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LOCAL SECTIONS OF ARITHMETIC FUNDAMENTAL GROUPS
OF p-ADIC CURVES

MOHAMED SAÏDI

Abstract. We investigate sections of the arithmetic fundamental group

π1(X) where X is either a smooth affinoid p-adic curve, or a formal germ

of a p-adic curve, and prove that they can be lifted (unconditionally) to

sections of cuspidally abelian Galois groups. As a consequence, if X admits a

compactification Y, and the exact sequence of π1(X) splits, then index(Y ) = 1.

We also exhibit a necessary and sufficient condition for a section of π1(X) to

arise from a rational point of Y. One of the key ingredients in our investigation

is the fact, we prove in this paper in case X is affinoid, that the Picard group

of X is finite.

§0. Introduction/Main results

This paper is motivated by the p-adic analog of the anabelian Grothendieck section

conjecture.

Let p ≥ 2 be a prime number, let k/Qp be a finite extension, and let Y be a proper,

smooth, and geometrically connected hyperbolic k -curve. The arithmetic fundamental group

π1(Y ) of Y projects onto the Galois group Gk
def
= Gal(k̄/k) of k. A k -rational point x :

Speck→ Y gives rise, by functoriality of fundamental groups, to a section sx :Gk → π1(Y )

of the projection π1(Y )�Gk. We shall refer to such a section sx as geometric.

Question A. Is every section of the projection π1(Y )�Gk geometric?

In [22, Theorem 2 in the Introduction], we established two necessary and sufficient

conditions for a group-theoretic section of the projection π1(Y ) � Gk to be geometric.

In [13], Hoshi constructed a group-theoretic section Gk → π1(Y )(p) of the projection

π1(Y )(p) �Gk for a specific example Y, where π1(Y )(p) is the geometrically pro-p quotient

of π1(Y ), which is not geometric (i.e., does not arise from a scheme morphism x : Speck→
Y ). The author is not aware of any example of a Y as above and a group-theoretic section

of the projection π1(Y )�Gk which is not geometric.

Let X be either a geometrically connected affinoid subspace of Y rig, the rigid analytic

curve associated with Y, or a formal germ of Y, meaning X = Spec(ÔY,y ⊗Ok
k) is

geometrically connected, where ÔY,y is the completion of the local ring OY,y of a model Y
of Y over the ring of valuation Ok of k at a closed point y ∈ Ycl (cf. Notations). Let π1(X)

be the étale fundamental group of X which sits in the exact sequence (cf. Notations)

1→ π1(X)geo → π1(X)→Gk
def
= Gal(k̄/k)→ 1.

A section s :Gk → π1(X) of the projection π1(X)�Gk induces a section sY :Gk → π1(Y )

of the projection π1(Y ) � Gk (cf. Notations, diagram (0.1)) which we shall refer to as a
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LOCAL SECTIONS OF ARITHMETIC FUNDAMENTAL GROUPS OF p-ADIC CURVES 463

local section of the projection π1(Y )�Gk. A geometric section is necessarily a local section

as one easily verifies. This prompts the following question, which motivates our study in

this paper of local sections of arithmetic fundamental groups of p-adic curves.

Question B. Is every local section of the projection π1(Y )�Gk geometric?

Motivated by Questions A and B, we investigate sections of arithmetic fundamental

groups of affinoid k -curves and formal p-adic germs of curves.

Let X be either a smooth and geometrically connected k-affinoid curve or a formal p-adic

germ (cf. Notations for precise definitions). Let π1(X)geo,ab be the maximal abelian quotient

of π1(X)geo, and let π1(X)(ab) be the geometrically abelian quotient of π1(X) which sits in

the exact sequence

1→ π1(X)geo,ab → π1(X)(ab) →Gk → 1.

Similarly, let GX
def
= Gal(L/L) be the absolute Galois group of the function field L of X

(see Notations for the definition of L) which sits in the exact sequence (cf. §1)

1→Ggeo
X →GX →Gk → 1.

Let Ggeo,ab
X be the maximal abelian quotient of Ggeo

X , and let G
(ab)
X be the geometrically

abelian quotient of GX which sits in the exact sequence

1→Ggeo,ab
X →G

(ab)
X →Gk → 1.

We have an exact sequence

1→ H̃X →G
(ab)
X → π1(X)(ab) → 1,

where H̃X
def
= Ker[G

(ab)
X � π1(X)(ab)]. In §1, we investigate the structure of the Gk-module

H̃X . We prove in Proposition 1.4 that H̃X is (canonically) isomorphic to
∏

x∈Xcl Ind
k
k(x) Ẑ(1)

where the product is over all closed points of X and k(x) is the residue field at x.

The Galois group GX sits in an exact sequence

1→HX →GX → π1(X)→ 1,

where HX
def
= Ker[GX � π1(X)]. Let Hab

X be the maximal abelian quotient of HX , and

let G
(c−ab)
X be the geometrically cuspidally abelian quotient of GX which sits in the exact

sequence

1→Hab
X →G

(c−ab)
X → π1(X)→ 1.

In §2, we investigate, in the framework of the theory of cuspidalization of sections of

arithmetic fundamental groups (cf. [19], [22]), sections s : Gk → π1(X) of the projection

π1(X)�Gk. Let Y be a k-compactification of X, and let sY :Gk → π1(Y ) be the induced

local section of the projection π1(Y ) � Gk (cf. Notations for precise definitions and the

diagram (0.1) therein). One of our main results is the following (cf. Theorems 2.4 and

3.1(ii)).

Theorem A (Lifting of sections to cuspidally abelian Galois groups). Let s : Gk →
π1(X) be a section of the projection π1(X)�Gk. The followings hold.
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464 M. SAÏDI

(i) There exists a section sc−ab :Gk →G
(c−ab)
X of the projection G

(c−ab)
X �Gk which lifts

the section s, that is, which inserts in the following commutative diagram:

Gk
sc−ab

−−−−→ G
(c−ab)
X∥∥∥
⏐⏐�

Gk
s−−−−→ π1(X)

(0.1)

where the right vertical map is the natural projection G
(c−ab)
X � π1(X). In particular, the

set of sections of the projection G
(c−ab)
X �Gk which lift the section s is non-empty, and is

(up to conjugation by elements of Hab
X ) a torsor under H1(Gk,Hab

X ).

(ii) Assume Y is hyperbolic. Then the section sY :Gk → π1(Y ) induced by s is uniformly

orthogonal to Pic in the sense of [19, Definition 1.4.1].

The section s is uniformly orthogonal to Pic (as in (ii) above) means that the retraction

map s∗ :H2(π1(Y ), Ẑ(1))
∼→H2

et(Y, Ẑ(1))→H2(Gk, Ẑ(1)), which is induced by the section

s, annihilates the Picard part of H2
et(Y, Ẑ(1)), and similarly for every neighborhood Y ′ → Y

of the section s.

Theorem A(ii) implies that local sections of arithmetic fundamental groups of hyperbolic

p-adic curves satisfy condition (i) in [22, Theorem 2 in the Introduction]. In this sense,

local sections are close to being geometric. Establishing Theorem A(ii) was one of the main

motivations for the author to investigate local sections of arithmetic fundamental groups

of p-adic curves. Apart from local sections, and geometric sections, the author is not aware

(for the time being) of any examples of group-theoretic sections of arithmetic fundamental

groups of hyperbolic p-adic curves which are orthogonal to Pic.

As a consequence of Theorem A, and an observation of Esnault and Wittenberg on

geometrically abelian sections of p-adic curves, we deduce the following (cf. Theorem 2.5).

Theorem B. Assume that X admits a k-compactification Y (cf. Notations). If the

projection π1(X)�Gk splits, then index(Y ) = 1.

Theorem B asserts that the existence of local sections of arithmetic fundamental groups

of p-adic curves implies the existence of degree 1 rational divisors. The link between sections

of geometrically abelian Galois groups and the existence of degree 1 rational divisors has

been investigated in [5].

In §3, we assume that X admits a k -compactification Y (cf. Notations). Let ΠY [X]

be the étale fundamental group which classifies finite covers Y ′ → Y which only ramify

at points of Y not in X (cf. 3.3, as well as Notations for the meaning of not in X ). A

section s :Gk → π1(X) of the projection π1(X)�Gk induces naturally a section s† :Gk →
ΠY [X] of the projection ΠY [X] � Gk. We say that the section s is geometric (relative

to Y ) if the image s†(Gk) is contained in a decomposition group Dx ⊂ ΠY [X] associated

with a rational point x ∈ Y (k) (cf. Definition 3.3.2). Further, we say that s is admissible

(relative to Y ) (cf. Definition 3.5.1) if for every open subgroupH ⊂ΠY [X] with s†(Gk)⊂H,

corresponding to (a possibly ramified) cover Y ′ → Y , the following holds. Let G
(1/p2−sol)
Y ′ be

the geometrically cuspidally 1/p2-solvable Galois group of Y ′: that is, the maximal quotient

GY ′ �H � π1(Y
′) of the absolute Galois group GY ′ of Y ′ such that Ker[H � π1(Y

′)] is

abelian annihilated by p2 (cf. [22, 3.1]). There exists a section s̃Y ′ :Gk →G
(1/p2−sol)
Y ′ of the
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projection G
(1/p2−sol)
Y ′ � Gk (such a section exists unconditionally [see discussion in 3.5])

satisfying the following property:

For each open subgroup F ⊂ G
(1/p2−sol)
Y ′ with s̃Y ′(Gk) ⊂ F , corresponding to a (pos-

sibly ramified) cover Y ′′ → Y ′ with Y ′′ geometrically connected, the class of Pic1Y ′′

in H1(Gk,Pic
0
Y ′′) is divisible by p.

Our main result in §3 is the following (cf. Theorem 3.5.2).

Theorem C. The section s : Gk → π1(X) is geometric (relative to Y) if and only if s

is admissible (relative to Y).

One of the key ingredients used in the proofs of the above results is the fact that Pic(X)

is finite. In the case where X is a formal p-adic germ, this is established in [22, Proposition

5.4], as a consequence of a result of Shuji Saito (cf. [22, Proposition 5.4]). In case X is

affinoid, this is proven in §4 (cf. Proposition 4.1) and may be of interest independently of

the topics discussed in this paper. More precisely, we prove the following.

Theorem D (Picard groups of affinoid p-adic curves). Let k be a p-adic local field (i.e.,

k/Qp is a finite extension), and let X = Sp(A) be a smooth and geometrically connected

k-affinoid curve. Then the Picard group Pic(X) is finite.

