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The motion and deformation of a neutrally buoyant drop in a rectangular channel
experiencing a pressure-driven flow at a low Reynolds number has been investigated both
experimentally and numerically. A moving-frame boundary-integral algorithm was used
to simulate the drop dynamics, with a focus on steady-state drop velocity and deformation.
Results are presented for drops of varying undeformed diameters relative to channel
height (D/H ), drop-to-bulk viscosity ratio (λ), capillary number (Ca, ratio of deforming
viscous forces to shape-preserving interfacial tension) and initial position in the channel
in a parameter space larger than considered previously. The general trend shows that the
drop steady-state velocity decreases with increasing drop diameter and viscosity ratio but
increases with increasing Ca. An opposite trend is seen for drops with small viscosity
ratio, however, where the steady-state velocity increases with increasing D/H and can
exceed the maximum background flow velocity. Experimental results verify theoretical
predictions. A deformable drop with a size comparable to the channel height when placed
off centre migrates towards the centreline and attains a steady state there. In general,
a drop with a low viscosity ratio and high capillary number experiences faster cross-
stream migration. With increasing aspect ratio, there is a competition between the effect of
reduced wall interactions and lower maximum channel centreline velocity at fixed average
velocity, with the former helping drops attain higher steady-state velocities at low aspect
ratios, but the latter takes over at aspect ratios above approximately 1.5.
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1. Introduction
The motion of deformable droplets suspended in another fluid is relevant to several
application areas, including lab-on-a-chip devices, droplet sorting (Xi et al. 2017), micro-
reactors (Song et al. 2003; Tice et al. 2003) and transport of cells (Shields IV et al. 2015;
Autebert et al. 2012; Shen et al. 2019). As drop microfluidic (Baroud et al. 2010;
Anna 2016; Shang et al. 2017; Ding et al. 2020) applications become more advanced,
it is crucial to have a fundamental understanding of the physics behind droplet motion
in confined domains to design such systems effectively. Microfluidic systems usually
have low Reynolds number, owing to their small dimensions or high fluid viscosity,
leading to dominant viscous effects. An early analytical approach to study the motion
of a suspended particle or droplet at a low Reynolds number involves the method of
reflections, as discussed by Happel & Brenner (1983). Shapira & Haber (1988) studied
the motion of small droplets between two stationary plates, investigating the pressure
distribution and drag force exerted on the drop using the method of reflections. However,
this approach is feasible only when the particle/droplet is considerably smaller than the
channel cross-section and far away from the walls, else the method requires multiple
reflections with very involved algebra. An alternative, numerical approach commonly used
is the boundary-integral method.

The boundary-integral (BI) method, described by Rallison & Acrivos (1978), requires
solving a system of integral equations over the channel and particle/drop boundaries,
reducing the need for discretising the whole volume to discretising just the boundaries.
Zhou and Pozrikidis first used the BI method to dynamically simulate a suspension of two-
dimensional, viscous, deformable droplets between two plane parallel walls for Couette
and Poiseuille flow (Zhou & Pozrikidis 1993a,b, 1994). They found that homoviscous
drops (drop-to-bulk viscosity ratio of unity) starting off centre migrate towards the channel
centreplane whereas, for a viscosity ratio of 10, the drop migrates either towards the
centreplane or towards the wall, depending on its initial position. Several other studies
have been done on the motion of a single two-dimensional drop in confined flow (Martinez
& Udell 1990; Khayat et al. 1997). Coulliette & Pozrikidis (1998) first simulated a
fully three-dimensional drop in a circular tube using the BI method. In this study, they
observed that the drop migrates toward the centreline in all cases. Griggs et al. (2007)
conducted a detailed systematic study of the motion of a deformable, three-dimensional
drop between two plane parallel walls at low Reynolds number using the BI method,
including the effect of various drop sizes, drop-to-bulk viscosity ratios, capillary numbers
and initial positions. They observed a decrease in drop velocity with increase in drop size,
proximity to walls and viscosity ratio. Their study was built upon the framework offered
by several advanced computational techniques developed by Zinchenko et al. (1997, 1999)
and Zinchenko & Davis (2000) for simulating interaction between deformable droplets,
and by Staben et al. (2003) for studying the motion of rigid particles in a Poiseuille flow.
The BI method has also been used to study drop deformation in a confined shear flow
between parallel plates and compared with experiments where oscillatory drop shapes
were observed at large capillary numbers and high confinements, and drops retracted
to a steady state after stretching at low capillary number (Janssen & Anderson 2007;
Vananroye et al. 2008; Sibillo et al. 2006). Other than straight channels with plane parallel
walls and circular tubes, the BI method has also been used to investigate droplet/particle
dynamics in T-shaped microchannels (Navarro et al. 2020), constricted channel geometries
(Navarro et al. 2021) such as converging-diverging channels (Kadivar 2018), complex-
shaped microchannels (Roure et al. 2023, 2024), as well as drop squeezing through
smooth obstacles of arbitrary shape (Gissinger et al. 2021b). In all of the above studies,
gravitational/buoyancy forces were neglected.
1009 A61-2
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Another approach for simulating deformable drops and bubbles is the front-tracking
method. Unverdi & Tryggvason (1992) used this method for studying single and interacting
bubbles and drops. This approach allows solving of the whole Navier–Stokes equation
at a non-zero Reynolds number. The lateral migration of a three-dimensional (3-D),
deformable, neutrally buoyant drop in a 2-D Poiseuille flow at non-zero Reynolds number
was studied by Mortazavi & Tryggvason (2000) using the front-tracking method. They
solved the full Navier–Stokes equations and examined the dependence of drop migration
on deformation, drop-to-bulk viscosity ratio and Reynolds number. The results obtained
using this method are primarily for moderate Reynolds numbers, and hence direct
comparison with the BI method is not possible. An interesting behaviour predicted in
the work of Mortazavi & Tryggvason (2000) is the cross-stream migration of a drop
towards the channel centreplane for low-viscosity drops, whereas migration towards the
walls occurred for viscosity-matching drops when a drop was initially placed off centre
at non-zero Reynolds number. Hadikhani et al. (2018), in their experiments, observed an
off-centre equilibrium position of bubbles in a rectangular channel due to a combination
of deformation induced and inertial migration, where the bubbles moved closer to the
wall with increasing Reynolds number. In the Stokes-flow regime, a deformable drop
in a channel with its size comparable to the confinement always moves towards the
channel centreplane (Griggs et al. 2007), whereas small confined droplets or drops in
an unbounded quadratic flow move towards the centreplane in all cases except at drop-
to-bulk viscosity ratios between 0.5 and 10, as shown analytically (Chan & Leal 1979),
experimentally (Hur et al. 2011) and numerically (Cappello et al. 2023).

Recently, another approach, called the two-phase lattice-Boltzmann method, was used
by Horwitz et al. (2014) to simulate a 3-D drop in a 3-D microchannel of a square cross-
section, with an emphasis on transient drop deformation with varying non-zero Reynolds
number. Upon increasing the Reynolds number, they observed an oscillating drop shape in
addition to the formation of a highly unstable cavity region with high interfacial curvature
in the trailing edge of the droplet. The lattice-Boltzmann method has also been used to
model hydrodynamic squeezing and breakup of droplets in T-junctions (De Menech et al.
2008; Chen & Deng 2017). Lan & Khismatullin (2012) studied the lateral migration and
deformation of Newtonian liquid drops and leukocytes in a 3-D channel of rectangular
cross-section at non-zero Reynolds number using the volume-of-fluid (VOF) algorithm.
They explored the possibility of cell cytometry based on the specific lateral equilibrium
positions of deformable drops or cells. The VOF algorithm has also been widely used
to simulate two-phase flows in T-junction or Y-junction channels with rectangular cross-
section (Sarrazin et al. 2008; Cherlo et al. 2010; Raj et al. 2010; Yong et al. 2011; Hoang
et al. 2013a,b; Li et al. 2019), and constricted channels with circular cross-section (Singla
et al. 2024).

Several theoretical works have been performed on the motion of a small spherical
droplet/solid particle in a cylindrical tube that provide expressions for force, torque
and pressure drop (Greenstein & Happel 1968; Hetsroni et al. 1970; Ho & Leal 1975;
Olbricht & Leal 1982; Hodges et al. 2004). Bretherton (1961) investigated the motion of
long bubbles in tubes at the limit of negligible capillary number both analytically and
experimentally. Later, Lac & Sherwood (2009) numerically investigated the motion and
deformation of a drop along the centreline of a cylindrical tube at a low Reynolds number
using the BI method. They studied the effect of drop size relative to tube radius, drop-to-
bulk viscosity ratio and capillary number. In addition to drop velocity and deformation,
Lac & Sherwood (2009) also studied the additional pressure drop due to the presence of
a drop in a cylindrical tube and the film thickness between the drop and the tube walls.
They simulated a wider range of capillary numbers than prior work and found a critical
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capillary number above which a drop does not reach a steady state but instead experiences
continuous deformation. They observed an interesting behaviour for large drops at high
capillary numbers and low drop-to-bulk viscosity ratios, where the initial dimple formed
at the rear end of a drop slowly evolves into a re-entrant jet, leading to breakup, which
was observed in earlier experiments by Olbricht & Kung (1992). Perhaps more surprising,
Lac & Sherwood (2009) found that drops with a low viscosity ratio and sufficiently high
capillary number move faster than the maximum velocity of the background flow and
have increasing steady-state velocity with increasing drop size. This regime has also been
observed by Rivero-Rodriguez & Scheid (2018) and Atasi et al. (2018) for deformable
bubbles in a cylindrical tube studied numerically using a finite-element method and the
level-set method, respectively.

Rectangular microchannels have different drop behaviour than circular capillaries
because the carrier liquid can bypass the drop through channel corners, potentially altering
the flow characteristics. Wang & Dimitrakopoulos (2012) simulated a deformable drop in
a microchannel of square cross-section at low Reynolds number using a spectral boundary
element method, which was also used by Khan & Wang (2010) to study drop deformation
in a confined shear flow. Wang & Dimitrakopoulos (2012) examined the effect of drop
size relative to channel height (D/H , where D is the drop diameter and H is the channel
height), drop-to-bulk viscosity ratio (λ) and capillary number (Ca) on drop velocity and
deformation. They found that larger drops have higher deformation and lower velocities,
with the effect being highlighted at higher Ca, and that the drop velocity decreased with
an increase in viscosity ratio for λ� 1. They also made a comparison for drop shape and
velocity in a circular channel versus a square microchannel with one particular value for
each of drop size and capillary number. Wong et al. (1995) determined a relation for the
pressure drop needed to drive long bubbles in channels of polygonal cross-sections at low
capillary numbers. Following that, Rao & Wong (2018) recently modelled the motion of
long drops in rectangular channels at small capillary number. In this limit, the long drop
has two end caps connected by a long cylinder and is separated by thin films from the
microchannel wall. They focused on the carrier-fluid and drop-fluid pressure gradient, and
the apparent contact-line drag.

