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Abstract

This paper considers singular systems that involve both continuous dynamics and
discrete events with the coefficients being modulated by a continuous-time Markov
chain. The underlying systems have two distinct characteristics. First, the systems
are singular, that is, characterized by a singular coefficient matrix. Second, the Markov
chain of the modulating force has a large state space. We focus on stability of such
hybrid singular systems. To carry out the analysis, we use a two-time-scale formulation,
which is based on the rationale that, in a large-scale system, not all components or
subsystems change at the same speed. To highlight the different rates of variation, we
introduce a small parameter £ > 0. Under suitable conditions, the system has a limit.
We then use a perturbed Lyapunov function argument to show that if the limit system is
stable then so is the original system in a suitable sense for € small enough. This result
presents a perspective on reduction of complexity from a stability point of view.

2010 Mathematics subject classification: primary 93E15; secondary 60H10, 60J27,
60J60, 34E15.
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1. Introduction

Singular systems, which are also known by many other names such as descriptor
systems, generalized systems and implicit systems, feature in differential-algebraic
equations. They arise in various applications in the physical sciences, engineering and
economics. Owing to their importance, such systems have been studied extensively
and used widely in control and optimization [5-9, 13-16]. While the references
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[2] Stability of singular jump-linear systems with a large state space

mentioned are all concerned with deterministic systems, recent work also includes
formulation, analysis and computation involving stochastic systems [1, 2, 13, 17].

In applications, dynamical systems are frequently not only time varying, but also
associated with movements influenced by uncertain and exogenous discrete events
driven by random disturbances. Many such systems involve noise of pure jump type,
especially those arising in production planning, economics and stochastic networks.
For example, in economics the coefficients of the classical Leontief model are fixed.
In reality, more often than not they are changing with respect to time depending on the
trend of the economy, and are subject to discrete switching regimes. The behaviour
of the dynamical systems corresponding to different regimes is very different. As a
result, a promising alternative model is to allow for the possibility of sudden, discrete
changes in the values of the parameters, resulting in a “hybrid” or “switching” model
governed by a Markov chain.

In this paper, we consider a hybrid model with randomly varying switching regime.
The premise of our model is that, for example, many of the important movements in
the economy arise from discrete events. A nation’s economy sometimes appears quite
calm and at other times rather volatile, and it is important to describe how this volatility
changes over time. Monetary, fiscal or income policies often change in a way referred
to in economics as shocks. Economists cannot observe these shifts directly, so these
discrete events are governed by hidden random processes. Since the late 1980s, there
has been increasing interest in using Markov-based models in economics. Although
most of these efforts are devoted to time series analysis [3, 4, 11, 12], it is conceivable
that the use of Markov-based models will play a more prominent role in the
future.

A continuous-time Markov chain can be used to formulate the trend of the economy.
Suppose that the economy has two possible “states”: a fast growth phase and slow
growth phase. At any given time, the economy will be in one of the two states,
governed by the outcome of a Markov chain. Another example is the unemployment
rate, which at any time is either rising or falling. The regimes or configurations of the
system differ corresponding to the two states (for either example), resulting in different
coeflicients in the linear equations. This leads to a hybrid/switching model modulated
by a Markov chain with finite state space.

One concern is on the reduction of complexity. Denote the Markov chain by a(:). In
a multi-sector economy, the state space of the Markov chain is likely to be large due to
rapid growth in science and technology. The large number of states of the underlying
chain gives a detailed representation of the position of the economy. However, the
large-scale nature of the system makes design and control very difficult. To reduce
the complexity of the system, we observe that not all states change at the same speed.
Some vary rapidly and others slowly. The inherent fast and slow time scales give us
the possibility of grouping the states in accordance with their transition rates. We
introduce a small parameter &£ > 0, and let a(¢) = @®(¢). The parameter ¢ enters as a
rate parameter. It highlights the fast and slow dynamics resulting in weak and strong
interactions. The precise description of these effects is given in Section 2.
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Suppose that we want to control a hybrid system in which the state space M consists
of m elements, where m is large. Instead of examining the original complex system,
by using appropriate asymptotic analysis we can consider a “reduced” system whose
state space consists of a smaller number, /, of elements. If / < m, the complexity of
the task is dramatically reduced. In the asymptotic analysis, to rigorously prove the
desired result it is necessary to consider the limit as € — 0. In the actual applications,
€ could be a constant; it need not go to 0. The asymptotic results provide us with
guidance on the control, optimization and design of the actual system. We mention
mainly applications in economic systems, but such modelling tools can also be used in
manufacturing and production planning as well as many networked systems.

