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LOCAL SECTIONS OF ARITHMETIC FUNDAMENTAL GROUPS
OF p-ADIC CURVES

MOHAMED SAIDI

Abstract. We investigate sections of the arithmetic fundamental group
71 (X) where X is either a smooth affinoid p-adic curve, or a formal germ
of a p-adic curve, and prove that they can be lifted (unconditionally) to
sections of cuspidally abelian Galois groups. As a consequence, if X admits a
compactification Y, and the exact sequence of m1(X) splits, then index(Y') = 1.
We also exhibit a necessary and sufficient condition for a section of m1(X) to
arise from a rational point of Y. One of the key ingredients in our investigation
is the fact, we prove in this paper in case X is affinoid, that the Picard group
of X is finite.

§0. Introduction/Main results

This paper is motivated by the p-adic analog of the anabelian Grothendieck section
conjecture.

Let p > 2 be a prime number, let k/Q, be a finite extension, and let Y be a proper,
smooth, and geometrically connected hyperbolic k-curve. The arithmetic fundamental group
m1(Y) of Y projects onto the Galois group Gy et Gal(k/k) of k. A k-rational point z :
Speck — Y gives rise, by functoriality of fundamental groups, to a section s, : Gy — m1(Y')
of the projection m1(Y) = G. We shall refer to such a section s, as geometric.

QUESTION A. Is every section of the projection w1 (Y) — Gy geometric?

In [22, Theorem 2 in the Introduction], we established two necessary and sufficient
conditions for a group-theoretic section of the projection m1(Y) - Gj to be geometric.
In [13], Hoshi constructed a group-theoretic section Gy — m(Y)®) of the projection
71 (Y)P) — G, for a specific example Y, where 71(Y)®) is the geometrically pro-p quotient
of m1(Y), which is not geometric (i.e., does not arise from a scheme morphism x : Speck —
Y’). The author is not aware of any example of a Y as above and a group-theoretic section
of the projection m(Y) = G which is not geometric.

Let X be either a geometrically connected affinoid subspace of Y'&_ the rigid analytic
curve associated with Y, or a formal germ of Y, meaning X = Spec(Oy, ®o, k) is
geometrically connected, where @yvy is the completion of the local ring Oy, of a model Y
of Y over the ring of valuation Oy, of k at a closed point y € Y (cf. Notations). Let 71 (X)
be the étale fundamental group of X which sits in the exact sequence (cf. Notations)

1 - (X)E° =y (X) = G < Gal(k/k) — 1.

A section s: Gy — m1(X) of the projection m (X)) — Gy, induces a section sy : G — m1(Y)
of the projection 71(Y) — G}, (cf. Notations, diagram (0.1)) which we shall refer to as a
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local section of the projection 71(Y) = Gj. A geometric section is necessarily a local section
as one easily verifies. This prompts the following question, which motivates our study in
this paper of local sections of arithmetic fundamental groups of p-adic curves.

QUESTION B. Is every local section of the projection w1 (Y) — Gy, geometric?

Motivated by Questions A and B, we investigate sections of arithmetic fundamental
groups of affinoid k-curves and formal p-adic germs of curves.

Let X be either a smooth and geometrically connected k-affinoid curve or a formal p-adic
germ (cf. Notations for precise definitions). Let 71 (X)&°*?P be the maximal abelian quotient
of w1 (X)g®°, and let 1 (X)®P) be the geometrically abelian quotient of 7 (X) which sits in
the exact sequence

1 — m (X)8eoh 5 (X)@P) & Gy — 1.

Similarly, let G x Lo Gal(L/L) be the absolute Galois group of the function field L of X
(see Notations for the definition of L) which sits in the exact sequence (cf. §1)

1 -G’ —Gx =G — 1.

geo

Let G%?O’ab be the maximal abelian quotient of G%°, and let Gg?b) be the geometrically
abelian quotient of Gx which sits in the exact sequence

1— GEP Gg?b) — G — 1.
We have an exact sequence

1 Hx — G 5 (X)) 51,

where Hyx &' Ker[Gg?b) — 1 (X)(@P)]. In §1, we investigate the structure of the Gj-module
H x. We prove in Proposition 1.4 that H x is (canonically) isomorphic to [] sexel Ind’,z(r) Z(1)
where the product is over all closed points of X and k(z) is the residue field at .

The Galois group Gx sits in an exact sequence

1-Hx - Gx - m(X) =1,

where Hyx & Ker[Gx — m(X)]. Let H3 be the maximal abelian quotient of Hx, and
let Gg?iab) be the geometrically cuspidally abelian quotient of Gx which sits in the exact
sequence

15 HY -G8 5m(X) > 1.

In §2, we investigate, in the framework of the theory of cuspidalization of sections of
arithmetic fundamental groups (cf. [19], [22]), sections s : Gy — m1(X) of the projection
m1(X) = Gi. Let Y be a k-compactification of X, and let sy : Gy, — 71(Y) be the induced
local section of the projection m1(Y) — Gy, (cf. Notations for precise definitions and the
diagram (0.1) therein). One of our main results is the following (cf. Theorems 2.4 and

3.1(i1)).
THEOREM A (Lifting of sections to cuspidally abelian Galois groups). Let s: Gy —
m1(X) be a section of the projection w1 (X) — Gi. The followings hold.
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(i) There exists a section s~ : Gj, — Gggiab) of the projection G_(;*ab) — G, which lifts
the section s, that is, which inserts in the following commutative diagram:

c—ab
G, = gl&™)

|l o

Gk —S—) 7T1(X)

) m (X). In particular, the

where the right vertical map is the natural projection Ggg_ab
set of sections of the projection Ggg_ab) —» G, which lift the section s is non-empty, and is
(up to conjugation by elements of H3P) a torsor under H (G, HY).

(ii) Assume Y is hyperbolic. Then the section sy : G — m(Y') induced by s is uniformly

orthogonal to Pic in the sense of [19, Definition 1.4.1].

The section s is uniformly orthogonal to Pic (as in (ii) above) means that the retraction
map s* : H2(my(Y),Z(1)) = H2(Y,Z(1)) — H?*(Gy,Z(1)), which is induced by the section
s, annihilates the Picard part of H2(Y,Z(1)), and similarly for every neighborhood Y’ — Y
of the section s.

Theorem A (ii) implies that local sections of arithmetic fundamental groups of hyperbolic
p-adic curves satisfy condition (i) in [22, Theorem 2 in the Introduction]. In this sense,
local sections are close to being geometric. Establishing Theorem A (ii) was one of the main
motivations for the author to investigate local sections of arithmetic fundamental groups
of p-adic curves. Apart from local sections, and geometric sections, the author is not aware
(for the time being) of any examples of group-theoretic sections of arithmetic fundamental
groups of hyperbolic p-adic curves which are orthogonal to Pic.

As a consequence of Theorem A, and an observation of Esnault and Wittenberg on

geometrically abelian sections of p-adic curves, we deduce the following (cf. Theorem 2.5).

THEOREM B. Assume that X admits a k-compactification Y (cf. Notations). If the
projection w1 (X) — Gy, splits, then index(Y) =1.

Theorem B asserts that the existence of local sections of arithmetic fundamental groups
of p-adic curves implies the existence of degree 1 rational divisors. The link between sections
of geometrically abelian Galois groups and the existence of degree 1 rational divisors has
been investigated in [5].

