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Abstract

Let G be a simple undirected graph. The energy E(G) of G is the sum of the absolute values of
the eigenvalues of the adjacent matrix of G, and the Hosoya index Z(G) of G is the total number of
matchings in G. A tree is called a nonconjugated tree if it contains no perfect matching. Recently,
Ou [‘Maximal Hosoya index and extremal acyclic molecular graphs without perfect matching’, Appl.
Math. Lett. 19 (2006), 652–656] determined the unique element which is maximal with respect to Z(G)
among the family of nonconjugated n-vertex trees in the case of even n. In this paper, we provide a
counterexample to Ou’s results. Then we determine the unique maximal element with respect to E(G)
as well as Z(G) among the family of nonconjugated n-vertex trees for the case when n is even. As
corollaries, we determine the maximal element with respect to E(G) as well as Z(G) among the family
of nonconjugated chemical trees on n vertices, when n is even.

2000 Mathematics subject classification: primary 05C50; secondary 05C05, 05C35.

Keywords and phrases: tree, perfect matching, energy of graph, spectra of graph, Hosoya index,
k matchings.

1. Introduction

Let G be a simple graph with n vertices and let A(G) be its adjacency matrix. The
characteristic polynomial PG(λ) of A(G) is defined as

PG(λ)= det(λI − A(G))=
n∑

i=0

aiλ
n−i ,

where I is the unit matrix of order n.
The roots λ1, λ2, . . . , λn of the equation PG(λ)= 0 are called the eigenvalues of G.

It is evident that each λi (i = 1, 2, . . . , n) is real since A(G) is symmetric.
For a graph G, the energy E(G) of G is defined to be the sum of the absolute values

of the eigenvalues of the adjacent matrix of G.
In chemistry, the (experimentally determined) heats of formation of conjugated

hydrocarbons are closely related to total π -electron energy. Within the framework
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of the so-called HMO model the total π -electron energy is calculated from the
eigenvalues of a pertinently constructed molecular graph G by the equation E(G)=∑n

i=1 |λi |.
It is well known [2] that if G is a bipartite graph on n vertices, then PG(x) can be

expressed as

PG(x)=
bn/2c∑
k=0

a2k(G)x
n−2k
=

bn/2c∑
k=0

(−1)kb2k(G)x
n−2k,

where b2k(G)≥ 0 for k = 0, 1, . . . , bn/2c. In particular, b0(G)= 1 and b2(G) equals
the number of edges of G.

Suppose that G1 and G2 are bipartite graphs. If b2k(G1)≥ b2k(G2) holds for all
k ≥ 0, then we write G1 � G2 or G2 � G1. If G1 � G2 and there exists some k0
such that b2k0(G1) > b2k0(G2), then we write G1 � G2 or G2 ≺ G1. Also, we write
G1 ∼ G2 if G1 � G2 and G2 � G1.

It is known [8] that for a bipartite graph G of order n, its energy E(G) can be
expressed as the Coulson integral formula

E(G)=
2
π

∫
+∞

0

1

x2 ln
(bn/2c∑

k=0

b2k(G)x
2k
)

dx . (1.1)

From (1.1),

G1 � G2⇒ E(G1) > E(G2),

G1 � G2⇒ E(G1)≥ E(G2).

The Hosoya index of G is the total number of matchings in G, namely

Z(G)=
bn/2c∑
k=0

m(G; k),

where n is the number of vertices in G, and m(G; k) is the number of k-matchings
in G. A k-matching of G is a k-element subset of its edge set, in which any two edges
are mutually independent.

Another formula (see [6]) for the Hosoya index of a graph G is

ln Z(G)=
∑
+

ln(1+ λ2
j ),

where the summation is over all positive eigenvalues of G. It is convenient to set
m(G; 0)= 1, m(G; 1)= |E(G)| and m(G; k)= 0 (for k > n/2), where |E(G)| is
the number of edges in G. According to Sach’s theorem [2], if G is a tree, then
b2k(G)= m(G; k). Thus,

G1 � G2⇒ Z(G1) > Z(G2),

G1 � G2⇒ Z(G1)≥ Z(G2).
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FIGURE 1. The graph Tr1,r2,r3 .