The main motivation for this paper is twofold. First, there are many systems in
applications that are singular. The stability of such systems is of crucial importance.
Motivated by the recent stability analysis of Huang and Mao [13] for stochastic
systems with Markov regime switching, we also treat regime-switching singular
systems. However, for us there is another difficulty, namely that the state space of
the Markov chain is very large. Thus, it is essential to reduce the computational
complexity. We use the idea of a two-time-scale formulation of Markov chains [17, 18]
to carry out the analysis, and focus on stability analysis. By letting € — 0, we obtain a
limit system with reduced state space for an aggregated switching process. Knowing
the stability of the limit system, we aim to obtain stability of the original system under
suitable conditions. While the stability of singular systems of switching diffusions
has been analysed by Huang and Mao [13], this work deals with the case when the
state space of the Markov chain becomes very large. Our new contributions provide a
method for reduction of complexity through time-scale separations.

The rest of the paper is organized as follows. The precise problem formulation is
given in Section 2, and a number of preliminary results are presented in Section 3.
Stability of the underlying singular systems is discussed in Section 4. We use a two-
time-scale approach. Under broad conditions, we show that by use of the limit system
we can obtain stability of the original system. Examples are presented in Section 5,
and final remarks in Section 6.

2. Problem formulation

Suppose that a®(¢) is a continuous-time Markov chain taking values in a finite state
space M. We consider the switching process a®(r) as having quickly and slowly
varying transitions in that the generator of the Markov chain is given by

Q=%+Q
with
0 = diag(Q', ..., 0, (2.1)
where diag(D', ..., D') denotes a diagonal-block matrix with entries D', ..., D' and

Q is another generator without specific structure. Because of the structure of the
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matrix é in (2.1), we write the state space M as
M=MUMyU---UM,;  where MiZ{Sil,...,Simi}fOI‘l-Z 1,...,L

Throughout the paper, we use the following condition for the fast-changing part of
the generator Q.
(Al) Fori=1,..., 1 the generator @ 1s irreducible.
By irreducibility we mean that the system of equations

viéi =0, v"]lml. =1

has a unique nonnegative solution. Here v/ € R™" and 1,,, = (1,..., 1) e R™*1; v/ is
the stationary distribution associated with the generator @ . In what follows, we use
Gs,s., to denote the (my + - - - +m; + j,m; + - - -+ my, + ) entry of a given matrix Q.

Suppose that for each s;; € M, A(s;;), G(s;;) and H(s;;) are n X n matrices and that
G(s;j) is singular. Our interest lies in the switching linear system

G(a®(1)) dx®(t) = A(@®(2))x°(t) dt + H(a®(1))x*(t) dB(1), 2.2)

¥(0)=¢, a(0)=1t=si, '
fori=1,...,land j=1,...,m,;, where x*(f) e R™! and B(-) is an n-dimensional
standard Brownian motion. We study the stability of this system. The difficulty
is that the system is singular, so standard stability analysis techniques do not
carry over.

3. Preliminary results

Denote by deg(p) the degree of a polynomial p. We use the following assumptions.
(A2) Foranyi=1,...,land any j=1,...,m, the triplet (G, A, H) satisfies one of
the following conditions:

(a) det(sG(s;j) — A(s;j)) #0 for some s, deg(det(sG(s;;)— A(s;;))) =r;; and
rank([G(s;;)H(si))]) = rij.

(b) det(sG(s;;) — H(s;;)) # 0 for some s, deg(det(sG(s;;) — H(s;;))) = r;j and
rank([G(s;)A(si))]) = rij.

Denote by {77} a sequence of jump times of the Markov chain a*(¢), namely 75 =0

and 77, =inf{t > 77 : @®(1) # a°(77)}. Then a®(?) = @*(77) on [}, 77, ,). Moreover,

Tp — 00 as k — oo.