Finally, in §5, we prove (cf. Proposition 5.1) a compactification result for two-dimensional

complete local p-adic rings which is used in the proofs of Propositions 1.2 and 2.2.

The results in §4 and §5 are used in this paper in §2 and §3; none of the results in §2
and §3 is used in §4 and §5.

In this paper, we worked with full arithmetic fundamental groups. Instead, one could

consider a similar setting and work with geometrically pro-p arithmetic fundamental

groups and Galois groups as in [22] (where one considers geometrically pro-Σ arithmetic

fundamental groups and Galois groups, Σ being a set of primes containing p). In this

geometrically pro-p (pro-Σ) setting, one can prove analogs of Theorems A and C.

Notations. The following notations will be used throughout this paper (unless we specify

otherwise).

• p ≥ 2 is a prime number, and k is a p-adic local field (i.e., k/Qp is a finite extension)

with ring of valuation Ok, uniformizer π, and residue field F. Thus, F is a finite field of

characteristic p.

• A proper, smooth, and geometrically connected k -curve Y is hyperbolic if genus(Y )≥ 2.

• For a profinite group H, we denote by Hab the maximal abelian quotient of H.

• Let

1→H ′ →H
pr−−−−→ G→ 1

be an exact sequence of profinite groups. We will refer to a continuous homomorphism

s :G→H such that pr◦s= idG as a (group-theoretic) section of the above sequence, or

simply a section of the projection pr :H �G.

• All scheme cohomology groups considered in this paper are étale cohomology groups.

0.1 Affinoid p-adic curves

• X = SpA is a smooth and geometrically connected affinoid k-curve. On occasions, we will

write, if there is no risk of confusion, X = SpecA for the corresponding affine k -scheme.
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• One can embed X into a proper, smooth, and geometrically connected rigid analytic curve

Y rig :X ↪→ Y rig so that X is an open affinoid subspace of Y rig (cf. [6, 2.6, Corollaire 2]).

Write Y for the algebraization of Y rig via the rigid GAGA functor, which is a proper,

smooth, and geometrically connected algebraic k -curve. We will refer to X as a p-adic

affinoid curve (or simply an affinoid) and Y a k-compactification of X.

0.2 Formal p-adic germs

• A is a normal two-dimensional complete local ring containing Ok with maximal ideal mA

containing π and residue field F =A/mA. Write Ak
def
= A⊗Ok

k =A[ 1π ] and X
def
= SpecAk.

We assume X is geometrically connected and refer to X as a formal p-adic germ.

• A (k -)compactification of SpecA is a proper and flat relative Ok-curve Y → SpecOk with

Y normal, Y
def
= Y×SpecOk

Speck geometrically connected, y ∈ Ycl is a closed point, OY,y

is the local ring of Y at y, ÔY,y its completion, with an isomorphism ÔY,y
∼→A. We have

a natural scheme morphism X → Y . We shall refer to Y as a k-compactification of X.

In §5, we prove the existence of such a compactification X → Y after possibly a finite

extension of k (cf. Proposition 5.1).

In what follows, X is either an affinoid p-adic curve or a formal p-adic germ.

• We say that X is hyperbolic if there exists a finite extension k′/k such that Xk′
def
=

Spec(A⊗k k
′) (resp. Xk′

def
= Sp(A⊗k k

′) if X is affinoid) possesses a k′-compactification Y

with Y hyperbolic. There exist a finite extension k′/k and a finite geometric étale cover

X ′ →Xk′ with X ′ geometrically connected and hyperbolic. This is Proposition 5.3 in case

X is a formal p-adic germ and follows from [21. Theorem A] in case X is affinoid.

• η is a fixed choice of a geometric point of X with values in its generic point. Thus, η

determines algebraic closures k̄, L, of k, and L
def
= Fr(A), respectively. We have an exact

sequence of fundamental groups

1 −−−−→ π1(X,η)geo −−−−→ π1(X,η) −−−−→ Gk −−−−→ 1,

where π1(X,η) is the étale fundamental group of X with geometric point η (cf. [21, 2.1]

for more details on the definition of π1(X,η) in case X is an affinoid), π1(X,η)geo
def
=

Ker[π1(X,η)�Gk], and Gk
def
= Gal(k̄/k) is the absolute Galois group of k.

In what follows, Y is a k-compactification of X.

• We have a commutative diagram of exact sequences of arithmetic fundamental groups

1 −−−−→ π1(X,η)geo −−−−→ π1(X,η) −−−−→ Gk −−−−→ 1⏐⏐�
⏐⏐�

∥∥∥
1 −−−−→ π1(Yk̄, η̄) −−−−→ π1(Y,η) −−−−→ Gk −−−−→ 1,

(0.2)

where π1(Y,η) (resp. π1(Yk̄, η̄)) is the étale fundamental group of Y (resp. Yk̄
def
= Y ×Speck

Spec k̄) with geometric point η (resp. η̄ which is induced by η). In case X is an affinoid

(resp. a formal p-adic germ), the middle vertical map is induced by the rigid analytic

morphism X → Y rig and the rigid GAGA functor (resp. the scheme morphism X → Y ).
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• We write Xcl (resp. Y cl) for the set of closed points of X (resp. Y ). For a closed point x

of X (resp. Y ), we write k(x) for the residue field at x. Thus, k(x) is a finite extension

of k.

• We say that x∈ Y cl is not in X if x is not in the image of the scheme morphismX → Y if X

is a formal p-adic germ or x /∈Xcl in case X is affinoid. In case X =Spec(OY,y⊗Ok
k) is a

formal p-adic germ, the set of closed points of Y not in X is in one-to-one correspondence

with the set of closed points of Y which do not specialize in y (cf. [16, §10, Proposition
1.40(a)]).

Throughout §§1–3, X will denote either an affinoid p-adic curve or a formal p-adic germ.

In §3, we will assume X admits a k-compactification Y which is hyperbolic and fix a choice

of such a compactification throughout.

§1. Geometrically abelian arithmetic fundamental groups

In this section, we investigate the structure of various geometrically abelian arithmetic

fundamental groups and absolute Galois group associated with X. Let

π1(X,η)(ab)
def
= π1(X,η)/Ker[π1(X,η)geo � π1(X,η)geo,ab]

be the geometrically abelian fundamental group of X (here, π1(X,η)geo,ab denotes the

maximal abelian quotient of π1(X,η)geo).

Proposition 1.1. We use the above notations. The followings hold.

(i) Assume X is an affinoid. For each prime number �, the pro-�-Sylow subgroup of

π1(X,η)geo,ab is pro-� abelian free, of infinite rank if � = p, and finite (computable)

rank otherwise (see [21, Theorem A] for the precise value of this rank in case � �= p).

(ii) Assume X is a formal p-adic germ. For each prime number � �= p, the pro-�-Sylow

subgroup of π1(X,η)geo,ab is pro-� abelian free of finite computable rank (see [23,

Theorem A] for the precise value of this rank).

Proof. Assertion (i) follows from [21, Theorem A]. (Note that the assumption in [21,

Theorem A] that X is the complement in a proper rigid analytic k -curve of the disjoint

union of finitely many k -rational open disks is satisfied after a finite extension of k [cf. [6,

2.6, Théorème 6 and Corollaire 1]].) Assertion (ii) follows from [23, Theorem A].

Let S
def
= {x1, . . . ,xn} ⊂Xcl be a finite set of closed points and write U

def
= X \S viewed

as an open subscheme of X (resp. X = SpecA in case X is an affinoid). Let π1(U,η) be

the étale fundamental group of U with geometric point η (cf. [21, 2.1] for the definition of

π1(U,η) in case X is affinoid) which sits in the exact sequence

1 −−−−→ π1(U,η)
geo −−−−→ π1(U,η) −−−−→ Gk −−−−→ 1,

where π1(U,η)
geo def

= Ker[π1(U,η)�Gk] (cf. [21, 2.1] in case X is affinoid). Let

π1(U,η)
(ab) def

= π1(U,η)/Ker[π1(U,η)
geo � π1(U,η)

geo,ab]

be the geometrically abelian fundamental group of U (here, π1(U,η)
geo,ab is the maximal

abelian quotient of π1(U,η)
geo). We have an exact sequence

1→ Δ̃U → π1(U,η)
(ab) → π1(X,η)(ab) → 1, (1.1)
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where Δ̃U
def
= Ker[π1(U,η)

(ab) � π1(X,η)(ab)] = Ker[π1(U,η)
geo,ab � π1(X,η)geo,ab] and the

(surjective) map π1(U,η)
(ab) � π1(X,η)(ab) is induced by the natural projection π1(U,η)�

π1(X,η). Note that Δ̃U has a natural structure of Gk-module.

Proposition 1.2. We use the above notations. There exists a natural isomorphism

n∏
i=1

Indkk(xi) Ẑ(1)
∼→ Δ̃U

of Gk-modules where the (1) is a Tate twist.

Proof. We have a natural surjective homomorphism
∏n

i=1 Ind
k
k(xi) Ẑ(1) � Δ̃U of Gk-

modules mapping Indkk(x′
i)
Ẑ(1) onto the inertia subgroup [of π1(U,η)

(ab)] at xi, as follows

from the structure of inertia groups of Galois extensions of Henselian discrete valuation rings

of residue characteristic zero. We show this map is an isomorphism. To this end, we can,

without loss of generality, assume that X admits a k -compactification Y (cf. Notations).

Indeed, this holds for X affinoid (cf. [21, 2.1]), and holds after possibly replacing k by a

finite field extension in case X is a formal p-adic germ (cf. Proposition 5.1) which does not

alter the structure of Δ̃U . We have a commutative diagram of exact sequences

1 −−−−→ π1(X,η)geo,ab −−−−→ π1(X,η)(ab) −−−−→ Gk −−−−→ 1⏐⏐�
⏐⏐�

∥∥∥
1 −−−−→ π1(Yk̄, η̄)

ab −−−−→ π1(Y,η)
(ab) −−−−→ Gk −−−−→ 1,

(1.2)

where π1(Y,η)
(ab) def

= π1(Y,η)/Ker[π1(Yk̄, η̄) � π1(Yk̄, η̄)
ab] and the middle vertical map is

induced by the natural homomorphism π1(X,η)→ π1(Y,η) (cf. Notations, diagram (0.1)).