In §3, we assume that X admits a k-compactification Y (cf. Notations). Let IIy[X]
be the étale fundamental group which classifies finite covers Y’ — Y which only ramify
at points of Y not in X (cf. 3.3, as well as Notations for the meaning of not in X). A
section s : G, — m1(X) of the projection 71 (X) — G} induces naturally a section s : G, —
Iy [X] of the projection IIy[X] — Gj. We say that the section s is geometric (relative
to Y) if the image s'(Gy) is contained in a decomposition group D, C Iy [X] associated
with a rational point x € Y (k) (cf. Definition 3.3.2). Further, we say that s is admissible
(relative to V) (cf. Definition 3.5.1) if for every open subgroup H C Ily [ X] with sT(Gy) C H,
corresponding to (a possibly ramified) cover Y/ — Y, the following holds. Let Gg/l/ Pi=sol) 1y
the geometrically cuspidally 1/p*-solvable Galois group of Y': that is, the maximal quotient
Gy — H — m1(Y") of the absolute Galois group Gy of Y’ such that Ker[H — 71 (Y”)] is

abelian annihilated by p? (cf. [22, 3.1]). There exists a section Sy : Gy — Gg/l,/ptson of the
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2
projection Gg,l/ Pl L Gy (such a section exists unconditionally [see discussion in 3.5])
satisfying the following property:

=D with Sy/(Gy) C F, corresponding to a (pos-

2

For each open subgroup F C Gﬁ/p

sibly ramified) cover Y" — Y' with Y" geometrically connected, the class of Picy.,
in H'(Gy,PicY.,) is divisible by p.

Our main result in §3 is the following (cf. Theorem 3.5.2).

THEOREM C. The section s: Gy — w1 (X) is geometric (relative to Y) if and only if s
is admissible (relative to Y).

One of the key ingredients used in the proofs of the above results is the fact that Pic(X)
is finite. In the case where X is a formal p-adic germ, this is established in [22, Proposition
5.4], as a consequence of a result of Shuji Saito (cf. [22, Proposition 5.4]). In case X is
affinoid, this is proven in §4 (cf. Proposition 4.1) and may be of interest independently of
the topics discussed in this paper. More precisely, we prove the following.

THEOREM D (Picard groups of affinoid p-adic curves). Let k be a p-adic local field (i.e.,
k/Q, is a finite extension), and let X = Sp(A) be a smooth and geometrically connected
k-affinoid curve. Then the Picard group Pic(X) is finite.

Finally, in §5, we prove (cf. Proposition 5.1) a compactification result for two-dimensional
complete local p-adic rings which is used in the proofs of Propositions 1.2 and 2.2.

The results in §4 and §5 are used in this paper in §2 and §3; none of the results in §2
and §3 is used in §4 and §5.

In this paper, we worked with full arithmetic fundamental groups. Instead, one could
consider a similar setting and work with geometrically pro-p arithmetic fundamental
groups and Galois groups as in [22] (where one considers geometrically pro-X arithmetic
fundamental groups and Galois groups, ¥ being a set of primes containing p). In this
geometrically pro-p (pro-X) setting, one can prove analogs of Theorems A and C.

Notations. The following notations will be used throughout this paper (unless we specify
otherwise).

e p > 2 is a prime number, and k is a p-adic local field (i.e., k/Q, is a finite extension)
with ring of valuation Oy, uniformizer 7w, and residue field F. Thus, F' is a finite field of
characteristic p.

e A proper, smooth, and geometrically connected k-curve Y is hyperbolic if genus(Y') > 2.

e For a profinite group H, we denote by H*P the maximal abelian quotient of H.

o Let

1-H - H 25 G—1

be an exact sequence of profinite groups. We will refer to a continuous homomorphism
s: G — H such that pros =idg as a (group-theoretic) section of the above sequence, or
simply a section of the projection pr: H — G.

e All scheme cohomology groups considered in this paper are étale cohomology groups.

0.1 Affinoid p-adic curves
e X =SpAisa smooth and geometrically connected affinoid k-curve. On occasions, we will
write, if there is no risk of confusion, X = Spec A for the corresponding affine k-scheme.
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e One can embed X into a proper, smooth, and geometrically connected rigid analytic curve
Y'e: X < Y8 g0 that X is an open affinoid subspace of Y (cf. [6, 2.6, Corollaire 2]).
Write Y for the algebraization of Y8 via the rigid GAGA functor, which is a proper,
smooth, and geometrically connected algebraic k-curve. We will refer to X as a p-adic
affinoid curve (or simply an affinoid) and Y a k-compactification of X.

0.2 Formal p-adic germs

e A is a normal two-dimensional complete local ring containing O with maximal ideal m 4
containing 7 and residue field F' = A/m 4. Write Ay d:efA®@k k=A[%] and X et Spec Ay.
We assume X is geometrically connected and refer to X as a formal p-adic germ.

o A (k- )compactiﬁcatz’on of Spec A is a proper and flat relative Op-curve Y — Spec Oy with

Y normal, y & J/ X Spec Oy Speck: geometrically connected, y € V! is a closed point, Oy y
is the local ring of Y at y, Oy y its completion, with an isomorphism Oy y — A. We have
a natural scheme morphism X — Y. We shall refer to Y as a k-compactification of X.
In §5, we prove the existence of such a compactification X — Y after possibly a finite
extension of k£ (cf. Proposition 5.1).

In what follows, X is either an affinoid p-adic curve or a formal p-adic germ.

e We say that X is hyperbolic if there exists a finite extension k’/k such that Xj et
Spec(A®y k') (resp. Xy ef Sp(A®y k') if X is affinoid) possesses a k’-compactification Y
with Y hyperbolic. There exist a finite extension k’/k and a finite geometric étale cover
X' — Xy with X’ geometrically connected and hyperbolic. This is Proposition 5.3 in case
X is a formal p-adic germ and follows from [21. Theorem A] in case X is affinoid.

e 7 is a fixed choice of a geometric point of X with values in its generic point. Thus, 7
determines algebraic closures k, L, of k, and L def Fr(A), respectively. We have an exact
sequence of fundamental groups

1 —— m(X,n)g° —— m(X,n) Gy 1,

where 71 (X,n) is the étale fundamental group of X with geometric point n (cf. [21, 2.1]

for more details on the definition of 71 (X,n) in case X is an affinoid), m(X,n)s° et

Ker[m (X,n) - Gi], and Gy, ot Gal(k/k) is the absolute Galois group of .

In what follows, Y is a k-compactification of X.

e We have a commutative diagram of exact sequences of arithmetic fundamental groups

1 —— 7T1(X,77>geo — 7T1(X,77) Gk 1
| | | ©02)
l——" m (lezvﬁ) — m (Yﬂ?) Gk 17

where 71 (Y, n) (resp. m1(Y%,7)) is the étale fundamental group of Y (resp. Y3 Lty X Speck
Speck) with geometric point 7 (resp. 7 which is induced by 7). In case X is an affinoid
(resp. a formal p-adic germ), the middle vertical map is induced by the rigid analytic
morphism X — Y8 and the rigid GAGA functor (resp. the scheme morphism X —Y).
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e We write X (resp. Y°!) for the set of closed points of X (resp. Y). For a closed point =
of X (resp. Y), we write k(x) for the residue field at z. Thus, k(x) is a finite extension
of k.

e We say that = € Y°! is not in X if z is not in the image of the scheme morphism X — Y if X
is a formal p-adic germ or x ¢ X in case X is affinoid. In case X = Spec(Oy , ®o, k) is a
formal p-adic germ, the set of closed points of Y not in X is in one-to-one correspondence
with the set of closed points of Y which do not specialize in y (cf. [16, §10, Proposition

1.40(a))).