Lemwma 3.1. If (A2) holds then (2.2) has a unique solution.

Proor. Assume that (A2)(b) holds. The following argument is similar if (A2)(a) holds.

For convenience, denote s;; = aZ.. There exist nonsingular n X n matrices L(s;;), R(s;;)
0
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such that [13]

I.. 0
L(s;)G(si))R(s;j) = ( 0 0) ,

L(si)A(si)R(sij) = (AIE)SU) AZE)S[])) ,
H(s;j
L(sij)H(sip)R(sij) = ( 15)5 /) In(_),..) ’

where A(s;;), Hi(s;;) are r;j X r;; matrices and A»(s;;) is an r;; X (n — r;;) matrix. Let
w(t) = R™'x°(0) = [[w{ ()] w5 ()]
Then (2.2) is equivalent to

awi(t) = [A1(@ )W (1) + Ax(@®(D)y5(1)] dt + Hi(a"(1)wi(t) dB(1),
0 = wi(t) dB(D),
wi(0) =R, ®(0)=1eM,

or

dwi (1) = A1 (@ (O)WE(t) dt + Hy (a®(0))wi(t) dB(D),
wi(t) =0,
wf(0) =R )& af(0)=1eM,

which has a unique solution on the interval [7(, 7{]. Continuing this process, we can
prove by induction that (2.2) has a unique solution for all > 0. |

4. Stability

In order to find stability conditions on the limit process instead of the original
process, we lump the states in each M; into a single state and define

‘(=i ifa®(t)e M.
Denote the state space of @°(-) by
M={1,...,1}, andletv=diag(v',... v,
where V¥ is the stationary distribution corresponding to ék . Define
0=701, where1=diag(L,,..., 1), Le=(1,...,1) eR™L

Forie /Vl, denote
Gl)= ) ViG(sy), A=) ViA(sy), H(@)= ) viH(sy).

j=1 j=1 Jj=1
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We need the following assumption.
(A3) Forie M, rank(G(si1)) = - - - = rank(G(sim,)) = rank([G’(si1)] - - - |G’ (Sim,)])-

ReMark 4.1. The assumption (A3) is equivalent to the following statement.
(A3’) For i=1,...,1, there exists a sequence of elementary row operations
transforming {G’(s;;)} jepm, into row echelon matrices.

We derive from (A3) that, for any s;; € M, there exist nonsingular n X n matrices
L(sij), R(s;j) such that

I, 0
L(sij)G(si)R(sij) = (0 0) ,
where r;; =r; for all j=1,...,m; and R(s;;) could be chosen to be the same matrix,

denoted by ﬁ(i), for all s;; € M;. This is valid due to Remark 4.1.
For any i € M, put

m;

L =Y v e ,»))_].

j=1
Then
L()G()R(i) = (I(;f 8) .
For any s;; € M, denote
G(si)=G(), Lisi) =L@, R(s;)=R0).
Then
L(si)G(sij) = L(si)G(si)-
Given any U e R, U = %(U + U’) is a symmetric matrix. Let
V(x, sij) = X'G'(s;)UG(s;)x.

Then _

V()C, S,'j) = X/G/(S,‘j)UG(Sij)x = XIG,(SZ']')U(S,'/')G(SU)X,
where _

U(sij) = L' (sipl ™ (sip) UL~ (i) Lsi))-

For a suitable function V, define

LEV(x, k) = lir(r)1+ [E(V(XE(@E + 5), @t + 5) | x°@) = x, a®() = k) — V(x, K)],
where E denotes the expectation. Then
LoV(x, k) = x’{A’(K) UG () + G () UKAK) + H () U(K)H (k)

+ Z QKLG/(L)’U\(L)G(L)}X.

teM
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Denote by ® the Kronecker product of matrices. We use operators (-) and (:, -)
defined by
(A)=A®A and (A,B)=A®B+BQA.