Denote by x′
i the image of xi in Y, ∀1 ≤ i ≤ n (note that k(xi) = k(x′

i)). Let x′
0 ∈

Y cl \ {x′
1, . . . ,x

′
n} be a closed point which is not in the image of X (cf. Notations). Write

S′ def= {x′
0,x

′
1, . . . ,x

′
n} ⊂ Y cl and V

def
= Y \S′ which is an affine k -curve. Let π1(V,η) be the

étale fundamental group of V with geometric point η which sits in the exact sequence 1→
π1(Vk̄, η̄)→ π1(V,η)→Gk → 1, where π1(Vk̄, η̄) is the étale fundamental group of Vk̄

def
= V ×k

k̄ with geometric point η̄ which is induced by η. Let π1(V,η)
(ab) def

= π1(V,η)/Ker[π1(Vk̄, η̄)�
π1(Vk̄, η̄)

ab] be the geometrically abelian fundamental group of V. We have a commutative

diagram of exact sequences

1 −−−−→ Δ̃U −−−−→ π1(U,η)
(ab) −−−−→ π1(X,η)(ab) −−−−→ 1⏐⏐�

⏐⏐�
⏐⏐�

1 −−−−→ Δ̃V −−−−→ π1(V,η)
(ab) −−−−→ π1(Y,η)

(ab) −−−−→ 1,

(1.3)

where Δ̃V
def
= Ker[π1(V,η)

(ab) � π1(Y,η)
(ab)]. The middle vertical map in diagram (1.3) is

induced by the natural homomorphism π1(U,η)→ π1(V,η), which is induced by the scheme

morphism X → Y in case X is a formal p-adic germ, and by the rigid analytic morphism

X → Y rig and the rigid GAGA functor in case X is affinoid (here, we use the fact that x′
0

is not in the image of X ). The right vertical map in diagram (1.3) is the middle vertical

map in diagram (1.2).
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One has an exact sequence of Gk-modules (as follows from the well-known structure of

π1(V,η)
(ab); see, e.g., the discussion in [24, §0])

0→ Ẑ(1)→
n∏

i=0

Indkk(x′
i)
Ẑ(1)→ Δ̃V → 0.

Consider the composite homomorphism τ :
∏n

i=1 Ind
k
k(x′

i)
Ẑ(1)→ Δ̃V of Gk-modules:

n∏
i=1

Indkk(x′
i)
Ẑ(1) ↪→

n∏
i=0

Indkk(x′
i)
Ẑ(1)� Δ̃V ,

where the first map is the natural embedding: (β1, . . . ,βn) �→ (0,β1, . . . ,βn) and the second

map is as in the above exact sequence. Thus, τ is injective (cf. above exact sequence).

Consider the following commutative diagram:

∏n
i=1 Ind

k
k(x′

i)
Ẑ(1) −−−−→ Δ̃U⏐⏐�

⏐⏐�
∏n

i=0 Ind
k
k(x′

i)
Ẑ(1) −−−−→ Δ̃V

where the right vertical map is the one in diagram (1.3). The left vertical and lower

horizontal maps are as explained above; hence, their composite is the map τ . The upper

horizontal map is the natural projection
∏n

i=1 Ind
k
k(x′

i)
Ẑ(1) � Δ̃U mentioned at the start

of the proof. This map is an isomorphism since it is onto and it is injective as τ is.

Remark 1.3. With the notations in Proposition 1.2 and the proof therein, assume that

x′
0 ∈ Y (k) is a k -rational point. In this case τ(

∏n
i=1 Ind

k
k(x′

i)
Ẑ(1)) = Δ̃V , the map Δ̃U → Δ̃V

is an isomorphism, and the right square in diagram (1.3) (cf. proof of Proposition 1.2) is

cartesian.

Let GX
def
= Gal(L/L) (recall L

def
= Fr(A)) which sits in the exact sequences

1→Ggeo
X →GX →Gk → 1,

where Ggeo
X

def
= Gal(L/Lk̄), and

1→HX →GX → π1(X,η)→ 1, (1.4)

where HX
def
= Ker[GX � π1(X,η)]. Let

G
(ab)
X

def
= GX/Ker(Ggeo

X �Ggeo,ab
X )

which we shall refer to as the geometrically abelian Galois group of X (here, Ggeo,ab
X is the

maximal abelian quotient of Ggeo
X ). We have an exact sequence

1→ H̃X →G
(ab)
X → π1(X,η)(ab) → 1, (1.5)

where H̃X
def
= Ker[G

(ab)
X � π1(X,η)(ab)] = Ker[Ggeo,ab

X � π1(X,η)geo,ab]. Note that H̃X has

a natural structure of Gk-module.
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Proposition 1.4. We use the above notations. There exists a natural isomorphism of

Gk-modules ∏
x∈Xcl

Indkk(x) Ẑ(1)
∼→ H̃X ,

where the product is over all closed points x ∈Xcl.

Proof. This follows from Proposition 1.2 and the fact that H̃X
∼→ lim←−U

Δ̃U where U =

X \S; S runs over all finite subsets of Xcl, and Δ̃U is as in the proof of Proposition 1.2.

(Note that G
(ab)
X

∼→ lim←−U
π1(U,η)

(ab) where the limit runs over all U as above.)

§2. Cuspidally abelian arithmetic fundamental groups

In this section, we investigate the problem of cuspidalization of sections of the projection

π1(X,η) � Gk. This problem has been investigated in the case of proper and smooth

hyperbolic p-adic curves in [19], [22]. We use the notations in §0 and §1.
Let S

def
= {x1, . . . ,xn} ⊂Xcl be a finite set of closed points, and let U

def
= X \S (cf. §1).

Consider the exact sequence

1→ΔU → π1(U,η)
geo → π1(X,η)geo → 1,

where ΔU
def
= Ker[π1(U,η)

geo � π1(X,η)geo]. The maximal abelian quotient Δab
U of ΔU is

a π1(X,η)geo-module. Let Δcn
U be the maximal quotient of Δab

U on which π1(X,η)geo acts

trivially. Define

π1(U,η)
geo,c−ab def

= π1(U,η)
geo/Ker(ΔU �Δab

U )

and

π1(U,η)
geo,c−cn def

= π1(U,η)
geo/Ker(ΔU �Δcn

U ).

We shall refer to π1(U,η)
geo,c−ab (resp. π1(U,η)

geo,c−cn) as the cuspidally abelian (resp.

cuspidally central) quotient of π1(U,η)
geo. Further, define

π1(U,η)
(c−ab) def

= π1(U,η)/Ker(ΔU �Δab
U )

and

π1(U,η)
(c−cn) def

= π1(U,η)/Ker(ΔU �Δcn
U ).

We shall refer to π1(U,η)
(c−ab) (resp. π1(U,η)

(c−cn)) as the (geometrically) cuspidally

abelian (resp. [geometrically] cuspidally central) quotient of π1(U,η). We have the following

commutative diagram of exact sequences:

1 −−−−→ ΔU −−−−→ π1(U,η) −−−−→ π1(X,η) −−−−→ 1⏐⏐�
⏐⏐�

∥∥∥
1 −−−−→ Δab

U −−−−→ π1(U,η)
(c−ab) −−−−→ π1(X,η) −−−−→ 1⏐⏐�

⏐⏐�
∥∥∥

1 −−−−→ Δcn
U −−−−→ π1(U,η)

(c−cn) −−−−→ π1(X,η) −−−−→ 1⏐⏐�
⏐⏐�

⏐⏐�
1 −−−−→ Δ̃U −−−−→ π1(U,η)

(ab) −−−−→ π1(X,η)(ab) −−−−→ 1

(2.1)
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where the middle vertical maps are surjective, and the middle vertical map in the lower

diagram is induced by the natural surjective map π1(U,η)
geo,c−ab � π1(U,η)

geo,ab. (Note

that π1(X,η)geo acts trivially on the quotient Δ̃U of Δab
U .)

Lemma 2.1. We use the above notations. The homomorphism Δcn
U → Δ̃U in diagram

(2.1) is an isomorphism of Gk-modules. In particular, the lower right square in diagram

(2.1) is Cartesian.

Proof. The proof follows from Proposition 1.2 and the various definitions. More pre-

cisely, there exists a natural surjective homomorphism
∏n

i=1 Ind
k
k(xi) Ẑ(1)�Δcn

U (mapping

Indkk(x′
i)
Ẑ(1) onto the inertia subgroup of π1(U,η)

(c−cn) at xi, as follows from the structure

of inertia groups of Galois extensions of Henselian discrete valuation rings of residue

characteristic zero) which composed with the projection Δcn
U � Δ̃U is the isomorphism∏n

i=1 Ind
k
k(xi) Ẑ(1)

∼→ Δ̃U in Proposition 1.2 hence our assertion.

Let s :Gk → π1(X,η) be a section of the projection π1(X,η)�Gk.

Proposition 2.2 (Lifting of sections to cuspidally central arithmetic fundamental

groups). We use the above notations. There exists a section sc−cn
U : Gk → π1(U,η)

(c−cn)

of the projection π1(U,η)
(c−cn) �Gk which lifts the section s, that is, which inserts in the

following commutative diagram:

Gk
sc−cn
U−−−−→ π1(U,η)

(c−cn)

∥∥∥
⏐⏐�

Gk
s−−−−→ π1(X,η)

where the right vertical map is the natural projection π1(U,η)
(c−cn) � π1(X,η). In

particular, the set of sections of the projection π1(U,η)
(c−cn) � Gk which lift the section

s is non-empty, and is (up to conjugation by elements of Δcn
U ) a torsor under H1(Gk,Δ

cn
U ).

Proof. Consider the commutative diagram of exact sequences

1 −−−−→ Δcn
U −−−−→ EU

def
= EU [s] −−−−→ Gk −−−−→ 1∥∥∥
⏐⏐� s

⏐⏐�
1 −−−−→ Δcn

U −−−−→ π1(U,η)
(c−cn) −−−−→ π1(X,η) −−−−→ 1

where the right square is Cartesian. Thus, the group extension EU is the pullback of the

group extension π1(U,η)
(c−cn) by the section s. The set of (possible) splittings of the group

extension EU is in one-to-one correspondence with the set of sections of the projection

π1(U,η)
(c−cn) �Gk which lift the section s. We show that the group extension EU splits.