Throughout §81-3, X will denote either an affinoid p-adic curve or a formal p-adic germ.
In §3, we will assume X admits a k-compactification Y which is hyperbolic and fix a choice
of such a compactification throughout.

81. Geometrically abelian arithmetic fundamental groups

In this section, we investigate the structure of various geometrically abelian arithmetic
fundamental groups and absolute Galois group associated with X. Let

w1 (X,m) @ o (X, m) / Ker[m (X, 1)8%° — my (X, )82

be the geometrically abelian fundamental group of X (here, 7 (X,n)8°>*? denotes the
maximal abelian quotient of 7 (X, 7n)8°).

ProproSITION 1.1. We use the above notations. The followings hold.

(i) Assume X is an affinoid. For each prime number £, the pro-C-Sylow subgroup of
71(X,n)8% is pro-f abelian free, of infinite rank if £ = p, and finite (computable)
rank otherwise (see [21, Theorem A] for the precise value of this rank in case £ #p).

(i1) Assume X is a formal p-adic germ. For each prime number ¢ # p, the pro-£-Sylow
subgroup of w1 (X,n)8% is pro-¢ abelian free of finite computable rank (see [23,
Theorem A] for the precise value of this rank).

Proof. Assertion (i) follows from [21, Theorem A]. (Note that the assumption in [21,
Theorem A] that X is the complement in a proper rigid analytic k-curve of the disjoint
union of finitely many k-rational open disks is satisfied after a finite extension of & [cf. [6,
2.6, Théoreme 6 and Corollaire 1]].) Assertion (ii) follows from [23, Theorem A]. 0

Let S {21,...,2,} C X°! be a finite set of closed points and write U L x \ S viewed

as an open subscheme of X (resp. X = SpecA in case X is an affinoid). Let 71 (U,n) be
the étale fundamental group of U with geometric point 7 (cf. [21, 2.1] for the definition of
m1(U,n) in case X is affinoid) which sits in the exact sequence

1 —— 7T1(U,77)geo — 7T1(U,7’]) > Gk > 1,

where 1 (U, n)8%° def Ker[m (U,n) = Gy]| (cf. [21, 2.1] in case X is affinoid). Let
7T1(U’ n)(ab) d:ef 7T1(U, U)/KGI"[?H(U,U)geO . 7T1(U, n)geo,ab]

be the geometrically abelian fundamental group of U (here, m1(U,7)8°>?P is the maximal
abelian quotient of w1 (U,7)8%°). We have an exact sequence

1= Ay = 1 (U,n)®) = 7 (X,n)@) -1, (1.1)
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where Ay & Ker[m; (U,1)@P) — 71 (X,n)@P)] = Ker[r1 (U, n)g>*> — 71 (X,1)&**P] and the
(surjective) map 7y (g,n)(ab) — 71 (X,1)@P) is induced by the natural projection my (U,7) -
7m1(X,n). Note that Ay has a natural structure of Gg-module.

ProprosiTION 1.2. We use the above notations. There exists a natural isomorphism

i=1
of Gr-modules where the (1) is a Tate twist.

Proof. We have a natural surjective homomorphism H?lendl,z(m)Z(l) — Ay of G-
modules mapping Indi(m;)Z(l) onto the inertia subgroup [of 71 (U,7n)@)] at x;, as follows
from the structure of inertia groups of Galois extensions of Henselian discrete valuation rings
of residue characteristic zero. We show this map is an isomorphism. To this end, we can,
without loss of generality, assume that X admits a k-compactification Y (cf. Notations).
Indeed, this holds for X affinoid (cf. [21, 2.1]), and holds after possibly replacing k by a
finite field extension in case X is a formal p-adic germ (cf. Proposition 5.1) which does not
alter the structure of KU. We have a commutative diagram of exact sequences

1 —— Wl(X,n)ge°7ab —_ Wl(X,n)(ab) —_—s Gy —— 1

1 L 12

1 —— Wl(yfwﬁ)ab EE— 7-‘-1(1/777)(ab) — Gk —— 1’

where (Y, 7)@P) L (Y,n)/Ker[r1(Yz,7) — m1(Yz,7)*"] and the middle vertical map is
induced by the natural homomorphism 71 (X,n) — 71 (Y,n) (cf. Notations, diagram (0.1)).

Denote by z; the image of x; in Y, V1 <i <n (note that k(z;) = k(x})). Let z( €
Y\ {x},...,2,} be a closed point which is not in the image of X (cf. Notations). Write
g4t {xf,x},...;zty C Y and V d:efY\S' which is an affine k-curve. Let 71 (V,n) be the
étale fundamental group of V with geometric point 1 which sits in the exact sequence 1 —
m (V1) = m1(V,n) = G — 1, where 71 (V%,7) is the étale fundamental group of V; Ly xp
k with geometric point 7 which is induced by 7. Let 71 (V,n)@P) e m1(V,n)/Ker[r(Vi,7) —
71(V%,7)2P] be the geometrically abelian fundamental group of V. We have a commutative
diagram of exact sequences

1 Ay Wl(U,n)(ab) _ Wl(X,n)(ab) — 1
l l l (1.3)
1 EV 7T1(V,n)(ab) — 7r1(Y,n)(ab) —_— 1,

where Ay & Ker[r, (V,n)®) — 7, (Y,n)@P)]. The middle vertical map in diagram (1.3) is
induced by the natural homomorphism 71 (U,n) — m1(V,n), which is induced by the scheme
morphism X — Y in case X is a formal p-adic germ, and by the rigid analytic morphism
X — Y& and the rigid GAGA functor in case X is affinoid (here, we use the fact that z,
is not in the image of X). The right vertical map in diagram (1.3) is the middle vertical
map in diagram (1.2).
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One has an exact sequence of G-modules (as follows from the well-known structure of
71 (V,n)@P); see, e.g., the discussion in [24, §0])

1=0

Consider the composite homomorphism 7 : [T}, Ind’,z(z4) 7(1) = Ay of Gp-modules:

HIndk(m/) Z ‘—> HIndk(x/) Z( ) — &V,

=1 1=0

where the first map is the natural embedding: (51,...,53,) — (0,51,...,5,) and the second
map is as in the above exact sequence. Thus, 7 is injective (cf. above exact sequence).
Consider the following commutative diagram:

[17 Indj(, Z(1) —— Ay
17 o Indf . Z(1) — Ay

where the right vertical map is the one in diagram (1.3). The left vertical and lower
horizontal maps are as explained above; hence, their comp051te is the map 7. The upper
horizontal map is the natural projection [];_ 1Indk(r )Z( ) = Ay mentioned at the start
of the proof. This map is an isomorphism since it is onto and it is injective as T is. 0

REMARK 1.3. With the notations in Proposition 1.2 and the proof therein, assume that
z{, € Y (k) is a k-rational point. In this case 7([];_, Indk( n 7(1)) = Ay, the map Ay — Ay
is an isomorphism, and the right square in diagram (1. 3) (cf. proof of Proposition 1.2) is
cartesian.