Let y®(¢) = E(x*(¢)). Using an argument similar to that of Huang and Mao [13], we

obtain _ _
G(a®(0)y*(1) = Al®())y* (D), @1
YY) =£=EE), o (0)=y '

where
G(sij) = (G(siph = (G()) = G (i),
AGsi)) = L7 (sij)L(siDA(si)),
H(sij) = L7 Csij)L(si)H(si)),
I my
A(sip) = Qs Alsip) + |(siph + D > 455, Glsw).
k=1 =1

Forie M denote
—_— —_ —_ —_ l —_—
A =(GH), AD) + (HD) + Z 4 G (k).
k=1
The following result can be proved in a similar fashion to the development of Yin and

Zhang [17]; the details are omitted.

ProrosiTion 4.2. Let y°(t) be the solution of (4.1). Then as € — 0, y°(-) converges
weakly to y(-), a solution of the singular system of differential equations

G@@)y(0) =A@,
¥(0) =2

where a(-) is a Markov chain generated by 0.

To carry out the stability analysis, we need more assumptions.
(A4) Foreachi=1,...,/ there exists a nonsingular matrix I_J(i) such that
@ G OP()=PHG (=0,
(b) A )P + P (DAG) + 2 31 9, G (DP(G) <O.
Here the inequalities are in the sense of ordering for positive definite matrices.
(AS) For each s;; € M, (G(si;), A(s;;)) is impulse free, that is,

deg[det(sa(sij) ~ A(s;;))] = rank 6(517)-

Remark 4.3. Note that G(s; i) = G(i). In addition, using the argument in the proof of
Lemma 3.1, we can find nonsingular matrices L(s;;) for any s;; € M; in the following
way. Use elementary row operations to transform

[G'(siDl -+ - |G (sim)]
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into a row echelon matrix
[G'(siD)] - - - |G (Sim,)]
Again, use elementary row operations to transform [G(s; I,] into the reduced row

echelon matrix
L, 0

where I, is an n X n identity matrix. In addition, if the L(s;;) are the same for any
Sij € M; then L(Sij) = L(S,'j), and

I my
A(sif) = (GG, Alsip) + (H(si) + D" " 85, Glsw).
k=1 =1
Lemma 4.4. If (A3)—(AS) hold then there exist constants c¢1 > 0, ¢c; > 0 such that
@) Y < aily*(@l,
(i) *OI'G @ @)P@ 0)y*(1) = c2ly* (1),
where the inequalities are in the sense of ordering for positive definite matrices.

Proor. The proof is divided into two steps. To prove (i), we derive from condition
(AS) that

I

= =B 0
C_}(Sij) = L(sij)G(Sij)R(S,‘j) = ( 6!' ()) ,

n2—

- o~ — A(si) 0
A(Sij)=L(Sij)A(Sij)R(sij)=( 0 I ,z)

where A(s;;) is a nonsingular r7, X r7; matrix. Let

() =R @)y (1) = [ (0D .

Then
G(as(t))fs(t) = A" ()" (1),
#(0) =R (€,
a®(0)=1t.

So

() = A ()Z(®),

() =0,

Z#0)=R'WE  a®(0) =1
Thus z,(¢) = 0. Denote

AG 0

f\(i):( N ) and  A() = RGOAGDRG) ™.

n2—r?
3
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Then
Yo = A(@(0)y*(1).
Furthermore, A(i) is bounded. Hence the proof of (i) is complete.
For (ii), put
N (TN e PR« — En(sij) Elz(sij) .
P(sij) = (L77) (si)) POR(s;j) = (EZl(sij) Py(si)) for all 5;; € M.

Then
G’ (si)P(sij) = P'(5;))G(si5) = 0,

which implies that

ElZ(sij) = l_’zl(sij) =0 and I_’H(s,-j) > 0.

Thus
L OIG @ O)P@ (0)y*(1) = Y (D' G (@ (1) P@ 1)y (1)
= [Z°()])' G’ (a®()P(a”(1)Z° (1)
= [2](O]' Py (@® ()25 (D)
> 35O = e3lEOF = ealy* ()P,
and so (ii) is proved. O

TueOREM 4.5. If (A3)—(AS) hold then there exist constants y > 0, ¢ > 0 such that
E|IX*(0)] < ce™'Ve.
Proor. For any @ € M, define
Vo(y, @) = Y'G @P@y =y G (@)P@)y.

