH, Γ. M., MapκoBCKoe CBOHCTBO πojieft JIΘBH Ha πpocτpaHCTBax ΠOCTOHHHO#

κpHBH3Hbi, ΛAH 221 (1975), 1276-1279.
[11] Takenaka, S., On protective invariance of multi-parameter Brownian motion,

Nagoya Math. J., 67 (1977), 89-120.
[12] HeHuoB, H. H., MHθroπapaMeτpHHecκoe βpoyHOBCKoe ΛBHHceHHe JleBH H oβoβmeHHMδ

6ejiHή uiyM, TeopHH BepθHTHθcτefi H ee ΠpHMeHeHHH, 2 (1956), 281-282.
[13] Inoue, K. and Noda, A., Independence of the increments of Gaussian random fields,

to appear in Nagoya Math. J., 85 (1982).
[14] Noda, A., On Levy's Brownian motion (in Japanese), Epsilon—Journal of Math.

Aichi Univ. of Education, 22 (1980), 35-40.

Shigeo Takenaka and Izumi Kubo
Department of Mathematics
Faculty of Science
Nagoya University

Hajime Urakawa
Department of Mathematics
College of General Education
Tόhoku University

https://doi.org/10.1017/S0027763000019322 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019322