Let Gx & Gal(L/L) (recall L Lef Fr(A)) which sits in the exact sequences

1 -G’ = Gx = G — 1,
where G5%° et Gal(L/Lk), and
1-Hx - Gx »m(X,n) —1, (1.4)
where Hy &' Ker[Gx — m(X,n)]. Let
GV € Gx [ Ker(GE° — GE™)

which we shall refer to as the geometrically abelian Galois group of X (here, G%fo’ab is the

geo )

maximal abelian quotient of G5.”). We have an exact sequence

1 Hx — G oy (X)) — 1, (1.5)

where Hyx & Ker[GE™) = 1 (X,7)@)] = Ker[GE™™ — m(X,17)82]. Note that Hx has
a natural structure of Gj-module.
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PROPOSITION 1.4. We use the above notations. There exists a natural isomorphism of
G.-modules

:EEXCI
where the product is over all closed points © € X°.

Proof. This follows from Proposition 1.2 and the fact that Hx S @U Ay where U =
X\ S; S runs over all finite subsets of X!, and &U is as in the proof of Proposition 1.2.

(Note that G(ab) — lim o™, 1n)@P) where the limit runs over all U as above.) O

§2. Cuspidally abelian arithmetic fundamental groups

In this section, we investigate the problem of cuspidalization of sections of the projection
m1(X,n) - Gi. This problem has been investigated in the case of proper and smooth

hyperbolic p-adic curves in [19], [22]. We use the notations in §0 and §1.

Let S & {x1,...,2,} C X! be a finite set of closed points, and let U dEfX\S (cf. §1).

Consider the exact sequence

1= Ay =7 (U,n)8° — (X, n)8° — 1,

where Ay et Ker[m (U, n)&° — 71(X,n)&°]. The maximal abelian quotient A2 of Ay is
a 71 (X,n)%°-module. Let A be the maximal quotient of AP on which 1 (X,7)8%° acts
trivially. Define

w1 (U, m)E ™ m (Uyn)5*°/ Ker(Ay — AF)
and
7Tl(U,n)geoc cn _e 7T1<U n)geO/Ker(AU — Acn)
We shall refer to 1 (U,7)8%¢~2P (vesp. m1(U,1)8*¢~") as the cuspidally abelian (resp.
cuspidally central) quotient of 71 (U,n)8°. Further, define
w1 (U)o (U, ) [ Ker(Ay — AZP)
and
w1 (U,m) = S (Uyn) / Ker (Ay — AF).

We shall refer to 1 (U,n)=2P) (resp. w1 (U,n)¢) as the (geometrically) cuspidally
abelian (resp. [geometrically] cuspidally central) quotient of w1 (U,n). We have the following
commutative diagram of exact sequences:

1 Ay m(Umn) ——— X)) —— 1
1 AP m(Un)e2) —— m(X;n) ——1
H (2.1)
1 A m(Un)e— —— m(X,n) — 1
1 Ay m(U,n)E)  —— 7 (X)) —— 1
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where the middle vertical maps are surjective, and the middle vertical map in the lower
diagram is induced by the natural surjective map 71 (U, n)8eoc=ab — 71 (U, n)&e>2b . (Note
that 71 (X,7)8% acts trivially on the quotient Ay of AZP.)

LEMMA 2.1. We use the above notations. The homomorphism A — &U in diagram
(2.1) is an isomorphism of Gi-modules. In particular, the lower right square in diagram
(2.1) is Cartesian.

Proof. The proof follows from Proposition 1.2 and the various definitions. More pre-
cisely, there exists a natural surjective homomorphism []_; Indi(wi) Z(1) - A (mapping
Indz(x;) Z(1) onto the inertia subgroup of 71 (U, 1)) at x;, as follows from the structure
of inertia groups of Galois extensions of Henselian discrete valuation rings of residue
characteristic zero) which composed with the projection A} — AU is the isomorphism
[T, Ind’g(xi) 7(1) = Ay in Proposition 1.2 hence our assertion. 0

Let s: Gy, — m1(X,n) be a section of the projection m(X,n) - Gy.

ProprosITION 2.2 (Lifting of sections to cuspidally central arithmetic fundamental
groups). We use the above notations. There exists a section sf; ™ : Gy, — w1 (U,n)(c=®)
of the projection m (U, n)(c_cn) — Gy, which lifts the section s, that is, which inserts in the
following commutative diagram:

c—cn

G ~L— 1 (U,n)cm

H l

Gr ——  m(X,n)

where the right vertical map is the natural projection w1 (U,n)¢=" — 71(X,n). In
particular, the set of sections of the projection w1 (U,n)(¢= — Gy, which lift the section
s is non-empty, and is (up to conjugation by elements of AS*) a torsor under H'(Gy, AS").

Proof. Consider the commutative diagram of exact sequences

] —— A(f}l —— Ey dzefEU[S] E— Gy, — 1

| ! ']

1 A%Jn 7 Wl(Uﬂ?)(C_Cn) ? WI(X>77) > 1

where the right square is Cartesian. Thus, the group extension FEy; is the pullback of the
group extension 71 (U, n)(c_cn) by the section s. The set of (possible) splittings of the group
extension Ey is in one-to-one correspondence with the set of sections of the projection
71 (U,n)¢=" — G}, which lift the section s. We show that the group extension Fy splits.
To this end, we can replace k by a finite extension over which the points {z;}!' , are
rational, and we can also assume n =1 (see the argument at the start of the proof of
Lemma 2.3.1 in [19]). Further, we can replace X by a neighborhood X’ of the section s:
that is, an étale cover X’ — X corresponding to an open subgroup H = m1(X’,n) C m1(X,n)

containing the image s(Gy) of s. Indeed, if U’ LU x x X', there exists a commutative
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diagram of natural homomorphisms

) (U/, n)(c—cn) — s m (U, ,,7) (c—cn)

! |

Wl(Xlun) E— 7T1(X777)

where the upper horizontal map is induced by the natural map 1 (U’,n) — m1(U,n) (note
Ay = Ay and 7 (X',7)8° acts trivially on Af'), and the various maps in this diagram
commute with the projections onto Gj. The section s induces a section §: G — 71 (X', n)
of the projection 71 (X’,n) — G, and a lifting 57, : Gy, — m (U’,n)(¢=% of § (as in the
statement of Proposition 2.2) induces a lifting s{; ™ : G — m1 (U, )¢~ of s as required
(cf. above diagram). Now, it follows from [21, Theorem A] in case X is an affinoid, and
Proposition 5.3 in this paper (cf. §5) in case X is a formal p-adic germ, that there exists
(after possibly a finite extension of k) a neighborhood X’ — X of s with X’ hyperbolic

(cf. Notations). We can thus assume, without loss of generality, that X possesses a k-

compactification Y with ¥ hyperbolic and the set § < {z} € X (k) consists of a single
k-rational point, in which case A 5 Z(1) as a m(X,n)-module (cf. Lemma 2.1 and
Proposition 1.2).