Jakiela et al. (2011) did a systematic experimental study of drop velocity in a square
channel and its dependence on λ, Ca and drop size. Their study was limited to low Ca
(10−4−10−2), large drops (D > H ) and intermediate to large values of λ. They found a
strong dependence of drop velocity on both λ and drop size, whereas a strong dependence
on Ca occurred for λ∼ 1 but not for λ< 1 or λ� 1. With the recent developments in
lab-on-chip devices for droplet microfluidics, experimental studies have also been done
to measure the hydrodynamic resistance of droplets (Vanapalli et al. 2009; Jovanović
et al. 2011; Jakiela 2016) and to investigate their internal flow fields using particle image
velocimetry (Kinoshita et al. 2007) in both tubes and rectangular channels. Further,
experimental studies have been done on long drops at low Ca to study their curvature at the
end caps, pressure drop and velocity relative to the bulk flow in tubes (Zadeh et al. 2022) or
channels (Helmers et al. 2019b,a). All of these mentioned experimental studies are limited
to large drops (D/H > 1) and small capillary numbers Ca � 10−2, and none observed a
drop moving faster than the maximum background flow velocity in a rectangular channel.

While the studies discussed above represent considerable progress towards
understanding the motion of drops in tubes and channels at small or moderate Reynolds
numbers, there remains important unexplored physics. In particular, there is a need for
a systematic study of the motion of deformable drops in rectangular channels in the
Stokes-flow regime consisting of theoretical results for a broad range of parameter values
as well as experimental verification, especially for smaller drops (D/H � 1) and larger
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capillary numbers (Ca � 0.1). Thus, the primary aim of the current work is to employ an
efficient and accurate 3-D BI method for the motion of a neutrally buoyant, deformable
drop in a 3-D microchannel of rectangular cross-section, encompassing various drop sizes,
capillary numbers, drop-to-medium viscosity ratios and channel aspect ratios, and then
compare the simulation results with experiments. This work has partial overlap with the
numerical studies by Wang & Dimitrakopoulos (2012) and Horwitz et al. (2014). However,
the results of Wang & Dimitrakopoulos (2012) are limited to low capillary numbers
(Ca < 0.15) and high viscosity ratios (λ> 0.5), whereas the most interesting phenomena
were observed for a cylindrical tube at high capillary numbers and low viscosity ratios
by Lac & Sherwood (2009). On the other hand, Horwitz et al. (2014) mostly focused on
the transient deformation of a drop in a 3-D microchannel of a square cross-section at
a non-zero Reynolds number, whereas our focus is more on steady-state drop behaviour
in the Stokes-flow regime. Furthermore, there are no studies that investigate the effect
of aspect ratio on the drop dynamics in a channel of rectangular cross-sections or that
directly compare low-Reynolds-number simulations of the drop dynamics in a straight,
rectangular channel with experimental results, to the best of our knowledge. Thus, the
goals of the current work are to investigate broader parameter ranges than in the literature,
including various channel aspect ratios, compare simulations and experiments over more
limited parameter ranges and determine if the interesting physics (drops moving faster than
the maximum undisturbed flow velocity, and the velocity of low-viscosity drops increasing
with drop size) observed by Lac & Sherwood (2009) for tubes also occurs for channels.

In the current work, we consider a deformable drop in a 3-D channel by using the
computational framework implemented by Roure et al. (2023) for simulating droplet
behaviour in complex-shaped microchannels of finite width in their work. The algorithm
uses a moving-frame, boundary-integral (MFBI) method, which was further developed
for finite-depth channels by including dynamical meshing of the front and back panels
of the channel rather than just the top and bottom plane parallel walls that have been
widely used in most prior works. Experiments were performed to observe drop motion
and deformation in a macroscopic channel using a highly viscous carrier fluid. In this
paper, we first briefly introduce the BI equations and the moving-frame (MF) approach
in § 2, followed by a description of the experimental set-up and apparatus in § 3. Next,
we provide the theoretical and experimental results including the effect of viscosity ratio,
capillary number and channel aspect ratio in § 4, followed by concluding remarks in § 5.

2. Boundary-integral formulation
We consider a neutrally buoyant, deformable drop suspended in a flow confined by a 3-D,
straight channel of rectangular cross-section. The drop fluid and the suspending medium
are both assumed to be Newtonian and surfactant free with fluid viscosities μd and μe,
respectively. The Reynolds number is assumed very small compared with unity, so the
Stokes equations apply. The objective is to study the drop motion and deformation in the
microchannel with variations in several important parameters. To this end, a MFBI method
was used in this work, which was first introduced by Zinchenko et al. (2012) for the motion
of a particle in a 2-D microchannel of complex shape but infinite width, then extended by
Roure et al. (2023) for drops in 3-D channels of finite width.

2.1. A moving-frame approach
In the MFBI approach, a computational cell is dynamically constructed around the
drop centroid. Since the velocity perturbations caused by a freely suspended drop in a
background flow decay rapidly with distance, the cell is constructed around the drop such
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y

z
x

Q �y

�x

H

W

Figure 1. A deformable drop moving in a straight 3-D rectangular channel. Here, H is the channel height, W
is the channel width and Q is the flow rate of the suspending medium; �x and �y are the length of the drop
in the x and y directions, respectively.

that the effect of the drop on the flow velocity is negligible at the cell boundary; thus,
the velocity on the cell boundary is given by the external flow in the absence of a drop.
The MF must be much larger than the drop (approximately three times the drop length is
sufficient (Zinchenko et al. 2012)) but is still much smaller than the overall channel length.

A 3-D rectangular channel of uniform cross-section is shown in figure 1. The channel
has a height H between its top and bottom panels and a depth (or width) W between its
front and back panels fixed at z = ±W/2. The maximum drop lengths in the x, y and
z directions are �x, �y and �z (not shown in figure 1), respectively. We have adopted
the numerical framework by Roure et al. (2023) in this paper to simulate 3-D, straight
microchannels of rectangular cross-sections. The MF contour is generally obtained from
the intersection of a square constructed around the drop centroid (with sides parallel to the
x and y axes) and the channel profile in the z-plane. This dynamically constructed square
is then extended in z-direction such that it covers the entire channel depth and hence also
includes the front and back panels. Since the drops are usually not much smaller than the
channel depth, it is not beneficial to crop the MF in the z-direction (rather than using the
whole channel depth) (Roure et al. 2023). The MF approach substantially decreases the
computational load for calculating the wall–drop interface interactions, with augmented
benefits for drops of size much smaller than the channel.

2.2. Boundary-integral equations for velocity of drop interface
The fluid velocity (u) on the drop surface (Sd ) is calculated using the following BI
equation, as derived in Navarro et al. (2020). The problem is made dimensionless using the
channel height, H , as the length scale, and the average velocity of the undisturbed flow,
Uav ≡ |Q|/(H W ) (where Q is the volumetric flow rate), as the characteristic velocity
scale, yielding

u( y) = 2
λ+ 1

[
u∞( y) + 2

∫
S∞

n(x) · τ (x − y) · q(x) dSx + F( y)
]

+ 2
(
λ− 1
λ+ 1

) ∫
Sd

n(x) · τ (x − y) · u(x) dSx , (2.1)

for y ∈ Sd (drop surface) and

q( y) = − 2
∫

S∞
n(x) · τ (x − y) · q(x) dSx − F( y)

− (λ− 1)

∫
Sd

n(x) · τ (x − y) · u(x) dSx − n( y)
|S∞|

∫
S∞

n(x) · q(x) dSx , (2.2)

for y ∈ S∞ (MF surface). The inhomogeneous term F( y) in the above equations is given
by

F( y) = 2
Ca

∫
Sd

κ(x)G(x − y) · n(x) dSx , (2.3)
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where G(r) = −(I/r + r r/r3)/(8π) is the free-space Green’s function corresponding to
the fundamental stresslet, τ (r) = 3 r r r/(4πr5), and r = x − y with r = |r|. Here, Ca =
μeUav/σ is the capillary number representing the relative strength of viscous stresses
compared with interfacial tension. In the above equations, λ= μd/μe is the viscosity ratio
between the drop fluid and the suspending fluid, σ is the interfacial tension and κ is the
local mean surface curvature at x (Zinchenko & Davis 2000). Detailed derivations of
(2.1) and (2.2) can be found in Navarro et al. (2020). The parameter u∞( y) in (2.1) is
the background flow velocity. In the present case involving flow in a straight channel, we
are not required to solve for the background flow using the BI equations for flow inside
the channel (as would be necessary for a more general channel geometry); rather, it can be
directly calculated for all locations in the channel using the equations for a fully developed,
pressure-driven flow in a channel with a rectangular cross-section given by Boussinesq
(1868), from which the velocity u∞ = u∞ey is given by

u∞ = G H2

μe

[
y

2H

(
1 − y

H

)
− 4

∞∑
k=1

cosh(βk z) sin(βk y)

(Hβk)3cosh(βk W/2)

]
, (2.4)

where μe is the suspending fluid viscosity, βk = (2k − 1)π/H and G is the pressure
gradient. The flow rate Q is related to the pressure gradient by

Q = G H4

μe

⎡
⎣ W

12H
− 16

∞∑
j=1

cosh(β j W ) − 1
(Hβ j )5 sinh(β j W )

⎤
⎦ . (2.5)

The above equations are solved simultaneously on the discretised drop surface and
MF boundaries using biconjugate-gradient iterations for the resulting system of linear
equations. The drop surface discretisation is done using an icosahedron/dodecahedron-
based triangulation approach on an initially spherical drop of radius a, as described in
Zinchenko et al. (1997), and the mean curvature (κ) and outward normal (n(x)) on the drop
surface are calculated using the best-paraboloid-spline method explained in Zinchenko &
Davis (2000). Most of the simulations in this work have been performed with a resolution
of 8640 triangular elements on the drop surface, which has been shown to be sufficient
for convergent simulations in previous works by Staben et al. (2003) and Zinchenko et al.
(1997). Time is made dimensionless as t∗ = t/(H/Uav). Time stepping in the simulations
uses �t∗ ∼O(Ca δx ), where δx is the minimum node-to-node distance on the drop mesh
and Ca is the capillary number. Once the velocity of the drop interface is found at a given
time step, the nodes on the drop surface are advanced using a first-order Euler’s scheme,
which usually results in good accuracy, provided sufficiently high resolution is used on the
drop surface (and, hence, small time steps).