There are numerous recent results on these two subjects: see [1, 4, 5, 7, 10, 12,
13, 15, 16, 21–24, 26] for graph energy, and [6, 9, 11, 14, 17, 19, 20, 23, 25] for the
Hosoya index.

It is well known that among all n-vertex trees, the path Pn is the unique maximal
element with respect to E(G) as well as Z(G). A tree is called a nonconjugated tree if
it contains no perfect matching. When n is odd, the path Pn is still the unique element
which is maximal with respect to E(G) as well as Z(G) among all nonconjugated
n-vertex trees. So it is of interest to find the maximal element with respect to E(G)
as well as Z(G) among all nonconjugated n-vertex trees for the case when n is even.
Ou [18] investigated the above problem and determined the unique element which is
maximal with respect to Z(G). Unfortunately, Ou’s results have been found to be
incorrect.

In this paper, we reconsider this question and determine the unique maximal
element with respect to E(G) as well as Z(G) among all nonconjugated n-vertex trees
for the case when n is even. As corollaries, we also determine the maximal element
with respect to E(G) as well as Z(G) among the family of nonconjugated chemical
trees on n vertices when n is even.

2. Revisiting Ou’s results

Let Tr1,r2,r3 be the star-like tree as shown in Figure 1.
If a graph G contains a perfect matching, we say that G has P M. Let N T n denote

the set of trees of n vertices, which possess no P M. Recently, Ou [18] claimed the
following results.

LEMMA A. [18, Lemma 4] Let T be a 4m-vertex tree and k be a nonnegative integer.
If T ∈N T 4m , then m(T ; k)≤ m(T1,2m−1,2m−1; k) with equality holding if and only if
T ∼= T1,2m−1,2m−1.

LEMMA B. [18, Lemma 5] Let T be a 4m + 2-vertex tree and k be a nonnegative
integer. If T ∈N T 4m+2, then m(T ; k)≤ m(T1,2m+1,2m−1; k) with equality holding if
and only if T ∼= T1,2m+1,2m−1.

Let Fn denote the nth Fibonacci number.
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THEOREM C. [18, Theorem 1] Let T be a 4m-vertex tree and k be a nonnegative
integer. If T ∈N T 4m , then Z(T )≤ 2F2m F2m+1 with equality holding if and only if
T ∼= T1,2m−1,2m−1.

THEOREM D. [18, Theorem 2] Let T be a 4m + 2-vertex tree and k be a nonnegative
integer. If T ∈N T 4m+2, then Z(T )≤ F2

2m+2 + F2m F2m+1 with equality holding if
and only if T ∼= T1,2m+1,2m−1.

Lemmas A and B are evidently false, which can easily be seen from the following
counterexample to Lemma A.

EXAMPLE 2.1. Let n = 12 and consider T3,3,5 and T1,5,5.
From Lemma 3.1 below,

m(T1,5,5; k) = m(P5 ∪ P7; k)+ m(P4 ∪ P5 ∪ P1; k − 1),

m(T3,3,5; k) = m(P5 ∪ P7; k)+ m(P4 ∪ P3 ∪ P3; k − 1).

Note that m(P3 ∪ P3; 2)= 4>3= m(P5 ∪ P1; 2). So, m(T1,5,5; 3) < m(T3,3,5; 3),
a contradiction to T3,3,5 � T1,5,5, as claimed by Lemma A. Thus, Lemma A is
incorrect. Similarly, Lemma B is also incorrect, and thus Theorems C and D turn
out to be incorrect.

A natural problem arising from this is the following. Among all graphs in N T n
with n even, which graph is the maximum element with respect to E(G) as well as
Z(G)? Our theorems below will provide a satisfactory answer to this question.

3. Determining the nonconjugated tree with maximal energy and Hosoya index

We first recall some previously established results, which will be helpful in proving
our main results.

LEMMA 3.1. [8] Let G be a graph with n ≥ 2 vertices and let uv be an edge in G.
Then for all k ≥ 0,

m(G; k)= m(G − uv; k)+ m(G − {u, v}; k − 1).

In particular, if uv is an edge such that v is a pendent vertex, then

m(G; k)= m(G − v; k)+ m(G − {u, v}; k − 1)

for all k ≥ 0.