To this end, we can replace k by a finite extension over which the points {xi}ni=1 are

rational, and we can also assume n = 1 (see the argument at the start of the proof of

Lemma 2.3.1 in [19]). Further, we can replace X by a neighborhood X ′ of the section s :

that is, an étale cover X ′ →X corresponding to an open subgroup H = π1(X
′,η)⊂ π1(X,η)

containing the image s(Gk) of s. Indeed, if U ′ def
= U ×X X ′, there exists a commutative
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diagram of natural homomorphisms

π1(U
′,η)(c−cn) −−−−→ π1(U,η)

(c−cn)

⏐⏐�
⏐⏐�

π1(X
′,η) −−−−→ π1(X,η)

where the upper horizontal map is induced by the natural map π1(U
′,η)→ π1(U,η) (note

ΔU ′ = ΔU and π1(X
′,η)geo acts trivially on Δcn

U ), and the various maps in this diagram

commute with the projections onto Gk. The section s induces a section s̃ :Gk → π1(X
′,η)

of the projection π1(X
′,η)� Gk, and a lifting s̃c−cn

U ′ : Gk → π1(U
′,η)(c−cn) of s̃ (as in the

statement of Proposition 2.2) induces a lifting sc−cn
U :Gk → π1(U,η)

(c−cn) of s as required

(cf. above diagram). Now, it follows from [21, Theorem A] in case X is an affinoid, and

Proposition 5.3 in this paper (cf. §5) in case X is a formal p-adic germ, that there exists

(after possibly a finite extension of k) a neighborhood X ′ → X of s with X ′ hyperbolic

(cf. Notations). We can thus assume, without loss of generality, that X possesses a k -

compactification Y with Y hyperbolic and the set S
def
= {x} ⊂ X(k) consists of a single

k -rational point, in which case Δcn
U

∼→ Ẑ(1) as a π1(X,η)-module (cf. Lemma 2.1 and

Proposition 1.2).

Consider the following maps (here, X = SpecA in case X is affinoid):

H2(π1(X,η), Ẑ(1)) ↪→H2(X, Ẑ(1))← Pic(X),

where the map H2(π1(X,η), Ẑ(1)) ↪→ H2(X, Ẑ(1)) arises from the Cartan–Leray spectral

sequence and is injective (cf. [25, Proof of Proposition 1]), and the map Pic(X) →
H2(X, Ẑ(1)) is the cycle class map arising from the Kummer exact sequence in étale

topology. Let [π1(U,η)
(c−cn)] ∈ H2(π1(X,η), Ẑ(1)) be the class of the group extension

π1(U,η)
(c−cn). The image of [π1(U,η)

(c−cn)] in H2(X, Ẑ(1)) coincides with the image of

the line bundle O(x) ∈ Pic(X) via the Kummer map Pic(X)→H2(X, Ẑ(1)). Indeed, this

follows from the following commutative diagram:

H2(π1(X,η), Ẑ(1)) −−−−→ H2(X, Ẑ(1)) ←−−−− Pic(X)�⏐⏐
�⏐⏐

�⏐⏐
H2(π1(Y,η), Ẑ(1)) −−−−→ H2(Y, Ẑ(1)) ←−−−− Pic(Y )

where the right and middle vertical maps are induced by the scheme morphism X → Y if

X is a formal p-adic germ, and the rigid morphism X → Y rig and the comparison theorems

between étale cohomology and rigid analytic étale cohomology in case X is affinoid (cf. [11,

Theorem 1.8 and Theorem 1.9]). The right horizontal maps are the cycle class maps arising

from the Kummer exact sequence in étale topology, and the left lower horizontal map

is an isomorphism arising from the Cartan–Leray spectral sequence (cf. [17, Proposition

1.1]). The pullback of the class [π1(V,η)
(c−cn)] ∈ H2(π1(Y,η), Ẑ(1)) in H2(π1(X,η), Ẑ(1)),

where V is the complement in Y of the image of S = {x} (cf. [19, 2.1.1] for the definition

of π1(V,η)
(c−cn)), coincides with the class [π1(U,η)

(c−cn)] (this follows from Lemma 2.1

and the various definitions). The class [π1(V,η)
(c−cn)] ∈ H2(π1(Y,η), Ẑ(1))

∼→ H2(Y, Ẑ(1))

coincides with the image of the Chern class of the line bundle O(y)∈Pic(Y ) where y ∈ Y (k)

is the image of x (cf. [19, Proof of Lemma 2.3.1]). Thus, the image of [π1(U,η)
(c−cn)] in
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H2(X, Ẑ(1)) coincides with the image of the line bundle O(x) ∈ Pic(X) via the cycle class

map Pic(X)→H2(X, Ẑ(1)) as claimed.

The Picard group Pic(X) is finite (cf. Proposition 4.1 in this paper in case X is affinoid

and [22, Proposition 5.4] in case X is a formal p-adic germ). In particular, the image of

[π1(U,η)
(c−cn)] in H2(X, Ẑ(1)) and hence the class [π1(U,η)

(c−cn)] is a torsion element of

H2(π1(X,η), Ẑ(1)). The class [EU ] ∈H2(Gk, Ẑ(1)) of the group extension EU is the image

of [π1(U,η)
(c−cn)] under the retraction map H2(π1(X,η), Ẑ(1))

s�−−−−→ H2(Gk, Ẑ(1))
∼→ Ẑ

induced by s. Hence, the class [EU ] is trivial since Ẑ is torsion-free, and the group extension

EU splits.

Theorem 2.3 (Lifting of sections to cuspidally abelian arithmetic fundamental groups).

We use the above notations. There exists a section sabU :Gk → π1(U,η)
(c−ab) of the projection

π1(U,η)
(c−ab) � Gk which lifts the section s, that is, which inserts in the following

commutative diagram:

Gk
sc−ab
U−−−−→ π1(U,η)

(c−ab)

∥∥∥
⏐⏐�

Gk
s−−−−→ π1(X,η)

where the right vertical map is the natural projection π1(U,η)
(c−ab) � π1(X,η). In

particular, the set of sections of the projection π1(U,η)
(c−ab) �Gk which lift the section s

is non-empty, and is (up to conjugation by elements of Δab
U ) a torsor under H1(Gk,Δ

ab
U ).

Proof. Let {H}i∈I be a projective system of open subgroups of π1(X,η) containing s(Gk)

such that s(Gk) =
⋂

i∈IHi. Thus, for i ∈ I, the open subgroup Hi corresponds to an étale

finite cover Xi → X with Xi geometrically connected and Hi is identified with π1(Xi,η)

which sits in the exact sequence 1 → π1(Xi,η)
geo → π1(Xi,η) → Gk → 1 (the geometric

point; denote also η, of Xi is induced by the geometric point η of X ). Further, the section s

induces a section si :Gk → π1(Xi,η) of the projection π1(Xi,η)�Gk. Let Ui
def
= U ×X Xi,

and let π1(Ui,η)
(c−cn) be the (geometrically) cuspidally central arithmetic fundamental

group of Ui which sits in the exact sequence 1→Δcn
Ui

→ π1(Ui,η)
(c−cn) → π1(Xi,η)→ 1.

Consider the following commutative diagrams:

1 −−−−→ Δab
U −−−−→ EU −−−−→ Gk −−−−→ 1⏐⏐�

⏐⏐� s

⏐⏐�
1 −−−−→ Δab

U −−−−→ π1(U,η)
(c−ab) −−−−→ π1(X,η) −−−−→ 1

and for i ∈ I

1 −−−−→ Δcn
Ui

−−−−→ EUi −−−−→ Gk −−−−→ 1⏐⏐�
⏐⏐� si

⏐⏐�
1 −−−−→ Δcn

Ui
−−−−→ π1(Ui,η)

(c−cn) −−−−→ π1(Xi,η) −−−−→ 1

where the right squares are Cartesian. Thus, EU (resp. EUi) is the pullback of the group

extension π1(U,η)
(c−ab) (resp. π1(Ui,η)

(c−cn)) by the section s (resp. si). There is a natural

isomorphism Δab
U = lim←−i∈I

Δcn
Ui

as follows from the facts that ΔU =ΔUi , ∀i ∈ I, and given a

finite quotient Δab
U �H, there exists i∈ I such that π1(Xi,η)

geo acts trivially on H. Further,
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there is a natural isomorphism EU ∼→ lim←−i∈I
EUi (the transition maps in the projective limit

being surjective). The existence of a section sc−ab
U : Gk → π1(U,η)

(c−ab) of the projection

π1(U,η)
(c−ab) � Gk which lifts the section s is equivalent to the splitting of the group

extension EU , and the set of those (possible) liftings sc−ab
U is in one-to-one correspondence

with the set of sections of the projection EU �Gk. The natural projection EUi �Gk splits

for all i ∈ I (see the proof of Proposition 2.2). We show that the group extension EU splits.

Let (Pj)j∈J be a projective system of quotients EU � Pj , where Pj sits in an exact

sequence 1→ Fj → Pj →Gk → 1 with Fj finite, and EU = lim←−j∈J
Pj . (More precisely, write

EU as a projective limit of finite groups {P̃j}j∈J where P̃j sits in an exact sequence 1 →
Fj → P̃j → Gj → 1 with Gj a quotient of Gk and Fj a quotient of Ker(EU � Gk). Let

1→ Fj → Pj →Gk → 1 be the pullback of the group extension 1→ Fj → P̃j →Gj → 1 by

Gk � Gj . Then EU = lim←−j∈J
Pj .) The set Sect(Gk,EU ) of group-theoretic sections of the

projection EU � Gk is naturally identified with the projective limit lim←−j∈J
Sect(Gk,Pj) of

the sets Sect(Gk,Pj) of group-theoretic sections of the projections Pj �Gk, j ∈ J . The set

Sect(Gk,Pj) is non-empty, ∀j ∈ J . Indeed, Pj (being a quotient of EU ) is a quotient of EUi

for some i ∈ I, this quotient EUi � Pj commutes with the projections onto Gk, and we

know the projection EUi �Gk splits, and hence the projection Pj �Gk splits. Moreover,

the set Sect(Gk,Pj) is, up to conjugation by the elements of Fj , a torsor under the group

H1(Gk,Fj) which is finite since k is a p-adic local field (cf. [18, (7.1.8) Theorem (iii)]).

Thus, Sect(Gk,Pj) is a non-empty finite set. The set Sect(Gk,EU ) is non-empty being the

projective limit of non-empty finite sets. This finishes the proof of Theorem 2.3.

Next, let

G
(c−ab)
X

def
= GX/Ker(HX �Hab

X )

(cf. exact sequence (1.4) for the definition ofHX). Thus, G
(c−ab)
X = lim←−U

π1(U,η)
(c−ab) where

U runs over all subschemes of X as in Theorem 2.3.