3. Experimental methods

3.1. Experimental set-up
The set-up for performing experiments on the motion of a suspended drop in a straight
rectangular channel is shown in figure 2. It consists of three main components: a syringe
pump, a flow cell and a camera. The first component is a NE-4000 two-channel syringe
pump that is used to modulate the flow rate of the continuous fluid. Changing the flow
rate changes the average flow velocity in the channel and hence lets us accurately control
the capillary number. The syringe pump was calibrated by weighing the fluid collected
versus time, with further refinement by employing tracer drops. The second component is a
flow cell manufactured by machining acrylic (the transparent nature of acrylic allows easy
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Syringe pump with bulk fluid

Waste and recycle

Mirror

Flow cell

Syringe with 

drop fluids
Phone camera

Figure 2. Schematic of the experimental set-up consisting of a syringe pump for controlling flow rate, a flow
cell for the droplet and the suspending medium, a syringe for inserting a drop and a camera for recording drop

motion. A mirror allows the drop to be viewed from the side as well as top.

H

W

L

Q

Figure 3. The flow cell and a sample insert that would be fitted into the flow cell cavity. The direction of flow
into the cell is shown via Q.

visualisation) at the University of Colorado Boulder Chemical and Biological Engineering
Instrument Shop. The flow cell has a cavity of dimensions 29.3 cm in length, 10.1 mm in
height and 15.3 mm in width, within which inserts of different geometries were fitted to
control the aspect ratio of the straight channel, as shown in figure 3. The macroscopic flow
cell facilitates easy drop visualisation without the need for an expensive microscope set-up.
Viscous fluids were employed to yield small Reynolds numbers. The viscous suspending
fluid results in moderate capillary numbers within the range of 0.1–1. In contrast, aqueous
systems typically have smaller capillary numbers, unless the interfacial tension is very
small, due to smaller viscosity and the accompanying velocity required for small Reynolds
number. Two inserts were designed (using AUTOCAD) and manufactured by machining
acrylic for these experiments: a square channel (cross-section 5 × 5 mm) and a rectangular
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channel with an aspect ratio of 2 : 1 (cross-section 5 × 10 mm). Once the insert was
placed in the flow cell, the entire cavity was sealed via a screwed-on acrylic plate, which
also includes a rubber gasket to avoid fluid leaking outside the confines of the channel
insert. Droplets were inserted into the flow cell with a syringe through an opening on
the side of the flow cell (figure 2) while the carrier fluid was at rest. This opening has a
septum to seal off the inside of the flow cell and avoid bubble formation during needle
insertion/extraction. A syringe-holder attachment was also designed and 3D-printed to
dispense consistent, specific drop volumes and to ensure the drop’s initial position is close
to the centreline within the straight channel. Once the drop was inserted into the flow
cell and the syringe pump turned on, the drop travelled along the length of the flow cell.
To verify the consistency of the pump flow, a small tracer drop (diameter approximately
10 times smaller than the channel height) positioned close to the channel centreline was
used in the experiments in addition to the primary drop. The tracer drop was placed
several diameters away from the primary drop such that its hydrodynamic contributions
to the motion of the primary drop were negligible. Measuring the velocity of the tracer
drop allowed us to measure the centreline velocity and verify that the pump was working
without significant fluctuations. The tracer drop velocities were reproducible within 3 %–
4 % variation. This variation may arise from a slightly off-centred position of the tracer
drop or minor pump fluctuations.

The third component is the camera, which is an iPhone 13 Pro. Videos were recorded
at a full HD resolution (1920 × 1080 pixels) and 60 frames per second. The videos were
later analysed to extract important droplet information, such as droplet deformation and
velocity using the trackmate plugin of ImageJ, which outputs the temporal variation of
drop position as well as deformation. The position vs time data were split into 10 equal
regions while the drop was moving, and velocity was calculated from each of these regions.
In all cases, the drop velocity showed very little variation beyond the entrance region.
Therefore, position vs time data from beyond that region were used for determining the
steady-state velocity (Us) of the droplet by fitting a straight line to the data and calculating
the slope. This velocity value was subsequently made non-dimensional by dividing with
the average velocity of the bulk fluid in the channel (Uav) or the maximum flow velocity
at the channel centreline (Umax ). A mirror was placed at 45◦ underneath the flow cell such
that it provided a side view of the flow cell that could be seen via the camera. This allowed
us to confirm that the drop did not settle/drag against the bottom of the channel insert
and stayed centred throughout its movement along the channel. The macroscopic nature
of this experimental set-up allows the use of a common phone camera, and hence easy
accessibility to understanding microfluidic droplet phenomena.

3.2. Fluid and flow properties
There are three main fluids used in the current work: two droplet-phase fluids and
one bulk-phase fluid. Castor oil obtained from Nature’s Oil Bulk Apothecary was used
as the bulk-phase fluid because of its high viscosity. The droplet-phase fluids are 8 %
(volume) aqueous glycerol solution (acquired from Macron Fine chemicals), and silicon
oil (polydimethylsiloxane (PDMS) acquired from MicroLubrol). These fluids were chosen
due to their differing viscosities and close densities to the bulk castor oil. Near-neutral
buoyancy between the drop phase and the bulk phase is important to avoid significant
sedimentation of the droplet. Each drop was dyed (food colouring dye consisting of water,
glycerine, FD&C blue, citric acid and sodium benzoate was used for aqueous glycerol
drops and a benzyl-benzoate-based dye was used for the PDMS drops) to ensure a high
visual contrast between the droplet and the castor oil. The kinematic viscosity (ν) of each
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Bulk ρe μe Drop ρd μd λ= μd/μe σ

fluid [g cm3] [g cm–1 s–1] fluid [g cm−3] [g cm–1 s–1] [–] [mN m–1]

Castor oil 0.956 11.6 8 % aq. glycerol 1.024 0.0122 0.001 17.4 ± 1.0
Castor oil 0.956 11.6 PDMS 0.969 9.69 0.838 5.0 ± 0.8

Table 1. Characteristic properties of the fluids used in the experiments as drop phase and bulk phase
measured at 21 ◦C.

fluid was measured with a glass capillary viscometer and its density was determined
using a hydrometer. The interfacial tension of each drop fluid was measured using the
pendant-drop method. A pendant drop of the droplet fluid immersed in the bulk castor
oil was videotaped and analysed using the pendant-drop plugin of ImageJ to find the
interfacial tension between the droplet and bulk fluids. The plugin utilises the Young
Laplace equation, where the pressure at equilibrium at each point along the drop interface
is related to the curvature at that point by a constant interfacial tension. The measured
properties of the fluids are listed in table 1. The uncertainty associated with the interfacial
tension measurements recorded in table 1 is the standard deviation of 7 trials for each case.

3.3. Experimental parameters
A wide range of experimental conditions was used. The drop dynamics was studied by
varying the drop size, drop-fluid viscosity, the flow rate of the bulk fluid and the channel
aspect ratio. The value of D/H (spherical drop diameter/channel height) was varied in a
range of 0.2–0.92 by controlling the drop volumes dispensed. As shown in table 1, two
different viscosity ratios (λ), 0.838 and 0.001, were considered in this work. The capillary
number (Ca = μeUav/σ ) which is a measure of viscous force relative to interfacial tension
force, was varied in a range of 0.2–0.8 by changing the bulk fluid flow rate and hence the
average velocity of the background flow (Uav). A channel Reynolds number is defined
for the experiments as Rec = ρeUav H/μe, based on the density (ρe) and viscosity (μe)

of the external bulk fluid, the average flow velocity of the channel (Uav) and channel
height (H). The range of channel Reynolds number is 0.003–0.014, with each of the limits
corresponding to extremes of flow rates required for achieving the above-mentioned range
of capillary numbers. The temperatures recorded while doing the experiments were within
a range of 21.2–21.9 ◦C. Finally, the aspect ratio was varied between a square channel and
a rectangular (2 : 1) channel by using different acrylic inserts. Each condition was run for
multiple trials (greater than 5) to allow a suitably low confidence interval. In the following
section, the effect of changes in the above parameters on drop behaviour is shown both
computationally and experimentally.

4. Results
In the numerical results presented here, the drops are initially spherical and centred in the
cross-section of a square microchannel, unless stated otherwise (see § 4.3 for the effect of
varying aspect ratio). The drop velocity, U , is defined as the fluid velocity averaged over
the drop volume:

U = 1
V

∫
V

u(x) dV . (4.1)

Once released at or near the centreline of the micro-channel, the droplet moves along the
channel and its shape deforms. Starting from an initial spherical shape, the front region
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Figure 4. Numerical results of a drop at different times with D/H = 0.4, Ca = 0.6 and λ= 0.4 gradually
reaching a steady state.
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Figure 5. (a) Drop velocity with increasing number of triangular elements on the drop surface from 2160 to
8640 (bottom to top) for a drop of D/H = 0.7, λ= 1, Ca = 0.5. (b) Testing the symmetry of a steady drop
of D/H = 0.7, λ= 1, Ca = 0.5 with 8640 surface triangles by comparing its top (ymax ), bottom (ymin), front
(zmax ) and back (zmin) positions.

of the droplet becomes pointed while the rear flattens (see figure 4), which results in a
transient response of the drop velocity, eventually reaching a bullet-shaped steady state.