Consider the following maps (here, X = Spec A in case X is affinoid):

H?(m(X,n), 2(1)) — HX(X,Z(1)) + Pie(X),

where the map H?(m(X,n),Z(1)) < H?(X,Z(1)) arises from the Cartan-Leray spectral
sequence and is injective (cf. [25, Proof of Proposition 1]), and the map Pic(X) —
H 2(X,Z(1)) is the cycle class map arising from the Kummer exact sequence in étale
topology. Let [m1(U,n)©™] € H2(m(X,n),Z(1)) be the class of the group extension
71 (U,n) = The image of [m(U,7)€~ "] in H2(X,Z(1)) coincides with the image of
the line bundle O(x) € Pic(X) via the Kummer map Pic(X) — H?(X,Z(1)). Indeed, this
follows from the following commutative diagram:

H%(m(X,n),Z(1)) —— H2(X,Z(1)) +—— Pic(X)

| | I

H%(m(Y,n),Z(1)) —— H2(Y,Z(1)) +—— Pic(Y)

where the right and middle vertical maps are induced by the scheme morphism X — Y if
X is a formal p-adic germ, and the rigid morphism X — Y& and the comparison theorems
between étale cohomology and rigid analytic étale cohomology in case X is affinoid (cf. [11,
Theorem 1.8 and Theorem 1.9]). The right horizontal maps are the cycle class maps arising
from the Kummer exact sequence in étale topology, and the left lower horizontal map
is an isomorphism arising from the Cartan—Leray spectral sequence (cf. [17, Proposition
1.1]). The pullback of the class [m1(V,7)~] € H(m,(Y,n),Z(1)) in H?(m(X,n),Z(1)),
where V is the complement in Y of the image of S = {x} (cf. [19, 2.1.1] for the definition
of m(V,n)¢=°M), coincides with the class [m;(U,7)~*™] (this follows from Lemma 2.1
and the various definitions). The class [ry(V,7)€~™] € H2(m(Y,n),Z(1)) = H2(Y,Z(1))
coincides with the image of the Chern class of the line bundle O(y) € Pic(Y') where y € Y (k)
is the image of = (cf. [19, Proof of Lemma 2.3.1]). Thus, the image of [r;(U,n)*"] in
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H?(X,Z(1)) coincides with the image of the line bundle O(z) € Pic(X) via the cycle class
map Pic(X) — H2(X,Z(1)) as claimed.

The Picard group Pic(X) is finite (cf. Proposition 4.1 in this paper in case X is affinoid
and [22, Proposition 5.4] in case X is a formal p-adic germ). In particular, the image of
[m1 (U, 7)) in H2(X,Z(1)) and hence the class [m(U,7) ] is a torsion element of
H?(m1(X,1n),Z(1)). The class [Ey] € H?(Gy,Z(1)) of the group extension Ey is the image
of [m1(U,n)=*M] under the retraction map H2(m1(X,n),Z(1)) AN H2(Gy,2(1)) 3 7
induced by s. Hence, the class [Ey] is trivial since 7, is torsion-free, and the group extension
FEy splits. 0

THEOREM 2.3 (Lifting of sections to cuspidally abelian arithmetic fundamental groups).
We use the above notations. There exists a section san G —m (U,n)(c_ab) of the projection
71 (U,n)(¢72P) — Gy which lifts the section s, that is, which inserts in the following
commutative diagram:

c—ab

Gr 2 m(Un)

H l

Gr ——  m(X,n)

(c—ab)

where the right wvertical map is the natural projection w1 (U,n)(¢~2P) — 71(X,n). In
particular, the set of sections of the projection w1 (U,1)(¢~2P) = G}, which lift the section s
is non-empty, and is (up to conjugation by elements of AP) a torsor under H'(Gy, AP).

Proof. Let {H };cr be aprojective system of open subgroups of 1 (X, n) containing s(Gy)
such that s(Gx) = (,c; Hi. Thus, for i € I, the open subgroup H; corresponds to an étale
finite cover X; — X with X; geometrically connected and H; is identified with 71 (X;,n)
which sits in the exact sequence 1 — 71(X;,7)8%° — 7m1(X;,n) = Gr — 1 (the geometric

point; denote also 7, of X; is induced by the geometric point 7 of X). Further, the section s
induces a section s; : G, — 71(X;,n) of the projection 71 (X;,n) - Gi. Let U; Lt x x X;,
and let 7 (U;,1)¢~°™ be the (geometrically) cuspidally central arithmetic fundamental
group of U; which sits in the exact sequence 1 — A — 1 (Us, 7)) — my(X;,n) — 1.

Consider the following commutative diagrams:

1 —— A2 — Eu — Gy ——1

| | |
1] —— Aan —— m(Un)2P) —— 1 (X,n) —— 1

and forie ]
1 —— A?}; — Ey. —_ Gy, — 1

1 — A —— m1(Usn)™ —— m(X;,n) —— 1

where the right squares are Cartesian. Thus, &y (resp. Ey,) is the pullback of the group
extension 71 (U,7)©=2P) (vesp. 71 (U;,1)(¢~°™) by the section s (resp. s;). There is a natural
isomorphism A2P = l'glie s A7} as follows from the facts that Ay = Ay, Vi € I, and given a

finite quotient A2 — H, there exists i € I such that 71 (X;,7)8 acts trivially on H. Further,
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there is a natural isomorphism & = l‘glie s Ey, (the transition maps in the projective limit

being surjective). The existence of a section s?fab : Gy, — m1(U,1)©=2P) of the projection
Wl(U,n)(C_ab) —» (G, which lifts the section s is equivalent to the splitting of the group
extension £, and the set of those (possible) liftings s‘,}_ab is in one-to-one correspondence
with the set of sections of the projection &y — Gy. The natural projection Ey, — Gy, splits
for all i € I (see the proof of Proposition 2.2). We show that the group extension &y splits.

Let (Pj)jes be a projective system of quotients & — P;, where P; sits in an exact

sequence 1 — I} — P; — G, — 1 with Fj finite, and &y = @je} P;. (More precisely, write
Eu as a projective limit of finite groups {]Sj}je 7 where f’j sits in an exact sequence 1 —
F; — ]5j — G; — 1 with G; a quotient of G and Fj a quotient of Ker(&y — Gy). Let
1 — F; — P; — G — 1 be the pullback of the group extension 1 — F; — ]5J —Gj — 1 by
Gr — G;. Then &y = yLnjeJPj.) The set Sect(Gg,Ey) of group-theoretic sections of the
projection &y — Gy, is naturally identified with the projective limit @je JSect(Gk,Pj) of
the sets Sect(Gy, P;) of group-theoretic sections of the projections P; — Gy, j € J. The set
Sect(G, P;j) is non-empty, Vj € J. Indeed, P; (being a quotient of &) is a quotient of Ey;,
for some i € I, this quotient Ey, — P; commutes with the projections onto Gy, and we
know the projection Ey, — Gy, splits, and hence the projection P; — G}, splits. Moreover,
the set Sect(Gy, P;) is, up to conjugation by the elements of Fj, a torsor under the group
H'(Gy, F;) which is finite since k is a p-adic local field (cf. [18, (7.1.8) Theorem (iii)]).
Thus, Sect(Gy, P;) is a non-empty finite set. The set Sect(Gj,Ey) is non-empty being the
projective limit of non-empty finite sets. This finishes the proof of Theorem 2.3. O

Next, let
G LGy Ker(Hy — HY)

" (c—ab) . (c—ab)
(cf. exact sequence (1.4) for the definition of Hx ). Thus, G =lim (U,n) where
U runs over all subschemes of X as in Theorem 2.3.