By the irreducibility of 0, B
OVo(y, ) a) =0.

Therefore,
LEVo( (1), (1) = [ (D) [A (@ (0)P@®(0) + P (@ (0)A(°(1)) + g(@®(0)]y*(0),

where

m,

!
8(sij) = Z
k=1

QSU‘ Sk 6 (SKL )ﬁ(skl)‘
1

=

Denote

L=D@1'[A @ @)P@ (1) + P @ 0)A@ (1)) + 2@ D)y (1),

https://doi.org/10.1017/51446181111000745 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181111000745

[10] Stability of singular jump-linear systems with a large state space 381

where

!
20 = ) GG WPw.
k=1
In order to obtain the desired stability result, we use the method of perturbed
Lyapunov functions. Define the perturbations

Vio. 1) = E f YA (@ (w) = A @ u)IP@ )y du,
Vi0.1) = E; f ¢y P @ )IA@* W) - A@ W)y du,

Vi, n) = E, f ey (gl () — g@ )]y du.

In order to estimate V5(y, 1) and L#V5(y*(?), 1), we consider

Vi, 0,0 =E, f Uy P (@ (u))
x [(G(a® (), A(@® () — (G(@ (), A@ )]y du,
V(1) = E, f ¢y P @ W) [(H(* W) — (H@ )]y du,

V50, ) = E, f =y P (@ () [h(e®(w)) - h@ )]y du,

where

I m
h(siy) = Z Z G(sw) and i) = Z 76,

k=1
Then
V3, 0) = V3,0, 0 + Vi, ) + V3,0, 0).
On the one hand,
(Gl (@), Ala® () — (G@ W), A@ )
= (Ig(&s(u)), A@®(w) =A@ (w))) R
= (IG(ag(’b\t)), L™ (@) L(a” (u)[A(” () - A(ES(M)LD
+(G@ W), [L 7' (@°(w) - L™ (@) L(@” (u) A@* ().

On the other hand,

A(@* () — A@°(u)) = AGsipx (@) = sij) = Vix(@®(u) € My,

Mz

]
i=1

~.
I

N~ B

—_

DL sipl(@f () = 5ij) = Vix(a(w) € M),

=1

L) - L' (@*(w) = -

1
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and for u > ¢,
ES[y(@(u) = si) — vVix(@ (u) = i)] = O(e + e 007/%),

Therefore,
DobP f ¢ O(e + e W) gy = O(e)ly P
: t

Vi, DI <
J=1

]
i=1

Similarly, from the fact that

(H(@® () — (H@ (u))) = (H(a® (), H(a"()) - ﬁ(?(ﬁm
+ (H(a® () — H@" (w)), H@ u))),

Lom
h(@* () = h@0) = Y " OGO si) EfDy(a® () = 5ij) = Vix @ () = i),

i=1 j=1

we derive
V54, Dl < O@DIE,  [Vip(, D < 0@
Thus
V30, 0l < Ol

Furthermore,

LSVZ‘S(y“‘(t), r = 1;{51 Ef[Vf(y’s(t +0),t+0)— V;"(yg(t), ]
- 1(%1 EE[VEQGP(t + ), t +8) — VEGA(D), £+ 6)]
+ I;H)l E7[VZ5(0), t +6) = V50O°(1), 1]
= —[* ()P @ (t)IAQ@° (1) - A@ D)y (1) + VEGE (1), 1)

+E, ft ) O P @ () A () — A@ (w)]y* () du
+E; ft ) ¢y (O P @ ())[A(e® () - A@ u))]y*() du
<~ O P @ 0)AW (D) - A@ @)Y (1) + OV (1), )
<~y ()1 P @ 0)A@ (1) - Al@® ()] + O (1)
Using a similar argument, we obtain
Vi, Dl = 0@, IVE0, Dl = 0@y,

LVIO (0, 1) < -DF OV A (@) = A @ O)P@ 1)y (1) + 0@ (1),
LIV, 0 < -D O [8@” @) - Z@ @)y (1) + 0@ 0.
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Define
3
& _ & & E(1,€
VE@) = Vo (0, (D) + . VEGE(0), 1).
i=1
Then

Ve@) = Vo (1), (1)) + Oy (n)F.