Although the accuracy of this algorithm has been tested in a prior work by Roure
et al. (2023), we performed further tests for the current geometry. Figure 5(a) shows the
volume-averaged velocity of a drop with D/H = 0.7, λ= 1, Ca = 0.5 translating in a
straight channel under a pressure-driven flow, with varying number of triangles used to
discretise the drop surface. The difference in the velocities of the drop gradually decreases
with increasing number of triangles, with the relative difference in steady velocities
of order 10−3 between 2160 and 8640 triangles and of order 10−4 between 6000 and
8640 triangles, justifying our choice of 8640 triangles. In our algorithm, we simulate
the drop without using the channel symmetry. The nodes on the surface of the triangles,
although initially symmetrically distributed, later become asymmetric as the drop deforms.
Therefore, comparing the top, bottom, front and back positions of the drop shape provides
another test of accuracy. In figure 5(b), we compare the top (ymax ), bottom (ymin), front
(zmax ) and back (zmin) extremeties of a drop of D/H = 0.7, λ= 1, Ca = 0.5 with respect
to the channel centreline (y = 0.5, z = 0). Note that y ∈ [0, 1] and z ∈ [−0.5, 0.5]. It is
evident that in all cases the error in their position with respect to the centreline is less than
10−4, which is approximately 100 times smaller than the edge of a mesh triangle, thereby
demonstrating high accuracy of our algorithm.

In the following sections, we show some transient results but primarily focus on the non-
dimensional steady-state drop velocity (Us/Uav) and steady-state drop deformation (DT ),
where Us is the dimensional steady-state drop velocity, and DT = �x/�y is the ratio of
the length of the deformable drop in the axial direction (�x) to its length in the transverse
direction (�y). Simulations are shown for a wide range of parameters and compared with
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Figure 6. (a) Evolution of drop velocity in the axial direction with distance traversed for a droplet of size
D/H = 0.7. The solid lines are for Ca = 0.2 with λ= 0.05, 0.2, 0.4, 0.8, 1, 5 (top to bottom) and the dot-
dash curves are for Ca = 0.5 with λ= 0.05, 0.2, 0.4, 0.8, 1, 5 (top to bottom). (b) Side view of drop shapes at
different centroid positions (xc/H ) along the channel while approaching steady state for Ca = 0.5, D/H = 0.7
at λ= 0.05, 1, 5 (top to bottom).

experiments for a more limited range. Experimental results are only shown for steady-state
drop velocity and deformation, since the transient drop behaviour is sensitive to drop initial
position and shape, which are difficult to reproducibly control. Fortunately, deformable,
neutrally buoyant drops of size comparable to the channel height always migrate to the
channel centre at low Reynolds number (Chan & Leal 1979; Griggs et al. 2007; Cappello
et al. 2023) so that the steady-state results do not depend on the initial conditions.

4.1. Effect of viscosity ratio and drop size
First, we investigate the effect of changes in drop-to-bulk viscosity ratio on drop velocity.
Figure 6(a) shows the transient evolution of dimensionless drop axial velocity (Ux/Uav)

with distance moved by drop centroid (xc/H) along the channel. The drop velocity
first decreases due to the initial deformation, which results in increased resistance to
flow, until a minimum is reached, then it starts increasing as the drop becomes more
streamlined until it reaches a steady state. The steady velocity is reached after the drop
has travelled a few drop diameters, in most cases. We also see from figure 6(a) that the
drop steady-state velocity decreases with increasing viscosity ratio, as a higher viscosity
ratio means higher viscous drag, higher shear stress in the fluid film between the drop
and the walls and reduced internal flow, and hence a lower drop velocity. A more viscous
drop also travels a longer distance before reaching a steady state; a drop with Ca = 0.5
and λ= 5 does not reach a steady state within the span of figure 6(a). This particular
drop travelled approximately 40 channel heights before reaching a steady state. The high
viscosity ratio coupled with a high capillary number ensures a dominant viscous force and
slow deformation. Note that the solution by Boussinesq (1868) gives Umax/Uav = 2.096
for the undisturbed velocity at the centre of a square channel, which is close to the
steady-state velocity of the least viscous drop (λ= 0.05) with D/H = 0.7 at the higher
capillary number (Ca = 0.5). Figure 6(b) shows a side view of the transient shape of a
3-D, deforming drop as it travels along the channel for different viscosity ratios. A higher
viscosity ratio results in higher deformation at steady state, although it takes longer for a
high-viscosity drop to reach a steady state due to increased hydrodynamic resistance.
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Figure 7. (a) Cross-stream migration of drop centroid position (solid lines) with distance travelled along the
channel for λ= 0.05, 0.5, 1, 2, 5, 10, 25, 30, 40, D/H = 0.6, Ca = 0.5 and initial lateral position yc/H =
0.6. (b) Drop shape at different positions along the channel length while migrating laterally for λ= 0.05 and 5
from (a).

A deformable drop placed away from the centreline of a channel undergoes cross-
streamline migration due to its deformed, non-spherical shape. Figure 7(a) shows the
centroid position of a drop of size D/H = 0.6 that was placed off centre initially
at yc/H = 0.6 for different values of viscosity ratio at a fixed capillary number. The
drop migrates towards the channel centreline in all cases. A drop of lower viscosity
ratio migrates cross-stream faster than one of higher viscosity ratio in the range of λ ∈
[0.05, 1], due to the slower deformation and larger hydrodynamic resistance of the latter.
A similar trend is observed for large viscosity ratios (λ> 25) due to reduced internal flow.
However, a non-monotonic behaviour is observed in cross-stream migration for λ ∈ [2, 25].
Figure 7(b) shows the deformed drop shapes while undergoing lateral migration for a low
and high λ. Initially, the drop starts elongating along the flow profile and migrating away
from the top wall. Tail formation is evident due to the drop interaction with the nearby
top wall. As the drop travels along the channel length and approaches the centreline,
its shape becomes more compact and symmetric, eventually reaching a steady shape.
Generally, a higher-viscosity drop attains a steady state with higher deformation, and since
the phenomenon of cross-stream migration is attributed to drop deformation, it might be
counter-intuitive to observe that a high-viscosity drop has a slower cross-stream migration
velocity, as can be seen in figure 8(a) for short times. Even though the final steady-state
deformation is lower in a low-viscosity drop, the drop deforms faster in the initial stages
due to reduced hydrodynamic resistance. This phenomenon is shown in figure 8(b), where
the transient tip-to-tip maximum drop length non-dimensionalised by drop diameter (l/D)
is plotted for different viscosity ratios. This maximum tip-to-tip drop length (l/D) is
the maximum distance between two points on the drop surface (in any direction) and is
a better metric for cross-stream migration where both the lateral drop length (�y) and
the axial drop length (�x) are important. The low-viscosity drops reach their maximum
deformation faster, which allows them to attain high cross-stream velocities rapidly,
immediately after release. However, high-viscosity drops experience greater deformation
in the long run, helping them maintain a higher cross-stream migration velocity longer.
Due to this competition, we see a non-monotonic behaviour in the intermediate viscosity
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Figure 8. (a) Transient cross-stream migration velocity (Uy) and (b) deformation in the axial direction of a
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Figure 9. Change in steady-state (a) drop velocity and (b) deformation with increasing drop size and λ=
0.05, 0.2, 0.4, 0.8, 1, 5 (top to bottom for (a) and bottom to top at large D/H for (b)) for Ca = 0.3 (solid),
and Ca = 0.6 (dot-dash). The magenta portion of the curves were initially started as a prolate ellipsoid instead
of a sphere. The dotted line in (a) and (b) are for drops with Ca = 0.1, λ= 10 and the filled circle points (•)
are numerical data from Wang & Dimitrakopoulos (2012) at the same conditions.

ratio values (λ ∈ [2, 25]). A similar trend was observed by Griggs et al. (2007) in their
work involving the motion of a drop between parallel walls.

Figures 9(a) and 9(b) show curves for the change in drop steady-state velocity and
deformation with drop diameter for different values of drop-to-bulk viscosity ratio (λ),
respectively. The special case Ca = 0.1 and λ= 10 is included to show good agreement
between the BI simulations done in this work and the simulations done by Wang
& Dimitrakopoulos (2012) using a spectral-boundary-element method. The velocity
decreases with increasing drop size in all cases except λ= 0.05 with Ca = 0.6 (discussed
later). A larger drop has increased interaction with the channel walls, and spans across
both fast and slow streamlines which make the drop slower. As in figure 6(a), we see
a decreasing steady-state drop velocity with increasing viscosity ratio (λ) in figure 9(a).
Figure 9(b) shows that, for large drop diameters, a more viscous drop undergoes greater
deformation since they experience a larger shear stress. For a fixed capillary number,
the drop deformation for small drop sizes (D/H < 0.6) is not significant, and almost
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(a) (c)(b)

Figure 10. Highly deformed, unstable four-tailed drops prior to satellite drop pinch-off at a Ca = 0.6, λ= 1
and D/H = 0.92. Panel (a) shows a side view of the drop and in (b) we see a perspective from which all the four
tails are visible. (c) Steady-state shape of the same drop when simulated with an initial prolate ellipsoid shape.

independent of the drop-to-bulk viscosity ratio (λ). Size effects are more prominent for
larger drops (D/H > 0.7) at higher capillary number (Ca) values.

Drops with relatively high λ or high Ca in figure 9 start experiencing unstable
tail formation beyond a certain drop diameter (D/H � 0.8) when initially started as a
sphere. As noted previously, a drop with a higher drop-to-bulk viscosity ratio undergoes
larger deformation before reaching a steady state. A higher viscosity ratio coupled with
a high capillary number, and greater wall interactions for larger drops, yields large
deformation and formation of a four-tailed structure for sufficiently large drops, as shown
in figures 10(a) and 10(b). Such drops seldom reach a steady state, and their tails eventually
become narrow, leading to pinch off of very small satellite drops. Interestingly, we found
that, if a drop is started as a prolate ellipsoid instead of a sphere, such that its minor axis is
smaller than the sphere’s radius and therefore is further away from the walls initially, then
the simulations could be continued successfully until a steady state is reached without tail
formation (figure 10c), and this part of the curve is coloured magenta in figure 9. Lac &
Sherwood (2009) also reported a critical capillary number in their work on drop motion in
a cylindrical microchannel, above which a drop does not reach a steady state but instead
undergoes continued deformation. Since the focus of the current study is steady-state drop
velocities, we did not include pinch-off nor continued simulations after the formation of
satellite drops.