THEOREM 2.4 (Lifting of sections to cuspidally abelian Galois groups). We use the above
notations. There exists a section s~ : G}, — Gggiab) of the projection G(;*ab) — G, which

lifts the section s, that is, which inserts in the following commutative diagram:

sc—ab

G =—— G

H |

G —— m(X,n)

where the right vertical map is the natural projection Ggffab)

—ab)

— m1(X,n). In particular, the

set of sections of the projection Ggf — (G, which lift the section s is non-empty, and is
(up to conjugation by elements of ’H%}D) a torsor under H' (Gk,Hficb).

Proof. The proof follows, using the natural identification Gg;ab = @U 7 (U, n)°—2b
(where U runs over all subschemes of X as in Theorem 2.3), from Theorem 2.3 and a
similar argument in our context to the one used in the proof of Theorem 2.3.5 in [19].
Alternatively, one can use Theorem 2.3 and a similar argument to the one used at the end
of the proof of Theorem 2.3. 1

The following is one of our main results in this section.
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THEOREM 2.5. Assume that X admits a k-compactification Y (cf. Notations). If the
projection w1 (X,n) — Gy splits, then index(Y') = 1.

Proof. Assume that the projection 71 (X,n) — Gy, splits and let s: Gy, — m1(X,n) be a
section of this projection. By Theorem 2.4, there exists a section s~ 2P : G — G()gfab) of
the projection Gggfab) —» G, which lifts the section s. The section s~
a section §: Gy — G()?b) of the projection Gg?b) — Gy, (see §1 for the definition of Gg?b)
and note that Gg?b) is a quotient of Ggg_ab)). Let Gy &' Gal(K /K) be the absolute Galois
group of the function field K of ¥, and let G{** &' Gy /Ker[Gal(K /Kk) — Gal(K/Kk)*]

be its geometrically abelian quotient. We have a commutative diagram

b induces naturally

G —— G,

| H

(el —e

where the left vertical map is induced by the natural map Gx — Gy, which is induced
by the scheme morphism X — Y in case X is a formal p-adic germ, and by the rigid
analytic morphism X — Y& and the rigid GAGA functor in case X is affinoid. The section
5:GL— Gg?b) induces a section s’ : G — Ggfb)
diagram). The existence of the section s implies that index(Y) = 1 as was observed by
Esnault and Wittenberg (see [5, Remark 2.3(ii)] and [24, Theorem A] for a more general
result). 0

of the projection Ggfb) — Gy, (cf. above

83. Geometric sections of arithmetic fundamental groups

We investigate geometric sections of the projection 71 (X,n) — Gy (relative to a fixed
compactification of X). We use the notations in §§0-2. We further assume that X possesses
a k-compactification Y with Y hyperbolic (cf. Notations) which is fixed throughout §3.

Let

s: G —m(X,n)

be a section of the projection 7 (X,n) — Gy, fixed throughout §3, which induces a (local)
section

sy : Gg —>7T1(Y777)

of the projection 71(Y,n) — Gy (cf. diagram (0.1) and §0).
We have an exact sequence

1-Zy - Gy »m(Y,n) — 1,

where Gy = Gal(K/K) is the absolute Galois group of the function field K of Y and
Iy & Ker[Gy — m1(Y,n)]. Let

G L Gy S Ker(Ty — T2).

Thus, Ggf_ab) = 1'&1‘/ 71(V,n)(©=2P) where V runs over all open subschemes of Y (cf. [19,
2.1.1] for the definition of my (V,n)c—2P)).
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THEOREM 3.1 (Lifting of sections to cuspidally abelian Galois groups). We use the
above notations. The followings hold.

(i) There exists a section s% ™" : Gy, — Ggf_ab) of the projection Ggf_ab) —» G which lifts
the section sy : G, — m1(Y,n), that is, which inserts in the following commutative diagram:

c—ab

Gk Sy Gg/C—ab)

H |

G —2— m(Y,n)

) m1(Y,n). In particular, the

where the right vertical map is the natural projection Ggffab
set of sections of the projection Ggffab) —» (GG, which lift the section sy is non-empty, and
is (up to conjugation by elements of I8 ) a torsor under H*(Gy,Z2).

(ii) The (local) section sy : Gy, — m1(Y,n) is uniformly orthogonal to Pic in the sense of

[19, Definition 1.4.1].

Proof. Assertion (i) follows from Theorem 2.4 and the fact that there exists a natural
homomorphism G()gfab) — Ggffab), induced by the natural homomorphism Gx — Gy,
which commutes with the projections to Gj. Assertion (ii) follows from assertion (i) and
Theorem 2.3.5 in [19]. 0

Consider the following push-out diagram:

1 —— Hx —— Gy — m(X,n) —— 1

l l H

1 —— Hxape — G Y — m(Xn) —— 1
where Hx 1/p2 is the mazimal 1/p*-th solvable quotient of Hx and Gg/pQ_SOD def
Gx/Ker(Hx — Hx 1/p2). Thus, Hx 1/p> is the maximal quotient of Hx which is abelian
and annihilated by p? (cf. [22, 1.2] for more details). We have a commutative diagram of
exact sequences

1] —— ,Hle/PQ —_— G‘(;/pz—sol) E— 7T1(X,T]) — 1

l 1 ! s

—sol)

1l —— .’Z:Y’l/pQ —_— Ggfl/pz e 7'('1(}/,’/]) — 1

(1/p*—sol)
Y

which is induced by the natural homomorphism Gx — Gy, where G is defined in

a similar way to Gg/ p*—sol) More precisely, Zy,1 /2 is the maximal quotient of Zy which is
abelian and annihilated by p? and Gg} /p*—sol) def Gy /Ker(Zy — Ly, p2) is the geometrically
cuspidally 1/p-th step solvable quotient of Gy (cf. [22, 3.1]; recall the exact sequence
1-Zy - Gy »m(Y,n) —1).

The following Proposition 3.2, item (i), is weaker than (and follows from) Theorem 2.4,
and we state it in connection with Theorem 3.5.2 in this section.

ProprosITION 3.2 (Lifting of sections to cuspidally 1/p?-th step solvable Galois groups).
We use the above notations. The followings hold.
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2 2
(i) There exists a section §: Gy, — Gg/p —so) of the projection Gg/p —sol G, which lifts
the section s: Gy, — m1(X,n), that is, which inserts in the following commutative diagram:

len s GA(le/pQ—sol)

H l

Gr —>— m(X,n)

—sol)

2
where the right vertical map is the natural projection Gg/p — m(X,n). In particular,

2_
the set of sections of the projection Gg/p —sol G which lift the section s is non-empty,

and is (up to conjugation by elements of Hx 1/p2) a torsor under H (G, Hx 1/p2).

(ii) The section §: Gy — Gg/pg_son in (i) induces a section Sy : Gy, — Gg}/pg_SOl) of the
—sol)

projection Gg,l/pz — Gy which lifts the section sy : Gy, — m1(Y,n). In particular, the
(local) section sy : Gy, — w1(Y,n) is uniformly orthogonal to Pic mod-p* in the sense of [22,
Definition 3.4.1].