Theorem 2.4 (Lifting of sections to cuspidally abelian Galois groups). We use the above

notations. There exists a section sc−ab :Gk →G
(c−ab)
X of the projection G

(c−ab)
X �Gk which

lifts the section s, that is, which inserts in the following commutative diagram:

Gk
sc−ab

−−−−→ G
(c−ab)
X∥∥∥
⏐⏐�

Gk
s−−−−→ π1(X,η)

where the right vertical map is the natural projection G
(c−ab)
X � π1(X,η). In particular, the

set of sections of the projection G
(c−ab)
X �Gk which lift the section s is non-empty, and is

(up to conjugation by elements of Hab
X ) a torsor under H1(Gk,Hab

X ).

Proof. The proof follows, using the natural identification Gc−ab
X

∼→ lim←−U
π1(U,η)

c−ab

(where U runs over all subschemes of X as in Theorem 2.3), from Theorem 2.3 and a

similar argument in our context to the one used in the proof of Theorem 2.3.5 in [19].

Alternatively, one can use Theorem 2.3 and a similar argument to the one used at the end

of the proof of Theorem 2.3.

The following is one of our main results in this section.
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Theorem 2.5. Assume that X admits a k-compactification Y (cf. Notations). If the

projection π1(X,η)�Gk splits, then index(Y ) = 1.

Proof. Assume that the projection π1(X,η)�Gk splits and let s :Gk → π1(X,η) be a

section of this projection. By Theorem 2.4, there exists a section sc−ab : Gk → G
(c−ab)
X of

the projection G
(c−ab)
X �Gk which lifts the section s. The section sc−ab induces naturally

a section s̃ : Gk → G
(ab)
X of the projection G

(ab)
X � Gk (see §1 for the definition of G

(ab)
X

and note that G
(ab)
X is a quotient of G

(c−ab)
X ). Let GY

def
= Gal(K/K) be the absolute Galois

group of the function field K of Y, and let G
(ab)
Y

def
= GY /Ker[Gal(K/Kk̄)�Gal(K/Kk̄)ab]

be its geometrically abelian quotient. We have a commutative diagram

G
(ab)
X −−−−→ Gk⏐⏐�

∥∥∥
G

(ab)
Y −−−−→ Gk

where the left vertical map is induced by the natural map GX → GY , which is induced

by the scheme morphism X → Y in case X is a formal p-adic germ, and by the rigid

analytic morphism X → Y rig and the rigid GAGA functor in case X is affinoid. The section

s̃ : Gk → G
(ab)
X induces a section s† : Gk → G

(ab)
Y of the projection G

(ab)
Y � Gk (cf. above

diagram). The existence of the section s† implies that index(Y ) = 1 as was observed by

Esnault and Wittenberg (see [5, Remark 2.3(ii)] and [24, Theorem A] for a more general

result).

§3. Geometric sections of arithmetic fundamental groups

We investigate geometric sections of the projection π1(X,η) � Gk (relative to a fixed

compactification of X ). We use the notations in §§0–2. We further assume that X possesses

a k-compactification Y with Y hyperbolic (cf. Notations) which is fixed throughout §3.
Let

s :Gk → π1(X,η)

be a section of the projection π1(X,η)� Gk fixed throughout §3, which induces a (local)

section

sY :Gk → π1(Y,η)

of the projection π1(Y,η)�Gk (cf. diagram (0.1) and §0).
We have an exact sequence

1→IY →GY → π1(Y,η)→ 1,

where GY = Gal(K/K) is the absolute Galois group of the function field K of Y and

IY def
= Ker[GY � π1(Y,η)]. Let

G
(c−ab)
Y

def
= GY /Ker(IY � Iab

Y ).

Thus, G
(c−ab)
Y = lim←−V

π1(V,η)
(c−ab) where V runs over all open subschemes of Y (cf. [19,

2.1.1] for the definition of π1(V,η)
(c−ab)).
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Theorem 3.1 (Lifting of sections to cuspidally abelian Galois groups). We use the

above notations. The followings hold.

(i) There exists a section sc−ab
Y :Gk →G

(c−ab)
Y of the projection G

(c−ab)
Y �Gk which lifts

the section sY :Gk → π1(Y,η), that is, which inserts in the following commutative diagram:

Gk
sc−ab
Y−−−−→ G

(c−ab)
Y∥∥∥
⏐⏐�

Gk
sY−−−−→ π1(Y,η)

where the right vertical map is the natural projection G
(c−ab)
Y � π1(Y,η). In particular, the

set of sections of the projection G
(c−ab)
Y �Gk which lift the section sY is non-empty, and

is (up to conjugation by elements of Iab
Y ) a torsor under H1(Gk,Iab

Y ).

(ii) The (local) section sY :Gk → π1(Y,η) is uniformly orthogonal to Pic in the sense of

[19, Definition 1.4.1].

Proof. Assertion (i) follows from Theorem 2.4 and the fact that there exists a natural

homomorphism G
(c−ab)
X → G

(c−ab)
Y , induced by the natural homomorphism GX → GY ,

which commutes with the projections to Gk. Assertion (ii) follows from assertion (i) and

Theorem 2.3.5 in [19].

Consider the following push-out diagram:

1 −−−−→ HX −−−−→ GX −−−−→ π1(X,η) −−−−→ 1⏐⏐�
⏐⏐�

∥∥∥
1 −−−−→ HX,1/p2 −−−−→ G

(1/p2−sol)
X −−−−→ π1(X,η) −−−−→ 1

where HX,1/p2 is the maximal 1/p2-th solvable quotient of HX and G
(1/p2−sol)
X

def
=

GX/Ker(HX �HX,1/p2). Thus, HX,1/p2 is the maximal quotient of HX which is abelian

and annihilated by p2 (cf. [22, 1.2] for more details). We have a commutative diagram of

exact sequences

1 −−−−→ HX,1/p2 −−−−→ G
(1/p2−sol)
X −−−−→ π1(X,η) −−−−→ 1⏐⏐�

⏐⏐�
⏐⏐�

1 −−−−→ IY,1/p2 −−−−→ G
(1/p2−sol)
Y −−−−→ π1(Y,η) −−−−→ 1

(3.1)

which is induced by the natural homomorphism GX →GY , where G
(1/p2−sol)
Y is defined in

a similar way to G
(1/p2−sol)
X . More precisely, IY,1/p2 is the maximal quotient of IY which is

abelian and annihilated by p2 and G
(1/p2−sol)
Y

def
= GY /Ker(IY � IY,1/p2) is the geometrically

cuspidally 1/p2-th step solvable quotient of GY (cf. [22, 3.1]; recall the exact sequence

1→IY →GY → π1(Y,η)→ 1).

The following Proposition 3.2, item (i), is weaker than (and follows from) Theorem 2.4,

and we state it in connection with Theorem 3.5.2 in this section.

Proposition 3.2 (Lifting of sections to cuspidally 1/p2-th step solvable Galois groups).

We use the above notations. The followings hold.
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(i) There exists a section s̃ :Gk →G
(1/p2−sol)
X of the projection G

(1/p2−sol)
X �Gk which lifts

the section s :Gk → π1(X,η), that is, which inserts in the following commutative diagram:

Gk
s̃−−−−→ G

(1/p2−sol)
X∥∥∥

⏐⏐�
Gk

s−−−−→ π1(X,η)

where the right vertical map is the natural projection G
(1/p2−sol)
X � π1(X,η). In particular,

the set of sections of the projection G
(1/p2−sol)
X �Gk which lift the section s is non-empty,

and is (up to conjugation by elements of HX,1/p2) a torsor under H1(Gk,HX,1/p2).

(ii) The section s̃ :Gk →G
(1/p2−sol)
X in (i) induces a section s̃Y :Gk →G

(1/p2−sol)
Y of the

projection G
(1/p2−sol)
Y � Gk which lifts the section sY : Gk → π1(Y,η). In particular, the

(local) section sY :Gk → π1(Y,η) is uniformly orthogonal to Pic mod-p2 in the sense of [22,

Definition 3.4.1].

Proof. Assertion (i) follows from Theorem 2.4 and the fact that there exists a natural

projection G
(c−ab)
X �G

(1/p2−sol)
X which commutes with the projections onto Gk. Assertion

(ii) follows from (i) and the fact that there exists a natural homomorphism G
(1/p2−sol)
X →

G
(1/p2−sol)
Y , induced by the homomorphismGX →GY , which commutes with the projections

onto Gk (cf. diagram (3.1) and [22, Theorem 3.4.4]).

3.3

Write

ΠY [X]
def
= lim←−

T⊂Y \X
π1(Y \T,η)

and

ΠY [X]geo
def
= lim←−

T⊂Y \X
π1(Y \T,η)geo,

where the limits are over all subsets T consisting of finitely many closed points of Y not

in X (cf. Notations), Y \ T is the corresponding (affine if T is non-empty) curve, and

π1(Y \T,η)geo def
= Ker[π1(Y \T,η) � Gk]. We have the following commutative diagram of

exact sequences:

1 −−−−→ π1(X,η)geo −−−−→ π1(X,η) −−−−→ Gk −−−−→ 1⏐⏐�
⏐⏐�

∥∥∥
1 −−−−→ ΠY [X]geo −−−−→ ΠY [X] −−−−→ Gk −−−−→ 1⏐⏐�

⏐⏐�
∥∥∥

1 −−−−→ π1(Yk̄, η̄) −−−−→ π1(Y,η) −−−−→ Gk −−−−→ 1

(3.2)

where the middle upper map is induced by the rigid analytic morphism X → Y rig and the

rigid GAGA functor in case X is affinoid, and the scheme morphism X → Y in case X is

a formal p-adic germ. The left and middle lower vertical maps are the natural projections

(they are surjective).
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Proposition 3.3.1. We use the above notations. The left and middle upper vertical

maps in diagram (3.2) are injective in the case X is affinoid.

Proof. The first assertion follows from Theorem A in [21] (see the comments in the proof

of Proposition 1.1). The second assertion follows from the first and the commutativity of

the upper part in diagram (3.2).

The section s :Gk → π1(X,η) induces a section (denoted also s)

s :Gk →ΠY [X]

of the projections ΠY [X]�Gk (cf. diagram (3.2)).