Tail pinch-off is not limited to high viscosity ratios. We observed similar behaviour
in large drops for low viscosity ratios at high capillary numbers. Figure 11 shows one
such simulation where a drop with D/H = 0.92, λ= 0.1 and Ca = 0.8 displays satellite
drop pinch-off of its tails. The drop deforms gradually and initially forms a dimple in its
posterior, which turns into a re-entering jet-like intrusion. Eventually, its tails become
increasingly narrow, leading to pinch-off. Lac & Sherwood (2009) observed a similar
re-entering jet in their simulations with a low-viscosity drop in a cylindrical tube at a
high capillary number. Since cylindrical tubes are radially symmetric, tail formation is
not seen in that channel geometry, rather Lac & Sherwood (2009) observed breakup of
low-viscosity drops when the re-entrant jet reached the tip of the drop. This phenomenon
was also observed experimentally in a cylindrical tube by Olbricht & Kung (1992). More
recently, Nath et al. (2017) performed an extensive numerical study on droplet breakup in
a cylindrical channel using a coupled level-set and VOF method focusing on the effect of
drop size, capillary number and viscosity ratio. They observed several outcomes based on
these parameters, where a drop either forms a long tail or a re-entering jet and breaks up
into small daughter or satellite droplets, which sometimes coalesced back to a single drop
further down the channel.

One of the most interesting results of this work is the increase in steady-state velocity
with increasing drop diameter for large Ca and small λ, such as observed in figure 9(a)
for Ca = 0.6 and λ= 0.05 and (to a lesser extent) λ= 0.2, as typically we would expect
a larger drop to be slowed down due to wall interactions. When λ< 1, the drop fluid has
a lower viscosity than the suspending fluid, which, generally, makes it easier to drive the
flow. A possible explanation is provided by considering the roles of form drag and friction
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Figure 11. Cross-section of transient shapes of a drop of undeformed diameter D/H = 0.92 with λ= 0.1 and
Ca = 0.8, developing a dimple that eventually becomes a re-entrant jet and finally leads to tail pinch-off (dashed
circles) at t∗ = 1.925.
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with error bars representing 90 % confidence intervals from repeated experiments.

drag. Form drag is due to pressure and increases with the increasing cross-sectional area
of the drop perpendicular to the flow direction, whereas friction drag is due to viscous
shear stresses and increases with surface area parallel to the flow direction. These two
contributions are comparable for spherical particles and viscous drops, but the form drag
will be reduced and the friction drag will be increased if a drop becomes elongated.
This deformation typically leads to a net increase in drag or a reduction in drop velocity.
However, for low-viscosity drops, form drag dominates and so a net decrease in drag or
increase in drop velocity can occur if the drop deformation is substantial (large Ca). This
phenomenon is discussed further in § 4.2.

Figure 12 shows a comparison between experimental and simulation results for steady-
state drop velocity versus drop diameter at a fixed capillary number (Ca = 0.74) and two
different viscosity ratios, λ= 0.001 and λ= 0.838. The lower and the higher viscosity
ratios correspond to 8 % aqueous glycerol drops and silicon oil drops, respectively,
suspended in castor oil (table 1). There is good agreement between the experiments and
simulations, where the theory lies within the 90 % confidence intervals of the experimental
results for all cases except at D/H = 0.27 for the lower curve at λ= 0.838, Ca = 0.74.
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Previous studies have shown that small drops below a certain critical D/H (depending
on λ and Ca) and with a viscosity ratio within a specified range (λ ∈ [0.5, 10] for drops
in an unbounded flow (Chan & Leal 1979) and λ ∈ [0.7, 10] for small drops in a tube
(Cappello et al. 2023)) have a tendency to undergo lateral migration towards the walls if
started off centre initially. We suspect that our smallest drop in the curve with λ= 0.838
and Ca = 0.74 might have been placed slightly off centre initially in the experiments and
slowly migrated further from the centre as it travelled along the channel length, hence
resulting in a slower steady-state velocity observed in experiments. In fact, Cappello
et al. (2023), in their study on the stable, equilibrium, lateral position of drops in a
cylindrical microchannel showed that, in the inertialess limit, the critical drop size for
lateral migration towards the walls around λ= 0.8 is approximately D/H = 0.27, which
might be slightly different for a channel of rectangular cross-section but attests to our
suspicion. These experiments verify the predicted trend of an increase in steady-state
drop velocity with increasing drop diameter for a low viscosity ratio (λ= 0.001) and high
capillary number (Ca = 0.74), whereas the drop velocity decreases with increasing drop
size at the larger viscosity ratio.

The maximum flow velocity at the channel centreline for a square channel from the
Boussinesq (1868) solution is, Umax/Uav ∼ 2.096. Another interesting observation in
figures 9(a) and 12 is that the drop steady-state velocity increases beyond the maximum
flow velocity with drop diameter. Lac & Sherwood (2009) explained this behaviour for a
cylindrical channel with an asymptotic analysis assuming the flow of a long, slender drop
in a capillary. They considered a long slender drop to be similar to an annular flow of two
immiscible fluids, where the inner fluid of viscosity λμ occupies a cylinder of radius Rδ

in a capillary of radius R, and the outer fluid of viscosity μ occupies the annular film of
thickness (1 − δ)R. Assuming the inner cylinder to be a long drop with axial velocity V ,
Lac & Sherwood (2009) obtained the following relation between the drop velocity and the
average flow velocity in the channel:

V

Uav

= 2λ+ (1 − 2λ)δ2

λ+ (1 − λ)δ4 . (4.2)

For a pressure-driven flow in a cylindrical channel, Umax/Uav = 2, where Umax is the
maximum undisturbed flow velocity at the channel centreline. Equation (4.2) reveals that
it is possible to attain V/Uav > 2 at λ� 0.5 for a range of δ. Thus, it is possible for a
low-viscosity drop with large deformation to obtain a steady-sate velocity that exceeds
the maximum velocity of the undisturbed flow. This conclusion is also expected for a
rectangular channel, although the analysis would be more complex due to the corners.

4.2. Effect of capillary number
In this section, we further examine the effect of capillary number on the velocity and
deformation of a drop. The capillary number is a measure of the relative strength of
deforming viscous forces to the restoring interfacial tension forces, so a higher capillary
number results in greater deformation. Figure 13 shows simulations of the transient
evolution of drop velocity with distance travelled along the channel length. As in figure 6,
the drop velocity decreases at first and reaches a minimum, but then starts increasing
until it reaches a steady state. Since a higher capillary number is associated with higher
deformation, the drop travels a longer distance before it reaches a steady state for higher
Ca. The drop steady-state velocity increases with increasing capillary number (Ca).
A drop with higher deformation has more of its volume close to the maximum flow
velocity at the channel centreline and farther from the walls, which results in a higher
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Figure 13. Simulations of the evolution of drop velocity in the axial direction with distance traversed for a
droplet of size D/H = 0.6. The dot-dashed curves are for λ= 0.05 with Ca = 0.2, 0.4, 0.6, 0.8 (bottom to
top) and the solid curves are for λ= 0.5 with Ca = 0.2, 0.4, 0.6, 0.8 (bottom to top).
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Figure 14. (a) Cross-stream migration of drop centroid position (solid lines) with distance travelled along the
channel for Ca = 0.2, 0.3, 0.5, 0.6; D/H = 0.6; λ= 1; and initial lateral position yc/H = 0.6. The dashed
line is for a drop with Ca = 0.5, λ= 1, D/H = 0.6, and an initial position of yc/H = 0.6 in a channel of
infinite depth using the algorithm of Navarro et al. (2020). (b) Drop shape at different positions along the
channel length while migrating laterally for Ca = 0.5 corresponding to (a).

drop velocity with increasing Ca. Figure 13 also shows that more viscous drops have
lower velocities and a weaker dependence on Ca.

As mentioned in § 4.1, a deformable drop placed off centre in a channel for the
conditions examined here experiences cross-stream migration towards the centreline.
Figure 14(a) shows the transient centroid position of a drop of size D/H = 0.6 that was
initially placed off centre at yc/H = 0.6 for different capillary numbers at a fixed drop-to-
bulk viscosity ratio. A drop with a higher capillary number deforms more and hence has
a more streamlined shape with a higher velocity expected both parallel and perpendicular
to the wall. In figure 14(a), we see that a drop with Ca = 0.5 migrates faster than the
ones with Ca = 0.2, 0.3, and the drop with Ca = 0.6 although it is initially slower than
Ca = 0.5, eventually crosses over at xc/H ≈ 30 and reaches the centreline earliest among
the four. This behaviour is because the drop with Ca = 0.6 has the highest deformability
and hence forms the longest tail (which makes it slower than the other cases initially due
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Figure 15. (a) Steady-state shapes of a drop with increasing drop diameter D/H = 0.52, 0.76, 0.84 for
Ca = 0.28, 0.47, 0.74 and λ= 0.001 obtained from experiments overlaid by outlines for steady-state drop
shapes obtained from BI simulations at same conditions. (b) Steady-state shapes of a drop of D/H = 0.76
for λ= 0.05, 0.5, 1 with increasing capillary number Ca = 0.2, 0.5, 0.8 from simulations.

to increased interactions with its closest wall), but remains highly deformed for a longer
time than the low Ca drops, helping it maintain a high lateral velocity for longer and hence
reaching the centreline earliest. The dashed line in figure 14(a) is for the transient centroid
position of a drop with Ca = 0.5, λ= 1, D/H = 0.6 and initial lateral position yc/H = 0.6
in a channel of infinite depth simulated adopting the numerical framework of Navarro et al.
(2020). The drop migrates slightly faster than the one in a square channel, which can be
attributed to the absence of added sidewall interactions in an infinite-depth channel as
opposed to a square channel. Figure 14(b) shows the transient deformed drop shapes cor-
responding to the curve for Ca = 0.5 in the channel of square cross-section in figure 14(a).
As in figure 7(b), the drop starts deforming and migrating towards the centreline, forms a
tail due to interaction with its closest wall, and then eventually retracts its tail and becomes
compact; finally, it reaches a symmetric steady shape at the channel centreline.

Figure 15(a) shows the steady-state shapes of drops of different diameters with
increasing capillary number at λ= 0.001 as seen in the experiments overlaid by steady-
state drop outlines obtained from simulations at the same conditions, showing good
agreement. A more elongated drop can be seen with increasing Ca, due to higher
viscous deformation forces. Figure 15(b) shows the steady-state shapes of a drop of size
D/H = 0.76 with increasing capillary number for different viscosity ratios. With
increasing Ca, the drop develops a dimple on its backside due to the flow indenting
its posterior. The increase in deformation with capillary number is greater for a higher
viscosity ratio, since a large λ is also associated with greater viscous forces on the
interface. Noticeably, we see a wide rear and a tapered front for the drop at λ= 1 and
Ca = 0.8, but for λ= 0.05 this shape is no longer exhibited at high capillary numbers.
The dimple at the posterior end of the drop with λ= 0.05 and Ca = 0.8 evolves into a
re-entering jet at higher capillary numbers when the shape-preserving interfacial tension
forces are overpowered, as seen in figure 11.