LEMMA 3.2. [9] Let Pn be a path on n = 4s + t , 0≤ t ≤ 3 vertices. Then

Pn � P2 ∪ Pn−2 � P4 ∪ Pn−4 � · · · � P2s ∪ P2s+t

� P2s+1 ∪ P2s+t−1 � P2s−1 ∪ P2s+t+1 � · · · � P3 ∪ Pn−3 � P1 ∪ Pn−1.

LEMMA 3.3.

(i) For s ≥ 2, 3≤ k ≤ 2s − 1 and k odd, P2s+1 ∪ P2s−1 � P2s+k ∪ P2s−k .

(ii) For s ≥ 1, 3≤ k ≤ 2s + 1 and k odd, P2s+1 ∪ P2s+1 � P2s+k ∪ P2s+2−k .

https://doi.org/10.1017/S0004972709000562 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709000562


[5] Maximal energy and Hosoya index of trees without perfect matching 51

PROOF. We only consider the proof of (i) here. The proof of (ii) can be derived in the
same way. By Lemma 3.2, it suffices to prove that

m(P2s+1 ∪ P2s−1; 3) > m(P2s+3 ∪ P2s−3; 3).

It is well known [3] that

m(Pn; k)=

(
n − k

k

)
and therefore

m(P2s+1 ∪ P2s−1; 3) = m(P2s+1; 3)+ m(P2s+1; 2)m(P2s−1; 1)

+ m(P2s+1; 1)m(P2s−1; 2)+ m(P2s−1; 3)

=

(
2s − 2

3

)
+

(
2s − 1

2

)(
2s − 2

1

)
+

(
2s

1

)(
2s − 3

2

)
+

(
2s − 4

3

)
=

1
3
(8s3
− 48s2

+ 100s − 72)+ 8s3
− 18s2

+ 20s − 2,

m(P2s+3 ∪ P2s−3; 3) = m(P2s+3; 3)+ m(P2s+3; 2)m(P2s−3; 1)

+ m(P2s+3; 1)m(P2s−3; 2)+ m(P2s−3; 3)

=

(
2s

3

)
+

(
2s + 1

2

)(
2s − 4

1

)
+

(
2s + 2

1

)(
2s − 5

2

)
+

(
2s − 6

3

)
=

1
3
(8s3
− 48s2

+ 148s − 168)+ 8s3
− 24s2

+ 4s + 30.

It follows that

m(P2s+1 ∪ P2s−1; 3)− m(P2s+3 ∪ P2s−3; 3)= 6s2 > 0,

which completes the proof. 2

PROPOSITION 3.4. Let s (≥ 3) be an odd number. There exist three odd numbers s1,
s2 and s3 such that s1 + s2 + s3 = s and |si − s j | ≤ 2 for 1≤ i < j ≤ 3.

PROOF. Let s (≥ 3) be an odd number. If s = 3t , we must have t ≡ 1 (mod 2), and
thus we let si = t for 1≤ i ≤ 3. If s = 3t + 1, we must have t ≡ 0 (mod 2), and thus
we let s1 = s2 = t + 1, s3 = t − 1. If s = 3t + 2, we must have t ≡ 1 (mod 2), and
thus, we let s1 = s2 = t + 2, s3 = t .

Denote by Tr1,r2,r3 the set of all star-like trees of the form Tr1,r2,r3 with r1 +

r2 + r3 + 1= 4m or 4m + 2, and ri ≡ 1 (mod 2) for each 1≤ i ≤ 3. Further, we
let T ∗r1,r2,r3

be the tree in Tr1,r2,r3 with an additional condition that |ri − r j | ≤ 2 for
1≤ i < j ≤ 3. By Proposition 3.4, T ∗r1,r2,r3

is well defined. Also, such a tree is unique
by Proposition 3.4.
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LEMMA 3.5. Let T be any graph in Tr1,r2,r3 with n = 4m or 4m + 2, and m ≥ 1. Then
T � T ∗r1,r2,r3

. Moreover, T ∼ T ∗r1,r2,r3
if and only if T ∼= T ∗r1,r2,r3

.