Definition 3.3.2. We say that the section s is geometric, relative to Y, if the image

s(Gk) of the section s : Gk → ΠY [X] is contained in a decomposition group Dx ⊂ ΠY [X]

associated with a rational point x ∈ Y (k).

Note that if s is geometric in the above sense, associated with x ∈ Y (k), then the (local)

section sY :Gk → π1(Y,η) of the projection π1(Y,η)�Gk induced by s is geometric and is

associated with x ∈ Y (k), that is, sY (Gk) is contained in (hence equal to) a decomposition

group Dx ⊂ π1(Y,η) associated to x.

3.4

In this subsection, we assume that X = Spec(A⊗Ok
k) is a formal p-adic germ.

Let Y → SpecOk be a model of Y, let y ∈ Ycl be a closed point, and let ÔY,y
∼→A be an

isomorphism. Let YF
def
= Y ×SpecOk

SpecF be the special fiber of Y. Consider the following

assumption (*):

(*) The gcd of the total multiplicities of the irreducible components of YF is 1.

Let ξ be a geometric point of YF with values in the generic point of an irreducible

component Yi0 of YF . Thus, ξ determines an algebraic closure F of F. We have the following

commutative diagram of exact sequences:

1 −−−−→ π1(X,η)geo −−−−→ π1(X,η) −−−−→ Gk −−−−→ 1⏐⏐�
⏐⏐�

∥∥∥
1 −−−−→ π1(Yk̄, η̄) −−−−→ π1(Y,η) −−−−→ Gk −−−−→ 1⏐⏐�

⏐⏐�
⏐⏐�

1 −−−−→ π1(YF , ξ̄) −−−−→ π1(YF , ξ) −−−−→ GF −−−−→ 1

(3.3)

where the middle upper map is induced by the scheme morphism X → Y , the lower middle

map (which is defined up to conjugation) is a specialization map, π1(YF , ξ) (resp. π1(YF , ξ̄))

is the fundamental group of Y (resp. YF
def
= Y×SpecOk

SpecF ) with geometric point ξ (resp.

ξ̄ which is induced by ξ), GF
def
= Gal(F/F ), and the lower right vertical map is the natural

projection Gk � GF (cf. [20, diagram 0.1] and the discussion thereafter). The left (hence

also the middle) lower vertical map in diagram (3.3) is surjective under the assumption (*)

(cf. [20, diagram 0.1] and the references therein).
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The section s : Gk → π1(X,η) induces the (local) section sY : Gk → π1(Y,η) of the

projection π1(Y,η)�Gk, as well as a homomorphism

s̃ :Gk → π1(YF , ξ)

obtained by composing the section sY :Gk → π1(Y,η) with the specialization map π1(Y,η)�
π1(YF , ξ) in diagram (3.3).

Lemma 3.4.1. We use the above notations. The followings hold.

(i) The closed point y ∈ Ycl is an F-rational point.

(ii) The section sY is unramified: the homomorphism s̃ : Gk → π1(YF , ξ) factors through

GF and induces a section s̄Y : GF → π1(YF , ξ) of the natural projection π1(YF , ξ)�
GF .

(iii) The section s̄Y :GF → π1(YF , ξ) in (ii) is geometric and arises from the rational point

y, that is, arises from the scheme-theoretic morphism y : SpecF →YF .

(iv) Assume that Y is regular. Then condition (*) holds.

Proof. Assertion (i) is clear (recall ÔY,y
∼→A); it also follows from (ii). We prove (ii).

We have a commutative diagram of scheme morphisms

X −−−−→ Y⏐⏐�
⏐⏐�

SpecA −−−−→ Y�⏐⏐
�⏐⏐

Spec(F )
y−−−−→ YF

(3.4)

where the lower horizontal morphism is induced by the closed point y of YF , and the

lower vertical morphisms are closed immersions. This diagram gives rise to a commutative

diagram of homomorphisms between fundamental groups

π1(X,η) −−−−→ π1(Y,η)⏐⏐�
⏐⏐�

π1(SpecA,η) −−−−→ π1(Y,η)

τy

�⏐⏐ σ

�⏐⏐
GF

sy−−−−→ π1(YF , ξ)

(3.5)

where the lower horizontal map is a section of the projection π1(YF , ξ) � GF

arising from the F -rational point y ∈ YF , and is defined up to conjugation, the

lower vertical maps are induced by the lower vertical maps in diagram (3.4)

(they are defined up to conjugation) and are isomorphisms (cf. [8, Exposé X,

Théorème 2.1] for the right vertical map σ being an isomorphism). Further, the

composite ψ : π1(X,η)→ π1(SpecA,η)
τ−1
y−−−−→ GF

sy−−−−→ π1(YF , ξ)
is the composite

of the middle vertical maps in diagram (3.3) as follows from the definition of the

specialization map π1(Y,η) → π1(YF , ξ): this map is the composite of the maps

π1(Y,η)→ π1(Y,η)
σ−1

−−−−→ π1(YF , ξ). In particular, the homomorphism s̃ :Gk → π1(YF , ξ)

factors through GF and induces a section s̄Y : GF → π1(YF , ξ) of the natural projection
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π1(YF , ξ) � GF . This shows (ii). The section s̄Y coincides (up to conjugation) with the

section GF
sy−−−−→ π1(YF , ξ) in diagram (3.5), hence is geometric and arises from the F -

rational point y as claimed in (iii). The last assertion follows from Theorem 2.5 and the

well-known fact that if Y is regular, then the gcd of the total multiplicities of the irreducible

components of YF divides index(Y ) (cf., e.g., [7, Theorem 8.2 and Remark 8.6]).

Remark 3.4.2. Assume that the morphism Y → SpecOk is smooth. If s is geometric,

and arises from the rational point x ∈ Y (k) (cf. Definition 3.3.2), it follows from Lemma

3.4.1(iii) and the fact that YF is hyperbolic that the point x specializes in y necessarily (cf.

[27, Proposition (2.8)(i)]). In particular, the point x is the image of a (unique) k -rational

point x̃ ∈X(k) via the morphism X → Y . The fact that sY (Gk) =Dx ⊂ π1(Y,η) does not

imply a priori that the image s(Gk) via the section s : Gk → π1(X,η) is contained in a

decomposition group Dx̃ ⊂ π1(X,η) associated with x̃.

3.5

Let H ⊂ ΠY [X] be an open subgroup with s(Gk) ⊂ H [recall s : Gk → ΠY [X] is the

section induced by s : Gk → π1(X,η)]. Thus, H corresponds to a (possibly ramified) finite

cover Y ′ → Y with Y ′ geometrically connected. Let H ′ ⊂ π1(X,η) be the inverse image

of H via the homomorphism π1(X,η) → ΠY [X] (cf. diagram (3.2)). Thus, H ′ is an open

subgroup of π1(X,η) containing the image of the section s :Gk → π1(X,η) and corresponds

to an étale cover X ′ →X with X ′ geometrically connected. There is a natural morphism

X ′ → (Y ′)rig of rigid analytic spaces in case X is affinoid, and a natural scheme morphism

X ′ → Y ′ in case X is a formal p-adic germ. The generic point η induces naturally a generic

point (denoted also η) of X ′ and Y ′. Further, we have a natural identification H ′ = π1(X
′,η)

and a natural homomorphism π1(X
′,η)→ π1(Y

′,η) which commutes with the projections

onto Gk.

The section s : Gk → π1(X,η) induces naturally sections s′ : Gk → π1(X
′,η) and sY ′ :

Gk → π1(Y
′,η) of the natural projections π1(X

′,η)�Gk and π1(Y
′,η)�Gk, respectively.

The section s′ : Gk → π1(X
′,η) lifts to a section s̃′ : Gk → G

(1/p2−sol)
X′ of the projection

G
(1/p2−sol)
X′ �Gk and induces a section s̃Y ′ :Gk →G

(1/p2−sol)
Y ′ of the projection G

(1/p2−sol)
Y ′ �

Gk (cf. Proposition 3.2). Let F ⊂ G
(1/p2−sol)
Y ′ be an open subgroup with s̃Y ′(Gk) ⊂ F .

Thus, F corresponds to a (possibly ramified) finite cover Y ′′ → Y ′ with Y ′′ geometrically

connected. The generic point η induces naturally a generic point (denoted also η) of Y ′′.

Write π1(Y
′′,η)(1/p−sol) for the geometrically 1/p-th step solvable quotient of π1(Y

′′,η)

which sits in the following exact sequence:

1→ π1(Y
′′
k̄ , η̄)1/p → π1(Y

′′,η)(1/p−sol) →Gk → 1, (3.6)

where π1(Y
′′
k̄
, η̄)1/p is the maximal 1/p-th step solvable quotient of π1(Y

′′
k̄
, η̄) (cf. [22, 1.2])

and the generic point η̄ is induced by η. Thus, π1(Y
′′
k̄
, η̄)1/p is the maximal quotient of

π1(Y
′′
k̄
, η̄) which is abelian and annihilated by p (cf. [22, 1.2]).

Definition 3.5.1. We use the above notations. We say that the section s is admissible,

relative to Y, if for every open subgroup H ⊂ ΠY [X] with s(Gk) ⊂ H, corresponding

to (a possibly ramified) cover Y ′ → Y , the following holds. There exists a section

s̃Y ′ : Gk → G
(1/p2−sol)
Y ′ of the projection G

(1/p2−sol)
Y ′ � Gk (such a section exists uncon-

ditionally [see above discussion]) satisfying the following property: for each open sub-
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group F ⊂G
(1/p2−sol)
Y ′ with s̃Y ′(Gk)⊂ F , corresponding to a (possibly ramified) cover Y ′′ →

Y ′ with Y ′′ geometrically connected, the natural projection π1(Y
′′,η)(1/p−sol) � Gk splits

(cf. above discussion). Note that this latter condition is equivalent to (cf. [22, Lemma 3.4.8]):

the class of Pic1Y ′′ in H1(Gk,Pic
0
Y ′′) is divisible by p.

Our main result in this section is the following.

Theorem 3.5.2. We use the above notations. The section s :Gk → π1(X,η) is geometric

relative to Y (cf. Definition 3.3.2) if and only if s is admissible relative to Y (cf. Definition

3.5.1).

Proof. Assume first that the section s : Gk → π1(X,η) is admissible (relative to Y ).