Figure 16 shows the change in steady-state drop velocity and its deformation with drop
diameter and capillary number for a bulk-to-drop viscosity ratio of 0.5. As discussed
earlier, the steady-state velocity typically decreases with increasing drop size due to
increased interaction with the channel walls and lower fluid velocity near the walls, except
for cases with very low drop-to-bulk viscosity ratios. In figure 16, both the steady-state
velocity and the deformation of the drop increase with increasing capillary number for
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Figure 16. Steady-state (a) drop velocity and (b) drop deformation with increasing drop diameter and
Ca = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 (bottom to top) at λ= 0.5.
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Figure 17. Steady-state drop velocity with increasing drop diameter and Ca = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8 (bottom to top) at (a) λ= 0.05 (b) λ= 0.2. (c) Steady-state shapes of drops with λ= 0.05, Ca = 0.7
and D/H = 1, 1.1, 1.2, 1.3, 1.4 (left to right).

drops of all sizes. In figure 17(a), for a very low viscosity ratio, λ= 0.05, the steady-state
velocity decreases with increasing drop radius for lower capillary numbers, whereas it
has an opposite trend for higher capillary numbers. This observation is due to the fact
that drops with very low λ but high Ca experience much less skin friction and hence are
able to attain higher velocities, even greater than Umax , as explained in § 4.1, whereas for
higher viscosity ratios the steady-state velocity gradually approaches Umax with increasing
capillary number, as seen in figures 16(a) and 17(b). Figure 17(b) shows the change in
steady-state velocity with drop diameter for increasing Ca at λ= 0.2. Here, we see that
the drops reach a steady state without breaking, with their velocity almost equal to Umax at
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Figure 18. (a) Critical Ca at which either the steady-state velocity becomes greater than Umax (◦), or the drop
breaks ( ) with increasing viscosity ratio (λ) for drops of sizes D/H = 0.6, 0.7, 0.8, 0.92 (top to bottom).
Drop breakup when (b) the origin of the re-entrant jet undergoes necking (dashed circle) for a drop with
D/H = 0.92, λ= 0.4, Ca = 0.9 or (c) the jet reaches the tip of a drop with D/H = 0.8, λ= 0.25, Ca = 1.1.

Ca = 0.8, showing little dependence on drop diameter. For a viscosity ratio lower than 0.2,
drops at Ca = 0.8 reach a steady state at a higher velocity with increasing drop diameter,
attaining faster speeds than Umax . A similar behaviour was found in numerical studies
on the motion of a bubble in a cylindrical channel by Rivero-Rodriguez & Scheid (2018)
and Atasi et al. (2018), where they observed a transition in the change in steady-state
bubble velocity from decreasing with increasing bubble size to increasing with increasing
bubble size between a Ca of 0.25 and 0.5. They also observed a steady-state velocity
greater than Umax for large bubbles above a critical Ca in this regime. A larger drop is
always found to have a higher deformation for any viscosity ratio due to an increase in
the ratio of deforming to restoring forces and higher interaction with the walls. Note that
a few curves in figures 16 and 17 for the large capillary numbers are discontinued after a
certain drop size because drop breakup was observed due to unstable tail or re-entrant jet
formation. Figure 17(c) shows the steady-state shapes of some drops with increasing D/H
for λ= 0.05 and Ca = 0.7.

Figure 18(a) shows the critical capillary number (Cacr ) at which the drop steady-state
velocity becomes larger than the maximum velocity of the background flow at the channel
centreline (Umax ) and how it changes with viscosity ratio for different drop sizes, as
obtained from BI simulations. For a square channel, Umax ∼ 2.096. In agreement with
our previous results, Cacr increases with increasing viscosity ratio up to λ≈ 0.25. On the
other hand, Cacr decreases with increasing drop size owing to the fact that larger drops
travel at greater speeds at these low viscosity ratios. A capillary number with drop steady-
state velocity greater than Umax was not found beyond λ= 0.25 for any of the drop sizes
shown in figure18(a). In these cases, the drops experience breakup beyond a certain Ca,
with values shown using red squares in figure18(a). A re-entrant jet was observed in all
cases, causing breakup in one of the three ways including (i) necking of the origin of the re-
entrant jet (figure 18b), (ii) penetration by the jet up to the tip of the drop (figure 18c) or (iii)
tail pinch-off before the re-entrant jet is able to penetrate a substantial amount (figure 11).

Figure 19 shows a comparison between experimental and simulation results of steady-
state drop velocity and deformation versus drop diameter for a fixed drop-to-bulk viscosity
ratio (λ= 0.001, 8 % aqueous glycerol drops in castor oil) and three different capillary
numbers, Ca = 0.28, 0.47 and 0.74. The capillary number in the experiments was varied
by changing the flow rate of the suspending fluid. As shown in table 1, there is an
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Figure 19. Comparison between numerical (curves) and experimental (symbols) results for (a) steady-
state drop velocity and (b) drop deformation with increasing drop diameter. The comparison was done for
λ= 0.001 (aqueous glycerol drop) at Ca = 0.74 ± 0.06, 0.47 ± 0.03, 0.28 ± 0.02, with the confidence bands
representing the uncertainty in capillary number (Ca) calculations arising from the standard deviation of
interfacial tension (σ ) measurements. Experimental results are provided at Ca = 0.74 ( ), Ca = 0.47 (•) and
Ca = 0.28 (�), with the error bars representing 90 % confidence intervals.

uncertainty associated with the interfacial tension (σ ) values measured using the pendant-
drop method. Naturally, this uncertainty propagates to the calculated values of capillary
number, where Ca = μeUav/σ . The confidence bands of the theory curves (solid lines) in
figure 19 show the corresponding variation in the simulations. There is a good agreement
for Ca = 0.74 and Ca = 0.47 with considerable overlap between theory and experiments
in both figures 19(a) and 19(b), but for Ca = 0.28 the measured velocities are 10 %–
20 % below the values predicted by the simulations. We suspect it could be an effect of
surfactant in our experiments arising from impurities in the castor oil or the blue inorganic
dye used for our 8 % aqueous glycerol drops. The presence of surfactants slows down a
drop suspended in a plane Poiseuille flow (Pak et al. 2014) or a rectangular channel (Luo
et al. 2018) due to the Marangoni effect. A lower capillary number corresponds to a greater
importance of interfacial tension forces and surfactants in the experiments. Moreover, we
suspect that, at a low viscosity ratio, there is a more significant effect of surfactants due
to reduced interfacial mobility, although further investigation involving the modelling of
a surfactant-covered drop in microchannels is required. Atasi et al. (2018) observed an
approximately 10 % decrease in steady-state velocity of nearly spherical bubbles (low Ca)
due to a small amount of surfactant in their numerical study involving the bubble dynamics
in a tube. This result affirms the possible explanation for the disparity observed between
experiments and simulations in figure 19(a). Nevertheless, our experimental results display
similar behaviour as the simulation results in figure 17, where both the steady-state
drop velocity and deformation increase with increasing capillary number, decrease with
increasing drop diameter for a low capillary number, but increase with increasing drop
diameter for a high Ca, and the steady-state drop deformation always increases with
capillary number. Figures 17(a) and 19(a) also suggest there is a critical capillary number
value near Ca = 0.4, at which this switch in behaviour from the steady-state velocity
decreasing with increasing D/H to increasing with increasing D/H occurs for λ
 1.

Figure 20 shows the steady-state deformed drop height (�y/H ) with increasing
undeformed drop diameter (D/H ) for different capillary numbers at λ= 0.05 and 0.2,
obtained from BI simulations. The steady-state deformed drop height is defined here as the
transverse length of a deformed drop that has reached steady state non-dimensionalised by
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Figure 20. Fraction of channel height that the deformed steady-state drop occupies with increasing
drop diameter for Ca = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 (top to bottom) at (a) λ= 0.05 (solid lines)
(b) λ= 0.2 (solid lines). The dashed line is at �y/H = 0.707 in (a) and at �y/H = 0.6 in (b), signifying
the maximum δ at which a slender drop can have a velocity greater than Umax for λ= 0.05 and 2, respectively,
using (4.2) for tubes. The solid lines are simulations for square channels.

channel height. As discussed previously, slender drops can attain a velocity greater than
the maximum flow velocity in the channel at low viscosity ratios. There is a threshold
value of steady-state drop height (δ) obtained from (4.2) for tubes, below which a drop
can become faster than Umax , and this δ increases with decreasing drop-to-bulk viscosity
ratio. Therefore, at a fixed viscosity ratio, a drop that is able to survive up to a high enough
capillary number to experience enough deformation and reach a steady state with a �y/H
less than this critical value of δ obtained from (4.2) will be able to attain a velocity greater
than Umax . This critical drop height was found to be δ = 0.707 at λ= 0.05, and we see
from figure 20(a) that drops with higher Ca have their curves below the dashed line
at �y/H = 0.707. In qualitative agreement with this result, we observe in figure 17(a)
that large drops with high Ca attain a steady-state velocity higher than Umax , and the
steady-state velocity increases with increasing drop diameter. The critical drop height
below which a drop can go faster than Umax at λ= 0.2 was found to be δ = 0.6 from
(4.2). In figure 20(b), we see that the deformed drop height (�y/H) obtained from BI
simulations at λ= 0.2 for different capillary numbers are mostly above �y/H = 0.6. This
again is in qualitative agreement with our observation in figure 17(b), where we see that
the steady-state velocity increases with capillary number, slowly approaches Umax and
becomes almost equal to Umax at Ca = 0.8. The authors would like to reiterate that the
above comparison is qualitative, since (4.2) was derived by Lac & Sherwood (2009)
for long drops in a cylindrical channel whereas the present study involves a channel of
rectangular cross-section and drops of size comparable to the channel height.