PROOF. If n = 4m and m = 1, T is isomorphic to T1,1,1. If n = 4m and m = 2, T
is isomorphic to T1,3,3. If n = 4m + 2 and m = 1, T is isomorphic to T1,1,3. The
lemma is evidently true for these three cases. Suppose now that T0 = Tr1,r2,r3 is
a tree in Tr1,r2,r3 such that T0 � T for any T ∈ Tr1,r2,r3 , but T0 � T ∗r1,r2,r3

both for
n = 4m, m ≥ 3 and for n = 4m + 2, m ≥ 2. Then there must exist r1 and r2, such
that r2 − r1 ≥ 4 (or r1 − r2 ≥ 4). Assume that r1 + r2 = 2t . Then by Lemmas 3.1, 3.2
and 3.3, T0 ≺ Tx,y,r3 ∈ Tr1,r2,r3 , where x and y are numbers chosen by the following
rules: if t ≡ 0 (mod 2), we let x = t − 1 and y = t + 1, or x = t + 1 and y = t − 1;
if t ≡ 1 (mod 2), we let x = y = t . In fact, by Lemma 3.1,

m(T0; k) = m(Pr1+r2+1 ∪ Pr3; k)+ m(Pr3−1 ∪ Pr1 ∪ Pr2; k − 1),

m(Tx,y,r3; k) = m(Pr1+r2+1 ∪ Pr3; k)+ m(Pr3−1 ∪ Px ∪ Py; k − 1).

This contradicts our choice of T0, which completes the proof. 2

We mention here a well-known result, as it will play an important role in proving
our main result.

LEMMA 3.6. [8] Let T be a tree with n vertices. Then T � Pn . Moreover, T ∼ Pn if
and only if T ∼= Pn .

In the rest of this paper, we will always denote the number of elements in a vertex
subset A by |A|. Before presenting our main results, it is necessary to state and prove
the following lemma.

LEMMA 3.7. Let T be a tree in N T n with n = 4m or n = 4m + 2, and m ≥ 1. Then
T � T ∗r1,r2,r3

. Moreover, T ∼ T ∗r1,r2,r3
if and only if T ∼= T ∗r1,r2,r3

.

PROOF. We only consider here the case when n = 4m. The case when n = 4m + 2 can
be dealt with in a fully analogous manner. If m = 1, then T1,1,1 is the unique element in
N T n , and the result is evidently true. So we may suppose that m ≥ 2. Since T ∈N T n ,
then T � P4m . That is to say, T has at least one vertex of degree greater than or
equal to 3. Let 1(T ) be the maximum vertex-degree in T . Also, we use V1(T )
to denote the set {v ∈ V (T ) | d(v)=1(T )}. For any T in N T n , we clearly have
|V1(T )| ≥ 1. We shall prove the lemma by induction on |V1(T )|. When |V1(T )| = 1,
the lemma follows from Lemma 3.3 for the case 1(T )= 3. So we may suppose
that 1(T )≥ 4. In this case, T must be isomorphic to a star-like tree with maximum
vertex-degree 1(T )≥ 4. Let d(v)=1(T ) and T − {v} = Pr1 ∪ Pr2 ∪ · · · ∪ Pr1(T ) .
It can be seen that among all the ri , there are at least three odd positive numbers.
Assume without loss of generality that ri , i = 1, 2, 3, are odd positive numbers. Let
Q = {r1, r2, r3, . . . } be the set of all odd positive numbers among r1, r2, r3, . . . ,
r1(T ). If there exists some ri ∈ Q such that ri = 1, then one can easily prove that T ≺
T1,(2m−1),(2m−1). It follows from Lemma 3.5 that T ≺ T1,(2m−1),(2m−1) ≺ T ∗r1,r2,r3

.
Suppose now that ri ≥ 3 for any ri ∈ Q. Let u be the vertex in Pr1(if there is more
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than one Pr1 in T − {v}, we may take any one of them) such that u is adjacent to v
in T . Write T − uv = Pr1 ∪ T ′. By Lemma 3.1, we obtain

m(T ; k) = m(Pr1 ∪ T ′; k)+ m(Pr1−1 ∪ Pr2 ∪ · · · ∪ P1T (G); k − 1),

m(Tr1,x,y; k) = m(Pr1 ∪ P4m−r1; k)+ m(Pr1−1 ∪ Px ∪ Py; k − 1),

where x and y are odd numbers with the condition that x + y = 4m − r1 − 1. Also,
if 4m − r1 − 1= 4t + 2, then x = y = 2t + 1; if 4m − r1 − 1= 4t , then x = 2t + 1
and y = 2t − 1, or x = 2t − 1 and y = 2t + 1.