Proof. Assertion (i) follows from Theorem 2.4 and the fact that there exists a natural

2
—» Gg/ P"=5°D) hich commutes with the projections onto Gy. Assertion

g;/pQ—Sol) N

projection G_(;*ab)
(ii) follows from (i) and the fact that there exists a natural homomorphism G

2
Gg} /P 7501), induced by the homomorphism G x — Gy, which commutes with the projections

onto Gy, (cf. diagram (3.1) and [22, Theorem 3.4.4]). 0
3.3
Write
Oy [X]E Jim m (Y \T,)
TCY\X
and

Iy [X]5° < Tim o (V\ ),
TCY\X
where the limits are over all subsets T consisting of finitely many closed points of Y not
in X (cf. Notations), Y\ T is the corresponding (affine if T is non-empty) curve, and
m (Y \T,n)s def Ker[m (Y \T,n) - Gi]. We have the following commutative diagram of
exact sequences:

1 —— m(X,n)E° —— m(X,n) Gy, 1
| | |

1 —— Iy[X]e*°* —— IIy[X] Gy s 1 (3.2)
| | |

1 —— m((Y,n) —— m(Y,)n) » G, > 1

where the middle upper map is induced by the rigid analytic morphism X — Y& and the
rigid GAGA functor in case X is affinoid, and the scheme morphism X — Y in case X is
a formal p-adic germ. The left and middle lower vertical maps are the natural projections
(they are surjective).
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ProrosiTION 3.3.1. We use the above notations. The left and middle upper vertical
maps in diagram (3.2) are injective in the case X is affinoid.

Proof. The first assertion follows from Theorem A in [21] (see the comments in the proof
of Proposition 1.1). The second assertion follows from the first and the commutativity of
the upper part in diagram (3.2). O

The section s: Gy — 71 (X,n) induces a section (denoted also s)
S: Gk — HY [X]
of the projections ITy [X] — G}, (cf. diagram (3.2)).

DEFINITION 3.3.2. We say that the section s is geometric, relative to Y, if the image
s(Gg) of the section s : G — IIy[X] is contained in a decomposition group D, C Iy [X]
associated with a rational point x € Y (k).

Note that if s is geometric in the above sense, associated with x € Y'(k), then the (local)
section sy : G — m1(Y,n) of the projection 71 (Y,n) = Gj, induced by s is geometric and is
associated with z € Y (k), that is, sy (G}) is contained in (hence equal to) a decomposition
group D, C m1(Y,n) associated to .

3.4
In this subsection, we assume that X = Spec(A®p, k) is a formal p-adic germ.
Let Y — Spec Oy, be a model of Y, let y € V! be a closed point, and let Oy .y 5 A be an

isomorphism. Let Vg d:efy X spec 0, Opec ' be the special fiber of . Consider the following
assumption (*):

(*) The gcd of the total multiplicities of the irreducible components of Vg is 1.

Let & be a geometric point of Vg with values in the generic point of an irreducible
component Y;, of Vr. Thus, & determines an algebraic closure F of F. We have the following
commutative diagram of exact sequences:

1 —— m(X,n)g° —— m(X,n) G 1
| I H

1 —— m(Yz, 7)) —— m(Y,)n) Gy, 1 (3.3)
CT

I — m(Vpg) —— m(Vr,§) Gr 1

where the middle upper map is induced by the scheme morphism X — Y, the lower middle

map (which is defined up to conjugation) is a specialization map, 71 (Vr,€) (resp. 71 (V5. €))

is the fundamental group of Y (resp. V& d:efy X $pec 0y, Spec F') with geometric point € (resp.
€ which is induced by ¢), Gr dof Gal(F'/F), and the lower right vertical map is the natural
projection Gy, — Gp (cf. [20, diagram 0.1] and the discussion thereafter). The left (hence
also the middle) lower vertical map in diagram (3.3) is surjective under the assumption (*)

(cf. [20, diagram 0.1] and the references therein).
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The section s: Gy — m1(X,n) induces the (local) section sy : Gy — m1(Y,n) of the
projection 71(Y,n) — G, as well as a homomorphism

5: Gy, —>7F1(yF7§)

obtained by composing the section sy : G, — m1 (Y, n) with the specialization map 71 (Y,n) —
m1(YVr,§) in diagram (3.3).

LEMMA 3.4.1. We use the above notations. The followings hold.

(i)  The closed point y € Y is an F-rational point.

(ii) The section sy is unramified: the homomorphism §: Gy — m (Vr,§) factors through
Gr and induces a section Sy : Gp — m (Vr,&) of the natural projection m (Vp,&) —
Gr.

(iii) The section 5y : Gp — m1(Vr, &) in (ii) is geometric and arises from the rational point
y, that is, arises from the scheme-theoretic morphism y : Spec F' — YVp.

(iv) Assume that Y is reqular. Then condition (*) holds.

Proof. Assertion (i) is clear (recall Oy, =5 A); it also follows from (ii). We prove (ii).
We have a commutative diagram of scheme morphisms

X — Y

! |

SpecA —— Y (3.4)

I |

Spec(F) —Y s Y

where the lower horizontal morphism is induced by the closed point y of Vg, and the
lower vertical morphisms are closed immersions. This diagram gives rise to a commutative
diagram of homomorphisms between fundamental groups

m(X,n) —— m(Y,n)

| |

m1(SpecA,n) —— m(V,n) (3.5)
Gr s 1 (Vr,€)

where the lower horizontal map is a section of the projection 71 (Vp,&) - Grp
arising from the F-rational point y € Vp, and is defined up to conjugation, the
lower vertical maps are induced by the lower vertical maps in diagram (3.4)
(they are defined up to conjugation) and are isomorphisms (cf. [8, Exposé X,

Théoreme 2.1] for the right vertical map o being an isomorphism). Further, the
-1

composite ¥ 1 (X,n) — m1(Spec A, 1) Ty G Sy (Ve §) is the composite

of the middle vertical maps in diagram (3.3) as follows from the definition of the

specialization map m1(Y,n) — 71 (Vr,£): this map is the composite of the maps
-1 . . ~

m(Y,n) = m(Y,n) —Z— m(Vp,&)- In particular, the homomorphism 5 : Gy, — (Yr,€)

factors through Gz and induces a section Sy : Ggp — w1 (Vp,€) of the natural projection

https://doi.org/10.1017/nmj.2023.33 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.33

480 M. SAIDI

m1(Vr,&) - Gp. This shows (ii). The section sy coincides (up to conjugation) with the
section Gp — 5 1, (Vp,€) in diagram (3.5), hence is geometric and arises from the F-
rational point y as claimed in (iii). The last assertion follows from Theorem 2.5 and the
well-known fact that if ) is regular, then the ged of the total multiplicities of the irreducible
components of Yp divides index(Y') (cf., e.g., [7, Theorem 8.2 and Remark 8.6]). 0

REMARK 3.4.2. Assume that the morphism ) — Spec Oy, is smooth. If s is geometric,
and arises from the rational point = € Y (k) (cf. Definition 3.3.2), it follows from Lemma
3.4.1(iii) and the fact that Yp is hyperbolic that the point x specializes in y necessarily (cf.
[27, Proposition (2.8)(i)]). In particular, the point z is the image of a (unique) k-rational
point Z € X (k) via the morphism X — Y. The fact that sy (Gy) = D, C m1(Y,n) does not
imply a priori that the image s(Gj) via the section s: Gy — m1(X,n) is contained in a
decomposition group Dz C m1(X,n) associated with z.