4.3. Effect of aspect ratio
The aspect ratio of a rectangular channel has a significant effect on the steady-state velocity
of the drop. In the present finite-depth channel simulations, we specify the volumetric
flow rates Q and use the corresponding Boussinesq solution for the flow in a rectangular
duct as the undisturbed flow in the absence of a drop. The most straightforward way to
compare finite-depth simulations of rectangular channels with different aspect ratios is to
keep a fixed Q/W , where the channel width, W , is varied to change the aspect ratio. In this
manner, we can match the average flow velocities, Uav , between simulations with different
aspect ratios.
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Figure 21. (a) Steady-state drop velocity (solid lines) with increasing aspect ratio for Ca = 0.1, 0.3, 0.5,

0.7, 1.0 (bottom to top), λ= 0.5 and D/H = 0.6. (b) Steady-state drop velocity (solid lines) with increasing
aspect ratio for λ= 0.05, 0.2, 0.4, 0.8, 1, 2, 5, 10 (top to bottom), Ca = 0.4 and D/H = 0.6. The dashed
line shows the values for Umax/Uav from the Boussinesq (1868) solution for a rectangular channel.

Figure 21 shows the effect of aspect ratio on the steady-state velocity of a drop non-
dimensionalised by the average velocity of the background flow. In figures 21(a) and 21(b),
simulation results for drop steady-state velocity with increasing aspect ratio are shown
for different values of capillary number and drop-to-bulk viscosity ratio, respectively. In
both cases, the drop steady-state velocity first increases slightly up to an aspect ratio of
approximately 1.3, and then decreases monotonically with increasing aspect ratio. For
the Boussinesq (1868) solution, the channel maximum velocity (centreline velocity) of
the background flow decreases with increasing W/H and fixed Q/W , from Umax/Uav =
2.096 for a square cross-section (W/H = 1) and asymptotes to 1.5 as W/H → ∞, which
is the case of Poiseuille flow between plane parallel walls. Due to this decrease in the
channel maximum velocity with increasing aspect ratio, the steady-state drop velocity also
decreases. However, for increasing aspect ratios in the approximate range 1 < W/H < 2,
there is a competition between the effect of decreasing interaction with the walls, which
helps a drop attain higher steady-state velocity, and a lower channel maximum velocity,
which results in lower steady-state velocity. The net result is a maximum in each curve near
W/H = 1.3, except for a viscosity ratio of 0.05 (figure 21b, top curve). As discussed in
§§ 4.1 and 4.2, a higher steady-state velocity is observed in figure 21(b) with a decreasing
viscosity ratio (λ) due to lower viscous drag, and a lower steady-state velocity is observed
with decreasing capillary number (Ca) in figure 21(a) due to less deformation of the
drops leading to a lower percentage of its volume experiencing the maximum flow velocity
near channel centreline. However, the dependence on capillary number is weaker than the
dependence on viscosity ratio.

In figure 22, the variation in steady-state drop deformation with increasing aspect
ratio is shown for different capillary numbers (figure 22a) and drop-to-bulk viscosity
ratios (figure 22b). Two different parameters have been used to describe the change in
deformation with aspect ratio: (i) deformation along channel height, DT,y = �x/�y, and
(ii) deformation along channel width, DT,z = �x/�z. The aspect ratio of the channel
is changed by keeping the height (H ) constant and increasing the channel width (W ).
Figures 22(a) and 22(b) show that both DT,y and DT,z decrease with increasing aspect
ratio due to decreased wall interaction. Again, DT,z decreases more than does DT,y
due to the channel width increasing with the aspect ratio. There is a modest effect of
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Figure 22. (a) Steady-state drop deformation with increasing aspect ratio for Ca = 0.1, 0.3, 0.5, 0.7, 1.0
(bottom to top), λ= 0.5 and D/H = 0.6. (b) Steady-state drop deformation with increasing aspect ratio for
λ= 0.05, 0.2, 0.4, 1 (top to bottom among the ones not specifically labelled, i.e. λ= 2, 5, 10), Ca = 0.4 and
D/H = 0.6. The solid lines are for deformation along channel height, DT,y = �x/�y, and the short-dashed
lines for deformation along channel width, DT,z = �x/�z.

viscosity ratio in the curves for steady-state drop deformation versus aspect ratio, as seen in
figure 22(b), which is weaker than the effect of change in Ca (figure 22a). This difference
is because the effect of change in λ on drop deformation is significant only for large drops
at high capillary numbers, as seen previously in figure 9(b). It is interesting to note that
there is a rapid decrease in drop deformation, both DT,y and DT,z , with a slight increase in
aspect ratio from a square channel. This decrease shows that the effect of wall interactions
is more important when the drop surface is in close vicinity to the wall and decays rapidly
with distance. Furthermore, this sudden decrease in wall interactions must be responsible
for the slight increase in drop steady-state velocity with a small deviation from a square
cross-section, such that the reduced wall interaction has a dominant effect over the lower
maximum centreline velocity of the channel, as observed in figures 21(a) and 21(b).

The simulations performed with varying aspect ratios for figures 21 and 22 are
normalised by the channel average velocity (Uav) for different aspect ratios but naturally
have a varying maximum background velocity at the channel centreline (Umax ). Therefore,
in figure 23, the effect of aspect ratio on drop steady-state velocity normalised by the max-
imum background velocity (Umax ) at the channel centreline from the Boussinesq (1868)
solution is shown. Upon normalising by Umax , all the drop velocities for these conditions
become less than unity and the variation in Us/Umax is small (less than 10 %). The effect
of decreasing Umax with increasing aspect ratio on the drop velocity is eliminated by this
normalisation, thus isolating the effect of wall interactions. Therefore, we see in figure 23
that Us/Umax first increases with increasing aspect ratio up to approximately W/H = 2.5
due to a reduction in viscous interaction with the walls and then approaches the asymptote
since the sidewalls are then far enough for their effect to be insignificant. The initial
increase in Us/Umax with changing aspect ratio can be linked with the sudden decrease in
deformation upon deviation from a square cross-section observed in figure 22, confirming
that the increase in Us/Umax is due to reduced wall interactions.

Figure 24(a) compares numerical and experimental results for the effect of aspect ratio
on the drop steady-state velocity. Experiments were conducted for a square channel and a
rectangular channel with an aspect ratio of 2 : 1 with drops of D/H < 1. In the case of a
square channel, an excellent match is observed, where the theory and experiments agree
within 2 %–3 % for all values of D/H , whereas for the 2 : 1 rectangular channel, there
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Figure 23. Steady-state drop velocity non-dimensionalised by maximum channel velocity with increasing
aspect ratio for (a) Ca = 0.1, 0.3, 0.5, 0.7, 1.0 (bottom to top), λ= 0.5 and D/H = 0.6 and
(b) λ= 0.05, 0.2, 0.4, 0.8, 1, 2, 5, 10 (top to bottom), Ca = 0.4 and D/H = 0.6.

is a qualitative similarity between experiments and simulations, but the experimental data
points are approximately 3 %–8 % below the simulation results for all but the smallest drop
size. Simulation curves are also provided for larger aspect ratios up to a channel of infinite
depth. The results for the channel of infinite depth were generated using the algorithm of
Navarro et al. (2020). Convergence to the infinite-depth case with increasing W/H is slow,
due to the stagnant zones near the corners. The steady-state velocities for drops suspended
in an infinite-depth channel are very close to the limit Umax/Uav = 1.5 for D/H � 0.5 and
then gradually increase with drop size (due to very low λ and high Ca). Interestingly, it is
observed that the steady-state drop velocities reach a plateau with increasing drop size for
a square channel (W/H = 1), but in the cases for channels with rectangular cross-section
we see a monotonic increase in steady-state velocities with increasing drop size.

In figure 24(b), the same simulation results as figure 24(a) are shown but normalised
by the maximum velocity of the background flow (Umax ) instead of the average velocity
(Uav). This simple modification nearly collapses all the curves, showing weak dependence
of Us/Umax on aspect ratio for drops with D/H � 1. In the case of a square channel
(W/H = 1) and a rectangular channel with W/H = 2, we observe a substantial difference
in steady-state velocities for large drops (D/H � 1) when compared with the channels
with larger aspect ratios. This is because wall interactions have a greater impact on steady-
state drop velocities for large drops in narrower confinements. Therefore, even though the
effect of Umax is nullified upon normalisation, the wall effects are highlighted at D/H � 1,
showing a lower steady-state velocity for narrower confinements. For the higher aspect
ratios, we see a similar behaviour for Us/Umax as in figure 23, where the steady-state
velocities asymptote to a fixed value for W/H � 2. Figure 24(b) also shows good agree-
ment between the steady-state velocity of a drop with large viscosity (λ= 50) and very
small capillary numbers (Ca = 0.01, 0.1) in a channel of W/H = 10 obtained using the
numerical framework of the current paper and the velocities of a solid sphere in a
Poiseuille flow between plane parallel walls obtained by Staben et al. (2003) using BI
simulations that have also been previously validated with experiments by Staben & Davis
(2005).

For W/H = 2 in figures 24(a) and 24(b), a drop of size D/H = 0.92 was found to
form two small satellite drops, leading to pinch-off, as shown in figure 24(c) along with
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Figure 24. (a) Comparison between numerical and experimental results for steady-state drop velocity
with increasing drop diameter at λ= 0.001 (aqueous glycerol drop), Ca = 0.74 and two aspect ratios. The
solid theory curves are for increasing aspect ratios, with W/H = 1, 2, 5, 10, 20 (top to bottom). The
dot-dashed line is at Us/Uav = 1.5 to show the ratio Umax/Uav = 1.5 for a plane Poiseuille flow. The
short-dashed line shows the results for an infinite-depth straight channel using the algorithm of Navarro et al.
(2020). The circle (•) and square ( ) points are experimental results for a square channel and a rectangular
channel of 2 : 1 aspect ratio respectively, with the error bars representing 90 % confidence intervals. (b)
The solid lines show steady-state drop velocity non-dimensionalised by maximum channel velocity with
increasing drop radius for W/H = 1, 2, 5, 10, 20 (bottom to top on the right end of the curves), Ca = 0.74
and λ= 0.001. The dashed line is for a channel of infinite depth using the algorithm of Navarro et al.
(2020) for the same conditions, and the dotted line shows Umax/Uav = 1.0. The dot-dashed line is for
λ= 50, Ca = 0.01 and 0.1 (bottom to top), W/H = 10 and the points ( ) are simulations for a solid sphere
between plane parallel walls from Staben et al. (2003). (c) Steady-state drop shapes obtained from BI
simulations at λ= 0.001, Ca = 0.74, and D/H = 0.92 for W/H = 1, 5, ∞. At W/H = 2 drop breaks off
tails (dashed circles) before reaching steady state when started as a sphere.

the steady-state drop shapes for a drop of size D/H = 0.92 at Ca = 0.74, λ= 0.001 and
W/H = 1, 5, and ∞. However, when the drop (W/H = 2, D/H = 0.92) was started as
a prolate ellipsoid instead of a sphere, the simulation could be continued until the drop
reached a steady state. Note that in figures 24(a) and 24(b) the curves for W/H > 1 are
discontinued at D/H = 1.3. This is because we observed drop breakup due to a small
satellite droplet formation (figure 25) at D/H = 1.4. Drops with D/H � 1 are initially
started as a prolate ellipsoid with a minor axis of 0.4H , and the satellite drop breakup at
D/H = 1.4 occurs while the drop tries to relax from its initial highly deformed prolate
ellipsoid shape. A prolate ellipsoid was used to keep a consistent initial shape with the
narrower confinements (W/H = 1, 2) where an oblate ellipsoid would not fit. It is possible
that using an oblate ellipsoid could help avert such drop breakup.
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Figure 25. Satellite drop breakup at D/H = 1.4 for W/H = 2, λ= 0.001, Ca = 0.74.
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Figure 26. Streamlines showing the flow patterns in the x-y plane containing the channel centreline, both
inside and outside a drop of D/H = 0.8 at λ= 1, 0.5, 0.05 (top to bottom) and Ca = 0.2, 0.6 (left to right)
translating at steady state inside a straight channel of square cross-section.