Note that T ′ is a tree of 4m − r1 vertices not isomorphic to P4m−r1 . Then T ′ ≺
P4m−r1 by Lemma 3.6.

Note also that
Pr2 ∪ · · · ∪ P1T (G) ≺ Pr2 ∪ P4m−r1−1−r2,

and that 4m − r1 − 1− r2 is an odd number. So

Pr2 ∪ · · · ∪ P1T (G) ≺ Pr2 ∪ P4m−r1−1−r2 � Px ∪ Py

by Lemma 3.3. Thus, T ≺ Tr1,x,y � T ∗r1,r2,r3
by Lemma 3.5.

We now let |V1(T )| = q ≥ 2 and suppose that the theorem is true for small values
of q . We write Vp(T )= {v ∈ V (T ) | d(v)= 1}. For any vertex w ∈ V4(T ), let

Pw(T )= {u ∈ Vp(T ) | d(u, w) < d(u, x) for any x ∈ V4(T )}.

It can be seen that for |V1(T )| ≥ 2, there exist at least two vertices, say x and y, in
V1(T ) such that Px (T ) 6= ∅ and Py(T ) 6= ∅. Moreover, for any z ∈ Vp(T ), there exists
a unique w ∈ V1(T ) such that z ∈ Pw(T ). Furthermore, for |V1(T )| ≥ 2, there exist
at least two vertices x and y in V1(T ) such that |Px (T )| ≥ 2 and |Py(T )| ≥ 2. Let w
be a vertex in V1(T ) such that Pw(T )= {w1, w2, . . . , w`} for (`≥ 2). Denote by Sw
the set of vertices (other than wi and w) lying on the path betweenwi and w for all
i = 1, . . . , `. We call the induced subtree G[w, w1, . . . , w`, Sw] of T the pendent
subtree of T with respect to w, which is denoted by P Sw(T ). By our definition of
pendent subtree and the above arguments, we know that:
• if P Sw(T ) is one pendent subtree of T , then P Sw(T ) contains no vertex other

than w of degree greater than or equal to 3;
• if T is a tree with |V1(T )| ≥ 2, then T has at least two pendent subtrees.

We proceed by considering the following two cases.

CASE 1. T has a pendent subtree, say P Sw(T ), which has P M.

In this case, T can be viewed as the graph shown in Figure 2(a). By employing
Operation I (see Figure 2) on T , we obtained a new graph T 1, which is obviously a
graph in N T n . Also, one can easily prove that T ≺ T 1 by using Lemmas 3.1 and 3.6.
Note that

|V4(T
1)| = |V4(T )| − 1= q − 1.

Thus T 1
� T ∗r1,r2,r3

by the induction assumption and then T ≺ T ∗r1,r2,r3
.
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FIGURE 2. (a)⇒ (b) by Operation I.

FIGURE 3. (a)⇒ (b) by Operation II; (a)⇒ (c) by Operation III.

CASE 2. Any pendent subtree P Sw(T ) of T has no P M.

By our discussion above, if |V4(T )| ≥ 2, then T has at least two pendent subtrees.
Suppose that the pendent subtrees of T are P Sw1 , P Sw2 , . . . , P Sw` (`≥ 2). We can
always find two vertices, say w1 and w2, among all the wi , such that

d(w1, w2)=max{d(wi , w j ) | 1≤ i < j ≤ l}.

In this case, T can be viewed as the graph shown in Figure 3(a).

SUBCASE 2.1. |P Sw1(T )| ≡ 1 (mod 2) or |P Sw2(T )| ≡ 1 (mod 2).

Assume without loss of generality that |P Sw1(T )| ≡ 1 (mod 2).

SUBCASE 2.1.1. |P Sw1(T )| ≡ 1 (mod 2) and G[V (T ′0) ∪ V (P Sw2(T )) ∪ {w1}] has
no P M, where G[•] = GT [•] denotes the subgraph of T induced by ‘•’.