In addition,
LEVE(D) < L+ 0@ (1)

By assumption, there exists a constant y > 0 such that

L+yVoO (1), @°(1) < L+ yely*(1)I* < 0.

Using
LEE"VE®) = " (YVE@D) + LEVED) < 'Oy (1)),
we obtain
8
E[e"VE(1)] < EVE(0) + E f "0y (w)* du
0
<O0@)EP +E f Oy (w)? du.
0
On the other hand,
& ¢ 2
Vo0, a0y >
Therefore,

E["Y* (0] < O(s)Ié” + E f e 0@y (W) du.
0

Gronwall’s inequality [10, p. 36] yields

E[e"y* ()] < O(s)|EP.

Hence
EV (1) < e Oe)lel.
Therefore,
Elx" (0] < CEIR (1) < Cy[Ely* ()P < e 0(e)lél.
The proof is complete. O
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5. Examples

In this section we provide examples to illustrate two-time-scale singular systems.
In these examples, the matrix manipulations were carried out using Maple. Since
the paper focuses on developing the two-time-scale models, but not on large-scale
simulations, only simple examples are presented.

ExampLE 5.1. Let @®(f) be a switching process taking values in M ={1,2} with
generator

Q8=g, where Q = 4 and £ =0.1.
£ 2 =2

Consider the singular system

G(a®(0))x(r) = A(@®()x(t) dt + H(a®(1))x(¢) dB(?), 5.1
where
1 . -3.
G(l):G(2>:[O 8] A<1)=[8 005], A(2>=[ > 8}
1 0 0 0
H(l)z[o 0.5]’ H(z):[o 1]'
Then
1 000
~ = 0000
G(H=GQ2)= 00 o ol
0000
105 0 0 35 00 0
— 005 0 0 — 0 000
AD=10 0o 05 o] 4@= 0o 0 0 ol
0 0 0 025 0 0 0 1

Now let us consider the corresponding limit singular system

GY(1) = AY(1),

where
1 000 -2.3333 0.1667 0 0
G_loooo L | 0 0167 0 0
{0 0 0 o B 0 0 0.1667 0
0 0 0O 0 0 0 0.75
Then
P,y 0 0 O
— = 0 0 0O
GP=PG= 0 0 0 0 and P1,2=P1,3=P1,4=0.
0 0 0O
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3

2.5

0 0.2 0.4 0.6 0.8 1

FiGure 1. A trajectory of the singular dynamical system (5.1). Time between 0 and 1; £ = 0.001.

Thus
AP+PA
-4.0 Py, 0.16 P1; +0.16 Py 0.16 P3 0.75 Py,
_ 016 Pl,l +0.16 P2,1 03 P2,2 016 P2,3 +0.16 P3’2 016 P2,4 +0.75 P4.2
- 0.16 P3, 0.16 Py +0.16 P35 0.3 P33 0.16 P34 +0.75 P3|
0.75 P4, 0.16 Pos +0.75 P4y 0.16 P34+ 0.75 Pys 1.50 P44

Hence G and A satisfy (A3)—(AS5) with

1 0 0 O
- 10 -1 0 O
P= 0 0 -1 0
0 0 0 -1

Therefore, (5.1) is asymptotically mean-square stable.

Next we plot sample paths of the system, using MATLAB with step size 4 = 0.0001.
We obtain Figures 1-3 for the first coordinate. The system quickly reaches its limit
position. Figure | shows the result for £ = 0.001, and Figure 3 shows that result in four
smaller intervals. Figure 2 displays the sample path and trajectory corresponding to
€ =0.1. It is seen that the smaller the value of &, the faster the system decays.