4.4. Velocity fields
Besides influencing droplet velocity and deformation, changes in capillary number and
viscosity ratio may also lead to differences in the flow behaviour inside droplets, which
plays an important role in applications such as microfluidic mixers (Stone & Stone 2005;
Wang et al. 2015; Fu et al. 2018; Li et al. 2023). To illustrate the effect of these parameters
on the flow inside and outside the droplet, figure 26 shows streamlines for a steady-state
drop in a square channel for different viscosity ratios and capillary numbers in a cross-
sectional x- y plane at z = 0. The velocities outside the droplet were obtained from the BI
representation of the velocity field outside the droplet:

u( y) =u∞( y) + 2
∫

S∞
n(x) · τ (x − y) · q(x) dSx

+ F( y) + (λ− 1)

∫
Sd

n(x) · τ (x − y) · u(x) dSx , (4.3)
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where F( y) is given by (2.3). A detailed derivation can be found in Roure et al. (2023). In
contrast, to calculate the flow velocity inside the drop, we solved a generalised BI equation,
similar to previous works by Gissinger et al. (2021a) and Roure et al. (2023), using the
velocity boundary conditions obtained from the numerical solution of (2.1)–(2.3). As in
previous works (Martinez & Udell 1990; Lac & Sherwood 2009; Jing et al. 2024), the flow
fields are calculated in the droplet frame of reference.

For λ= 1, and λ= 0.5, our results show flow patterns with small recirculation zones
in the front portion of the drop, whereas larger recirculation zones are observed in the
middle portion of the drop, similar to previous works (Martinez & Udell 1990; Lac &
Sherwood 2009; Jing et al. 2024). The presence of the double-vortex structure in the
external flow also indicates the existence of small recirculation regions in the back portion
of the droplet, as reported by Martinez & Udell (1990) and Lac & Sherwood (2009), which
are not captured in this resolution. As the droplet velocity increases (i.e. for higher Ca and
smaller λ), the external vortices, as well as the small vortex structures inside the droplet,
decrease in size. For λ= 0.05 and Ca = 0.6, as the drop steady-state velocity surpasses
the maximum velocity of the background flow, the external vortices are no longer present
and the smaller recirculation zones inside the droplet completely vanish.

The fluid flow in a rectangular channel is not axisymmetric. When a drop is pushed
through a rectangular channel by a pressure-driven flow, there is larger space between the
drop surface and the channel walls in the corner region than near the middle of the walls, so
that the surrounding fluid is expected to flow with less resistance near the channel corners.
To investigate this corner flow, we plotted the velocity fields of the surrounding liquid
flow in a y-z cross-sectional plane of a square channel (y ∈ [0, 1] and z ∈ [−0.5, 0.5])
at a position halfway between the drop nose and its centroid in figures 27(a)–(c) for
λ= 0.05, Ca = 0.1, and different drop sizes. The observations indicate that the flow is
directed into the channel corner from the middle of the walls, verifying this expectation.
This flow pattern differs from what is typically observed in axisymmetric channels and is
most prominent in drops at low Ca and low λ. Figure 27(d) shows the velocity vectors
of the surrounding fluid flow for a drop of D/H = 0.6, λ= 0.05, and Ca = 0.1 in a y-z
cross-sectional plane at the nose of the drop. We have previously observed the presence
of recirculation vortices in the bulk fluid flow pattern outside the drop in figure 26. These
recirculation vortices are usually larger for drops of bigger size. Therefore, we see that
the velocity fields in a cross-sectional y-z plane at the nose of the drop changes direction
close to the channel centreline in figure 27(d). Away from the centreline, there is a weak
flow to the corner regions. On the rear half of the drop (not shown), the flow in the y-z
cross-sectional plane is away from the corners.

Figure 28 shows the velocity vectors of the surrounding fluid flow for a drop of D/H =
0.8, λ= 0.05, and Ca = 0.1 in (a) the x- y plane and (b) the x- y′ plane, where y′ is the
diagonal of the square cross-section of the microchannel, starting at one corner. The flow
pattern outside the drop in the plane containing this diagonal (figure 28b) is qualitatively
similar to that in the x- y plane (figure 28a), except that there is more space between
the drop surface and the walls. Hence, the flow is stronger in the corner regions and the
recirculation vortices are smaller in the diagonal plane than the x- y plane.

5. Conclusions
The dynamics of a 3-D deformable drop in a straight channel of rectangular cross-
section was studied both experimentally and numerically in this work. A novel MFBI
algorithm developed by Roure et al. (2023) was adapted here to generate the numerical
results. This particular case of simulating straight channels does not require a separate
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Figure 27. Velocity fields of the surrounding fluid flow in a y-z cross-sectional plane midway between the
drop nose and drop centroid for λ= 0.05, Ca = 0.1, and (a) D/H = 0.4, (b) D/H = 0.6 and (c) D/H = 0.8;
(d) y-z cross-sectional plane at the nose of a drop for same conditions as (b). The solid curves show the drop
contours in (a), (b) and (c).
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Figure 28. Velocity fields of the surrounding fluid flow for a drop of λ= 0.05, Ca = 0.1, and D/H = 0.8 in
(a) the x- y plane and (b) x- y′ plane, where y′ is the diagonal of the square cross-section of the channel. The
solid curves show the drop contours.
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solution for the background flow using BI equations, since we can directly impose the
Boussinesq (1868) flow profile. The hydrodynamic contributions from the walls to the
drop and vice versa are calculated within this MF rather than the whole domain, reducing
the computational cost of the simulations. Direct comparison was done between the BI
algorithm used in the current work with the spectral-boundary-element method used by
Wang & Dimitrakopoulos (2012), with a good agreement between the two for the limited
cases in common. Experiments were performed in a macroscopic flow cell constructed for
easy drop visualisation using a high-viscosity fluid as the suspending medium to ensure a
low Reynolds number. An insert allows the ability to easily change channel aspect ratios.
ImageJ was used to analyse the drop videos to extract data such as deformation and steady-
state velocity. Both experiments and simulations were run over a variety of conditions.

We investigated the effect of change in drop size, drop-to-bulk viscosity ratio, capillary
number and channel aspect ratio on the kinematics of the drop and its deformed shape.
A drop released in a background flow always reaches a steady state below a critical
capillary number. The general trend observed in both experiments and simulations is that
the steady-state velocity of the drop decreases with increasing viscosity ratio due to greater
hydrodynamical resistance to flow and increases with increasing capillary number owing
to the higher deformation at high Ca that keeps the drop closer to the channel maximum
velocity at the centreline and away from the walls. The effect of viscosity ratio on steady-
state drop deformation was seen to be significant only for large drops at high capillary num-
bers. In general, the steady-state velocity of a drop decreases with increasing drop diameter
due to increased interaction with the walls, except for cases with low viscosity ratios and
high capillary numbers. A low-viscosity drop of sufficiently large size and deformability
was also found to move faster than the maximum velocity of the background flow, similar
to the findings of Lac & Sherwood (2009) for a large drop in a cylindrical tube.

Upon increasing the channel aspect ratio from a square channel, keeping the average
flow velocity (Uav) constant, the steady-state velocity of a drop was found to increase
first up to an aspect ratio of 1.3 due to decreased wall interactions, and then decrease
monotonically due to the decrease in Umax . Upon normalising the drop velocity by Umax ,
we eliminate the effect of decreasing maximum flow velocity with increasing aspect ratio
and observe an increase in drop velocity with increasing aspect ratio due to reduced wall
interactions, eventually asymptoting to a constant value when the walls are too far away
to have a noticeable contribution. Comparisons of our finite-depth channel simulations
were done with the infinite-depth simulation algorithm of Navarro et al. (2020), where we
see faster convergence between the two when the drop velocities are normalised by Umax
rather than Uav .

We also studied the cross-stream migration of drops that start away from the channel
centreline. For cases with drop size comparable to channel height, the drop migrates
towards the channel centreline. A drop experiences a spike in the lateral migration velocity
immediately upon release, due to the initial deformation. Then the drop develops a tail due
to wall interactions, but eventually becomes compact and reaches a steady shape at the
channel centreline. The dynamics of this lateral migration was also found to depend on
the drop-to-bulk viscosity ratio and the capillary number. A low-viscosity drop migrates
faster owing to the lower hydrodynamical resistance and the rapid initial deformation
experienced by it. In general, a drop with a higher capillary number was found to migrate to
the channel centreline the earliest, since it experiences a higher deformation and maintains
a deformed shape for longer, although some non-monotonic behaviour was observed in
stages before reaching the centreline.

The interesting behaviour at low viscosity ratios motivates us to do further research on
such conditions. In a future work, we will extend the BI algorithm to study the effect of
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surfactants on the steady-state dynamics of low-viscosity drops. We expect the reduced
interfacial mobility due to the presence of surfactants and the associated Marangoni
stresses to be highlighted at low viscosity ratios, resulting in much-retarded steady-state
velocities compared with clean drops.
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