We prove that s is geometric (relative to Y ). Using a well-known limit argument due

to Tamagawa (cf. [27, Proposition 2.8(iv)]), it suffices to show the following. For every

open subgroup H ⊂ ΠY [X] with s(Gk) ⊂H, corresponding to (a possibly ramified) cover

Y ′ → Y with Y ′ hyperbolic, Y ′(k) �= ∅ holds. By assumption, there exists a section s̃Y ′ :

Gk → G
(1/p2−sol)
Y ′ of the projection G

(1/p2−sol)
Y ′ � Gk satisfying the condition in Definition

3.5.1. In [22, 3.3], we defined a certain quotient GY ′ �G
(p,2)
Y ′ �G

(1/p2−sol)
Y ′ of GY ′ (we refer

to [22, 3.3] for more details on the definition of G
(p,2)
Y ′ ). Let F ⊂ G

(1/p2−sol)
Y ′ be an open

subgroup with s̃Y ′(Gk) ⊂ F corresponding to a (possibly ramified) cover Y ′′ → Y ′ with

Y ′′ geometrically connected. By assumption, the natural projection π1(Y
′′,η)(1/p−sol) �Gk

splits (cf. Definition 3.5.1). This latter condition (for every F as above) implies that (in fact

is equivalent to) the section s̃Y ′ :Gk →G
(1/p2−sol)
Y ′ lifts to a section s†Y ′ :Gk →G

(p,2)
Y ′ of the

projection G
(p,2)
Y ′ �Gk (cf. [22, Theorem 3.4.10 and Lemma 3.4.8]). Further, the existence

of the section s†Y ′ :Gk →G
(p,2)
Y ′ as above implies that Y ′(k) �= ∅ by [22, Proposition 4.6], as

required.

Next, we assume that s is geometric (relative to Y ) and prove that s is admissible (relative

to Y ). By assumption s(Gk) is contained in Dx ⊂ ΠY [X] where Dx is a decomposition

group associated with a rational point x ∈ Y (k). Let H ⊂ ΠY [X] be an open subgroup

with s(Gk) ⊂ H corresponding to (a possibly ramified) cover Y ′ → Y . Then Y ′(k) �= ∅.
A rational point x′ ∈ Y ′(k) gives rise to a section s̃Y ′ : Gk → G

(1/p2−sol)
Y ′ of the projection

G
(1/p2−sol)
Y ′ �Gk. Let F ⊂G

(1/p2−sol)
Y ′ be an open subgroup with s̃Y ′(Gk)⊂F corresponding

to a (possibly ramified) cover Y ′′ → Y ′ with Y ′′ geometrically connected. Then Y ′′(k) �= ∅
holds since the section s̃Y ′ : Gk → G

(1/p2−sol)
Y ′ arises from the rational point x′ and

s̃Y ′(Gk) ⊂ F . In particular, the natural projection π1(Y
′′,η) � Gk, and a fortiori the

projection π1(Y
′′,η)(1/p−sol) �Gk, splits. Thus, s is admissible as required.

§4. Picard groups of affinoid p-adic curves

The following is our main result in this section; it may be of interest independently of

the topics discussed in §§1–3.

Proposition 4.1. Let X = Sp(A) be a smooth and geometrically connected k-affinoid

curve. Then the Picard group Pic(X) is finite.

The rest of this section is devoted to the proof of Proposition 4.1.

Let X = SpfB be an excellent normal Ok-formal scheme of finite type with generic fiber

X, that is, A = B⊗R k. Write X reg for the set of regular points of X . Thus, X \X reg =
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{z1, . . . , zt} consists of finitely many closed points of X . By Lipman’s theorem of resolution

of singularities for excellent two-dimensional schemes, there exists a birational and proper

morphism λ :S →X with S regular and λ−1(X reg)→X reg an isomorphism (cf. [15]; here, we

view X as the ordinary affine scheme SpecB). For n≥ 1, write Bn
def
= B/(πn), Xn

def
= SpecBn,

and Sn
def
= S ×X Xn. Further, denote X0

def
= X red

n and S0
def
= Sred

n . Thus, X0 and S0 are one-

dimensional reduced schemes over F. Further, there exists a morphism λ : S →X as above

with S0 a divisor with strict normal crossings (cf. [3, Corollary 0.4]), which we assume from

now on.

We have a surjective homomorphism Pic(X reg)� Pic(X). To prove Pic(X) is finite, it

suffices to prove that Pic(X reg) is finite. For each singular point zi of X , let Ei
def
= λ−1(zi)

red

and let {Di,j}1≤j≤ni be the set of irreducible components of Ei, 1 ≤ i ≤ t. Thus, Ei is a

reduced proper curve over the residue field k(zi) at zi which is a finite field. We have an

exact sequence

M
def
= ⊕t

i=1(⊕ni
j=1Z)

β−−−−→ Pic(S)→ Pic(X reg)→ 0,

where β maps the copy of Z indexed by the pair (i, j) to the class of the divisor Di,j .

Further, we have an isomorphism

Pic(S) ∼→ lim←−
n≥1

Pic(Sn)

(cf. [9, première partie, Corollaire 5.1.6]).

Lemma 4.2. We use notations as above. To prove that Pic(X reg) is finite, it suffices to

prove the following two assertions:

(A) The cokernel of the composite map

φn :M
def
= ⊕t

i=1(⊕ni
j=1Z)

β−−−−→ Pic(S)→ Pic(Sn)

is finite for n≥ 1.

(B) There exists n0 > 0 such that the map

Pic(Sn+1)→ Pic(Sn)

is an isomorphism for n > n0.

Proof of Lemma 4.2. Follows from the above discussion and the fact that we have an

exact sequence

M → lim←−
n≥1

Pic(Sn)→ lim←−
n≥1

coker(φn)→ 0,

where the first map is induced by the maps φn :M → Pic(Sn), n≥ 1, and lim←−n≥1
coker(φn)

is finite if assertions (A) and (B) are satisfied.

This finishes the proof of Lemma 4.2.

The rest of this section is devoted to the proofs of assertions (A) and (B).

Proof of assertion (A). Let {ηr}sr=1 be the generic points of X0, let ρ : Snor
0 →S0 be the

morphism of normalization, let Ẽi
def
= ρ−1(Ei), 1 ≤ i ≤ t, and let Hr = {ηr} be the closure

in Snor
0 of the (inverse image in S0 of the) generic point ηr of X0, 1≤ r ≤ s. Thus, Hr is a
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connected affine normal one-dimensional scheme over F. Let

d : Pic(S0)
ρ∗

−−−−→ Pic(Snor
0 )

deg−−−−→ M =⊕t
i=1(⊕ni

j=1Z)

be the composite map where the first map is the pullback of line bundles via the

normalization morphism ρ : Snor
0 →S0, and the map deg is obtained by taking the degree

of a line bundle on each irreducible component Di,j of Ei.

Claim 1. ker(d) is finite.

Proof of Claim 1. We have a commutative diagram of exact sequences

0 0 0⏐⏐�
⏐⏐�

⏐⏐�
0 −−−−→ A1 −−−−→ ker(d) −−−−→ ker(deg) =⊕s

r=1Pic(Hr)⊕ (⊕t
i=1Pic

0(Ẽi))⏐⏐�
⏐⏐�

⏐⏐�
0 −−−−→ A2 −−−−→ Pic(S0) −−−−→ Pic(Snor

0 ) =⊕s
r=1Pic(Hr)⊕ (⊕t

i=1Pic(Ẽi))

d

⏐⏐� deg

⏐⏐�
M M

where A1 and A2 are defined so that the above sequences are exact, and A2 is finite as follows

from the facts that the sheaf ρ∗(O×
Snor
0

)/O×
S0

is a skyscraper sheaf and the residue fields at

closed points of S0 are finite fields. The kernel ker(deg) =⊕s
r=1Pic(Hr)⊕(⊕t

i=1Pic
0(Ẽi)) of

the right lower vertical map is finite: Pic0(Ẽi) is finite since Ẽi is a proper and non-singular

curve over a finite field, and for 1 ≤ r ≤ s it holds Pic(Hr) is finite since Hr is an affine

and normal one-dimensional scheme of finite type over the finite field F. Indeed, assume

for simplicity that Hr is geometrically connected over F. Let �/F be a finite extension

such that Ur
def
= Hr×SpecF Spec� admits a smooth and connected compactification Cr with

(Cr \Ur)(�) �= ∅. Let Ur → Hr be the canonical morphism, and let Pic(Hr) → Pic(Ur) be

the induced map of pullback of line bundles. Then Ker[Pic(Hr)→ Pic(Ur)] is finite (cf. [10,

Theorem 1.8]). Further, the map Pic0(Cr)→Pic(Ur) obtained by restricting a degree 0 line

bundle on Cr to Ur is surjective (if x ∈ (Cr \Ur)(�) and D ∈ Pic(Ur) has degree m then

D−mx ∈ Pic0(Cr) restricts to D on Ur); hence, Pic(Ur) is finite since Pic0(Cr) is finite.

From the above, it follows that Pic(Hr) is finite.

This finishes the proof of Claim 1.

Consider the composite map

ψn : Pic(Sn)→ Pic(S0)
d−−−−→ M =⊕t

i=1(⊕ni
j=1Z).

Claim 2. ker(ψn) is finite.

Proof of Claim 2. First, we prove that the kernel of the map Pic(Sn) → Pic(Sn−1) is

finite for n≥ 2. Write In for the sheaf of ideals of OS defining Sn. We have an exact sequence

of sheaves on Sn:

1→ 1+(In−1/In)→O×
Sn

→O×
Sn−1

→ 1

https://doi.org/10.1017/nmj.2023.33 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.33


484 M. SAÏDI

which induces an exact sequence in cohomology

H1(Sn,1+(In−1/In))→ Pic(Sn)→ Pic(Sn−1)→H2(Sn,1+(In−1/In)).

Further, the truncated exponential map α �→ 1 + α induces an isomorphism of sheaves

In−1/In ∼→ 1 + (In−1/In) [(In−1/In)2 = 0]; hence, H2(Sn,1 + In−1/In) = 0 and the

map Pic(Sn) → Pic(Sn−1) is surjective. Moreover, H1(Sn,In−1/In) is finite. Indeed,

H1(Sn,In−1/In) is a finitely generated Bn-module with finite support since the morphism

λ−1
n (Zn \ {z1, . . . , zt}) → Zn \ {z1, . . . , zt} is affine and R1(πn)∗(In−1/In) is the sheaf

associated with the Bn-moduleH1(Sn,In−1/In); here, λn :Sn →Zn is the proper morphism

induced by λ. This shows that the kernel of the map Pic(Sn)→ Pic(Sn−1) is finite for all

n ≥ 2. A similar argument shows that the kernel of the map Pic(S1) → Pic(S0) is finite.