ExampLE 5.2. In this example, we consider a slightly more complicated singular
matrix. Let a®(7) be a switching process taking values in M = {1, 2} with generator

Qf = Q/s + O, where
~ |-2 2 —~ 1 -1
o-[7 A} 2[4 7
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25

20 ]

15 |

10 i

0 0.2 0.4 0.6 0.8 1

FIGURE 2. A trajectory of the singular dynamical system (5.1). Time between 0 and 1; £ =0.1.

x 1073
3 9
8
2.5 g
2 6
15 5
! 3
2
0.5 (1)
0 0.05 0.1 0.15 02 025 03 0.3 0.320.340.360.38 0.4 0.420.440.460.48 0.5
(a) Time between 0 and 0.3 (b) Time between 0.3 and 0.5
x 104 % 10-7
2.5
) 2
1.5
1 1
0.5

0 0
0.5 0.520.540.560.58 0.6 0.620.640.660.68 0.7 07 075 08 085 09 095 1
(c) Time between 0.5 and 0.7 (d) Time between 0.7 and 1

FiGuRE 3. A trajectory of the singular dynamical system (5.1) with & = 0.001.

and € = 0.1. Consider the singular system

G(@®()x(@) = A(@®(O))x(t) dt + Ha®(®))x(t) dB(), x(0)= [g} s 5.2)
where
1 2 -1 -2 4
G(l)z[z 4}’ G(2)=[3 6]’ A(l):[—s —186}’

R AP AENER |
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0.5
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0.8 1

387

FIGURE 4. A trajectory of the singular dynamical system (5.2). Time between 0 and 1; £ = 0.1.

Analogous to Example 5.1, (5.2) is asymptotically mean-square stable as demonstrated

in Figure 4.

ExampLE 5.3. Let @®(f) be a switching process taking values in M = {1, 2, 3, 4} with

generator Q° = é/s, where
-4 4 0 0 -1
~ 1 -1 0 O ~ |0
2=l o 2 2| 270
o o0 3 -3 1

and € = 0.1. Consider the singular system

G(a@®(0))x(t) = A(@®())x(?) dt + H(a(1))x(t) dB(1),

where
G(l):G(2):[(1) 8}, G(3):G(4):[(1) (1)7
A(2):[_30'5 8], A(s)z[_o1 g] A(4)7
IR R R L

As e — 0, E(x®*(t)) — z(¢) such that

0O 1 O
-1 0 1
1 -1 0}
0 0 -1

(5.3)

- am=|g G
[-2 0
“lo 1|’

0 1 0 0
0 0]’ H(4):[0 0]'

G(@®)) dz(t) = A(@(r)z(t) dt,
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1
0.9
0.8
0.7
0.6
05¢
04F
03F
0.2¢
0.1

0

0 0.1 0.2 0.3 0.4 0.5

FiGure 5. A trajectory of the singular dynamical system (5.3). Time between 0 and 0.5; € = 0.1.

where a(t) is the Markov chain generated by

100 0 100 0
~ 1 _loooo = fo100
Q=[1 —1]’ and GM=15 ¢ 0 o[ “@=lo 0 1 of
000 0 000 I
28 01 0 0 14 0 0 06
— o 10 ofl -, 0o 06 0 o0
AD=l0 0o 1 o A@= 0 0 24 0
0 0 0 185 0 0 0 06

Since G and A satisfy (A3)—(AS), (5.3) is asymptotically mean-square stable as
demonstrated in Figure 5.

6. Further remarks

This work has been devoted to singular jump-linear systems whose switching
processes have large state spaces. Thus, alternatively, such systems could be called
singular systems with singularly perturbed Markov chains. The multi-scale structure
and two-time-scale formulation are used to reflect that the discrete event process in the
system has a large state space. We have established a reduction of complexity from the
stability point of view, using perturbed Lyapunov function methods. The conclusion
is that as the small parameter goes to 0, we can use the stability of the limit system to
infer that of the original system. The original system is normally difficult to analyse
because of its large dimension, whereas the limit system is relatively simpler. Thus the
result provides a practical guideline for treating many such systems.

Some of the conditions used in our main results seem to be technical, such as
some of the rank conditions. For example, (A3) and (AS) may not be easy to verify
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analytically, but could be verifiable using numerical methods in applications, and
(A4) is a standard quadratic form which can be solved by linear matrix inequality
techniques. In any case, relaxing these conditions will certainly be a worthwhile effort.

We have provided several examples for illustration only. The idea presented in the
paper is applicable to large-scale systems. Working with large-scale simulation and
numerical examples is another worthwhile direction for future research that will be
important for various applications.
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