By employing Operation II (see Figure 3) on T , we obtain a new graph T 2, which
is obviously a graph in N T n . Also, one can easily prove that T ≺ T 2 by using
Lemmas 3.1 and 3.6. Note that |V4(T 2)| = |V4(T )| − 1= q − 1. Thus T 2

� T ∗r1,r2,r3
by the induction assumption and then T ≺ T ∗r1,r2,r3

by using Lemma 3.5.

SUBCASE 2.1.2. |P Sw1(T )| ≡ 1 (mod 2) and G[V (T ′0) ∪ V (P Sw2(T )) ∪ {w1}] has
P M.
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By employing Operation III (see Figure 3) on T , we obtain a new graph T 3, which
is obviously a graph in N T n . Also, one can easily prove that T ≺ T 3. Note that
|V4(T 3)| = 1. Thus T 3

� T ∗r1,r2,r3
by Lemma 3.5 and then T ≺ T ∗r1,r2,r3

.

SUBCASE 2.2. |P Sw1(T )| ≡ 0 (mod 2) and |P Sw2(T )| ≡ 0 (mod 2).

It is obvious that G[V (T ′0) ∪ V (P Sw2(T ))] has no P M, since P Sw2(T ) has no
P M. Thus, Operation III can be employed on T once again, and we obtain the
graph T 3 (see Figure 3). As in Subcase 2.1.2, we can prove our desired result.

Combining all cases completes the proof. 2

REMARK 3.8. According to our proof of Lemma 3.7, P Sw1(T ) and P Sw2(T ) are
pendent subtrees chosen such that

d(w1, w2)=max{d(wi , w j ) | 1≤ i < j ≤ l},

among all pendent subtrees P Swi (T ) of T for 1≤ i ≤ l. In fact, one finds that
the reasoning used in case 2 of the proof of Lemma 3.7 remains valid even when
d(w1, w2)= 1; that is, T ′0 is an empty set. Moreover, Lemma 3.7 still follows, using
the same technique, even when u = v (see Figure 3).

From Lemma 3.7 we immediately obtain the following two theorems.

THEOREM 3.9. Let T be a tree in N T n with n = 4m or n = 4m + 2, and m ≥ 1. Then
Z(T )≤ Z(T ∗r1,r2,r3

). Moreover, Z(T )= Z(T ∗r1,r2,r3
) if and only if T ∼= T ∗r1,r2,r3

.

THEOREM 3.10. Let T be a tree in N T n with n = 4m or n = 4m + 2, and m ≥ 1.
Then E(T )≤ E(T ∗r1,r2,r3

). Moreover, E(T )= E(T ∗r1,r2,r3
) if and only if T ∼= T ∗r1,r2,r3

.

REMARK 3.11. Let Fn denote the nth Fibonacci number. Recall that Fn = Fn−1 +

Fn−2 with initial conditions F0 = F1 = 1. Note that Z(P0)= 1, Z(P1)= 1 and
Z(Pn)= Z(Pn−1)+ Z(Pn−2). Thus,

Z(Pn)= Fn =

√
5

5

[(
1+
√

5
2

)n+1

−

(
1−
√

5
2

)n+1]
.

So, for a specified value of n in Theorem 3.9, we can compute the exact value of
Z(T ∗r1,r2,r3

).

A chemical tree is a tree in which no vertex has degree greater than 4. If we denote
by N C T n the set of nonconjugated chemical trees on n vertices, then by Theorems 3.9
and 3.10 we immediately have the following.

COROLLARY 3.12. Let T be a tree in N C T n with n = 4m or n = 4m + 2, and m ≥ 1.
Then Z(T )≤ Z(T ∗r1,r2,r3

). Moreover, Z(T )= Z(T ∗r1,r2,r3
) if and only if T ∼= T ∗r1,r2,r3

.

COROLLARY 3.13. Let T be a tree in N C T n with n = 4m or n = 4m + 2, and m ≥ 1.
Then E(T )≤ E(T ∗r1,r2,r3

). Moreover, E(T )= E(T ∗r1,r2,r3
) if and only if T ∼= T ∗r1,r2,r3

.
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