Hence, using Claim 1, ker(ψn) is finite.

This finishes the proof of Claim 2.

In light of Claim 2, and in order to prove assertion (A), it suffices to prove that the

cokernel of the composite map

M
def
= ⊕t

i=1(⊕ni
j=1Z)

β−−−−→ Pic(S)→ Pic(Sn)→ Pic(S0)
d−−−−→ M =⊕t

i=1(⊕ni
j=1Z)

is finite. The latter follows from the nondegeneracy of the intersection pairing (⊕ni
j=1Z)×

(⊕ni
j=1Z)→ Z on each fiber Ei (cf. [26, Lemma on page 69 and the discussion on page 71

after this lemma]), 1≤ i≤ t.

This finishes the proof of assertion (A).

Proof of assertion (B). Let J be an ample invertible OS-ideal such that Supp(OS/J ) =

S0. The existence of such J follows from the facts that Hr is affine (cf. Proof of Assertion

A), 1≤ r ≤ s, the intersection pairing (⊕ni
j=1Z)× (⊕ni

j=1Z)→ Z on each fiber Ei is negative

definite (cf. [26, Lemma on page 69 and the discussion on page 71 after this lemma]), and

the numerical criterion of ampleness on curves. More precisely, ∀ 1 ≤ i ≤ t, one can find a

divisor D =
∑ni

j=1mijDi,j with mi,j < 0 and D.Di,j > 0 for all 1≤ j ≤ nj .

For m ≥ 1, let S ′
m be the closed subscheme of S defined by the sheaf of ideals Jm. To

prove Assertion B, it suffices to prove that there exists m0 > 0 such that the map

Pic(S ′
m+1)→ Pic(S ′

m)

is an isomorphism for any m>m0. We have an exact sequence of shaves on S ′
m+1:

1→Jm/Jm+1 →O×
S′
m+1

→O×
S′
m
→ 1,

where the map Jm/Jm+1 →O×
S′
m+1

maps a local section α to 1+α, which induces an exact

sequence in cohomology

H1(S ′
m+1,Jm/Jm+1)→ Pic(S ′

m+1)→ Pic(S ′
m)→ 0.

Now, there exists m0 > 0 such that H1(S ′
m+1,Jm/Jm+1) = 0 if m ≥ m0 by [9, première

partie, Proposition 2.2.1].

This finishes the proof of assertion (B).

This finishes the proof of Proposition 4.1.
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§5. Compactification of formal germs of p-adic curves

In this section, we use the following notations: K is a complete discrete valuation field

with valuation ring R, uniformizing parameter π, and with perfect residue field �
def
= R/πR.

Further, A is a two-dimensional normal complete local ring containing R with maximal

ideal mA containing π and residue field �= A/mA. We assume that X
def
= Spec(A⊗RK) is

geometrically connected. Given a finite extension L/K, we write OL for the valuation ring

of L, AL
def
= A⊗OL

L, AOL

def
= A⊗ROL, and Anor

OL
the normalization of AOL

in its total ring

of fractions.

Proposition 5.1 (Compactification of formal germs of p-adic curves). We use the

above notations. There exists a finite extension L/K, a flat, proper, connected, and normal

OL-relative curve Y → SpecOL, a closed point y ∈ Y, and an isomorphism ÔY,y
∼→ Anor

OL

where ÔY,y is the completion of the local ring OY,y of Y at y.

Proof. By the main result in [4, Introduction], there exists a finite extension L/K with

uniformizing parameter πL such that Anor
OL

/πLA
nor
OL

is reduced. Note that Anor
OL

is a normal

two-dimensional complete local ring with perfect residue field (cf. [2, Chap. IX, §4, Lemma

1] and our assumption that X is geometrically connected). Without loss of generality, we

will assume that A/πA is reduced. We show that there exist a proper, flat, connected, and

normal relative R-curve Y → SpecR, a closed point y ∈ Y, and an isomorphism ÔY,y
∼→A.

First, A/πA is a (reduced) one-dimensional complete local ring with residue field �, hence

is isomorphic to a quotient �[[x1, . . . ,xt]]/a of a formal power series ring �[[x1, . . . ,xt]] over �

(cf. [2, chapitre IX, §3]). It then follows from [1, Theorem 3.8] and basic facts on the theory

of algebraic curves, that there exist a proper and reduced connected (but not necessarily

irreducible) �-curve Z, a closed point y ∈ Z, and an isomorphism ÔZ,y
∼→A/πA where ÔZ,y

is the completion of the local ring OZ,y of Z at y. Moreover, Z is non-singular outside y.

There exists a rational function f on Z which defines a finite generically separable morphism

f : Z → P1
� such that y = f−1(∞) (cf. [12, Proof of Theorem 3]). Thus, by considering the

completion of the morphism f above ∞, we obtain a finite generically separable morphism

ḡ : Spec(A/πA)→ Spec(�[[t]]) where t is a local parameter at ∞. This morphism lifts to a

finite morphism g : SpfA→ Spf(R[[T ]]) of formal schemes (cf. [12, Lemma 2]). Let Z̃ → Z

be the morphism of normalization, and let {x1, . . . ,xm} ⊂ Z̃ be the pre-image of y. There is

a one-to-one correspondence between the set {p1, . . . ,pm} ⊂ SpecA of prime ideals of height

1 containing π and the set {x1, . . . ,xm}, pi corresponds to xi, 1 ≤ i ≤ m. The composite

morphism Z̃ → Z → P1
� induces, by completion above ∞, finite separable morphisms ḡi :

SpecFr(Ô
˜Z,xi

)→ Spec�((t)) where Fr(Ô
˜Z,xi

) is the fraction field of the completion Ô
˜Z,xi

of the local ring O
˜Z,xi

of Z̃ at xi, 1≤ i≤m (with the above notations t= T mod π).

Consider the formal closed unit disk D = SpfR< 1
T > with parameter 1

T and its special

fiber D� = Spec�[1t ] (D�
∼→ A1

�). By a result of Gabber and Katz (cf. [14, Main Theorem

1.4.1]), there exists, for 1 ≤ i ≤ m, a finite cover h̄i : Ci → D� with Ci connected, which

only (tamely) ramifies above the point 1
t = 0 and such that the completion of h̄i above

t = 0 is generically isomorphic to the cover ḡi : SpecFr(Ô ˜Z,xi
)→ Spec�((t)). Using formal

patching techniques (cf. [23, 1.2]), one can lift the covers h̄i to finite covers hi : Yi → D

which only ramify above the point 1
T = 0, 1 ≤ i ≤ m. (Outside 1

T = 0, the existence

of such a lifting follows from the theorems of lifting of étale covers [cf. [8, Exposé I,
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Corollaire 8.4]]. In a formal neighborhood of 1
T = 0, such a lifting is possible under the

tameness condition: étale locally near 1
t the cover h̄i is defined by an equation ys = 1

te ,

where s ≥ 1 is an integer prime to the characteristic of �, and one lifts to the cover

defined by Y s = 1
T e .) For 1 ≤ i ≤ m, let Âpi be the completion of the localization Api

of A at pi. Thus, Âpi is a complete discrete valuation ring with uniformizing parameter

π (recall A/πA is reduced) and residue field Fr(Ô
˜Z,xi

). Let B be the completion of the

localization of R[[T ]] at π. Thus, B is a complete discrete valuation ring with residue field

�((t)). The finite cover g : SpfA→ Spf(R[[T ]]) induces, by pullback to SpfB, finite covers

gi : Spf Âpi → SpfB which (by construction) lift the covers ḡi : SpecFr(Ô ˜Z,xi
)→ Spec�((t)),

1 ≤ i ≤ m. Further, the cover hi : Yi → D induces, by pullback to SpfB, a finite cover

h̃i : SpfBi → SpfB which by construction lifts the cover ḡi : SpecFr(Ô ˜Z,xi
) → Spec�((t)).

Thus, the covers h̃i : SpfBi → SpfB and gi : Spf Âpi → SpfB are isomorphic since ḡi is

generically separable. Using formal patching techniques (cf. [8, Exposé I, Corollaire 8.4]),

one can patch the covers g : SpfA→ Spf(R[[T ]]) and hi : Yi →D, 1≤ i≤m, to construct a

finite cover Y → P1
R in the category of formal schemes with Y normal, connected, proper,

and flat over SpfR. The special fiber Y�
def
= Y ×SpecR Spec� of Y consists of m irreducible

components which intersect at the point y and is (by construction) non-singular outside

y. The formal curve Y is algebraic by formal GAGA and (by construction) ÔY,y
∼→ A as

required.

Remark 5.2. Proposition 5.1 asserts the existence, after possibly a finite extension of

K, of a proper R-curve Y and a closed point y ∈ Ycl such that ÔY,y
∼→ A. The special

fiber Y�
def
= Y×SpecR Spec� of Y consists of my

def
= m (cf. the proof of Proposition 5.1 for the

definition of m) irreducible components {C1, . . . ,Cm} which intersect at y, Y� is non-singular

outside y, and the normalization morphism Cnor
i → Ci is a homeomorphism, 1≤ i≤m. In

fact, one can, assuming the existence of a compactification of SpecA as in Proposition 5.1,

construct such a compactification Y of SpecA with the additional property that Cnor
i

∼→ P1
� ,

∀1≤ i≤m (cf. [23, Remark 3.1]).

Proposition 5.3. We use the above notations. There exist a finite extension L/K and

a finite morphism SpecB → SpecAnor
OL

with B local, normal, hyperbolic (cf. Notations), and

the morphism SpecBL → SpecAL is geometric and étale.

Proof. This follows easily from Proposition 5.1, Remark 5.2, and Theorem 3 in [23].
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[2] N. Bourbaki, Algèbre Commutative: Chapitre 9 , Masson, Paris, 1983.
[3] V. Cossart, U. Jannsen and S. Saito, Canonical embedded and non-embedded resolution of singularities

for excellent two-dimensional schemes, preprint, arXiv:0905.2191, 2013.
[4] P. H. Epp, Eliminating wild ramification, Invent. Math. 19 (1973), 235–249.
[5] H. Esnault and O. Wittenberg, On abelian birational sections, J. Amer. Math. Soc. 23 (2010), no. 3,

713–724.
[6] J. Fresnel and M. Matignon, Sur les espaces analytiques quasi-compacts de dimension 1 Sur un corps
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