3.5

Let H C IIy[X] be an open subgroup with s(G) C H [recall s: Gy — Iy [X] is the
section induced by s: Gy — m1(X,n)]. Thus, H corresponds to a (possibly ramified) finite
cover Y/ — Y with Y’ geometrically connected. Let H' C 71(X,n) be the inverse image
of H via the homomorphism 71 (X,n) — Iy [X] (cf. diagram (3.2)). Thus, H' is an open
subgroup of 7 (X,n) containing the image of the section s: Gy — m1(X,n) and corresponds
to an étale cover X’ — X with X’ geometrically connected. There is a natural morphism
X' — (Y')*i8 of rigid analytic spaces in case X is affinoid, and a natural scheme morphism
X' =Y’ in case X is a formal p-adic germ. The generic point 7 induces naturally a generic
point (denoted also 1) of X’ and Y. Further, we have a natural identification H' = m (X', 7)
and a natural homomorphism 71(X’,n) — 71(Y’,n) which commutes with the projections
onto G,.

The section s: Gy — m1(X,n) induces naturally sections s’ : G — m1(X’,n) and sy :
G — m1(Y',n) of the natural projections 71 (X’,n) - Gy, and m1(Y’,n) — G, respectively.
The section s’ : G, — m(X',n) lifts to a section § : G, — GQ/”Q‘“” of the projection

2 . 2 . 2 .
Gg;/p sol) G§/1//p sol) Gg/l//p sol) _»

—» (1, and induces a section Sy : G, — of the projection

Gy (cf. Proposition 3.2). Let F' C Ggfl/pQ_SOI) be an open subgroup with 3y/(Gy) C F.
Thus, F corresponds to a (possibly ramified) finite cover Y — Y’ with Y”' geometrically
connected. The generic point 7 induces naturally a generic point (denoted also 1) of Y.
Write 71(Y",n)1/P=s°) for the geometrically 1/p-th step solvable quotient of w1 (Y )
which sits in the following exact sequence:

1= (Y )1y, = m(Y )P0 & Gy — 1, (3.6)

where m1(Y7',7)1/p is the maximal 1/p-th step solvable quotient of m1(Y7',7) (cf. [22, 1.2])

and the generic point 7 is induced by n. Thus, m1(Y7',7)1/, is the maximal quotient of

m1(YZ',7) which is abelian and annihilated by p (cf. [22, 1.2]).

DEeFINITION 3.5.1. We use the above notations. We say that the section s is admissible,
relative to Y, if for every open subgroup H C Ily[X] with s(Gy) C H, corresponding
to (a possibly ramified) cover Y’ — Y, the following holds. There exists a section
Syr: G — Gg,l,/ptson of the projection Gg,l,/pzfs()l) — G, (such a section exists uncon-
ditionally [see above discussion|) satisfying the following property: for each open sub-

https://doi.org/10.1017/nmj.2023.33 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.33

LOCAL SECTIONS OF ARITHMETIC FUNDAMENTAL GROUPS OF p-ADIC CURVES 481
2
group F C Gg/p —sob
Y with Y geometrically connected, the natural projection w(Y",n)(/P=sh) — Gy splits
(cf. above discussion). Note that this latter condition is equivalent to (cf. [22, Lemma 3.4.8)):
the class of Picy-, in H'(Gy,PicY,) is divisible by p.

with §y:(Gy) C F, corresponding to a (possibly ramified) cover Y —

Our main result in this section is the following.

THEOREM 3.5.2.  We use the above notations. The section s: Gy, — w1 (X,n) is geometric
relative to Y (cf. Definition 3.5.2) if and only if s is admissible relative to Y (cf. Definition
3.5.1).

Proof. Assume first that the section s: Gy — 71(X,n) is admissible (relative to Y).
We prove that s is geometric (relative to Y). Using a well-known limit argument due
to Tamagawa (cf. [27, Proposition 2.8(iv)]), it suffices to show the following. For every
open subgroup H C Iy [X] with s(G)) C H, corresponding to (a possibly ramified) cover
Y’ =Y with Y’ hyperbolic, Y'(k) # () holds. By assumption, there exists a section §y- :
G — Gg,l,/pzfs()l) of the projection Gg/l,/pzfson —» Gy, satisfying the condition in Definition
3.5.1. In [22, 3.3], we defined a certain quotient Gy — G%’;” — GQ/”Q_SOD of Gy (we refer

to [22, 3.3] for more details on the definition of Ggf,’m). Let F C Ggfl,/ptson be an open
subgroup with §y/(Gy) C F corresponding to a (possibly ramified) cover Y — Y’ with
Y geometrically connected. By assumption, the natural projection 71 (Y, n)1/P=sh) _, G},
splits (cf. Definition 3.5.1). This latter condition (for every F' as above) implies that (in fact
is equivalent to) the section sy : G, — Gg/l,/phson lifts to a section si,, G — Ggf,’Q) of the
projection Gg,’Q) — Gy, (cf. [22, Theorem 3.4.10 and Lemma 3.4.8]). Further, the existence
of the section s;, (G — Gg?,’g) as above implies that Y’ (k) # () by [22, Proposition 4.6], as
required.

Next, we assume that s is geometric (relative to Y') and prove that s is admissible (relative
to Y). By assumption s(Gj) is contained in D, C IIy[X] where D, is a decomposition
group associated with a rational point = € Y (k). Let H C IIy[X] be an open subgroup
with s(Gy) C H corresponding to (a possibly ramified) cover Y’ — Y. Then Y'(k) # 0.

(1/p>—sol)
Y/

A rational point a’ € Y'(k) gives rise to a section Sy : Gy, — G of the projection

Gg/l/pQ_SOl) — Gy. Let ' C Gg/l/pQ_SOl) be an open subgroup with 5y (Gj) C F' corresponding
to a (possibly ramified) cover Y — Y’ with Y geometrically connected. Then Y (k) # ()

2
Gg,l,/ P =l arises from the rational point z’ and

holds since the section 3y : G —
Sy/(Gg) C F. In particular, the natural projection m(Y"”,n) - G, and a fortiori the

projection (Y, n)(1/P=s°l) _, G, splits. Thus, s is admissible as required. U

84. Picard groups of affinoid p-adic curves

The following is our main result in this section; it may be of interest independently of
the topics discussed in §§1-3.

PROPOSITION 4.1. Let X = Sp(A) be a smooth and geometrically connected k-affinoid
curve. Then the Picard group Pic(X) is finite.

The rest of this section is devoted to the proof of Proposition 4.1.
Let X = Spf B be an excellent normal Og-formal scheme of finite type with generic fiber
X, that is, A= B®pgk. Write X8 for the set of regular points of X'. Thus, X'\ X8 =
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{#1,...,2} consists of finitely many closed points of X. By Lipman’s theorem of resolution
of singularities for excellent two-dimensional schemes, there exists a birational and proper

morphism \: S — X with S regular and A\~ (X7°8) — X8 an isomorphism (cf. [15]; here, we

view X as the ordinary affine scheme Spec B). For n > 1, write B,, Lfip /(7™), X def Spec B,,,

and S, def s x Xp. Further, denote Xj def xred and Sy def Sred. Thus, Xy and Sy are one-

dimensional reduced schemes over F. Further, there exists a morphism A :S — X as above
with Sy a divisor with strict normal crossings (cf. [3, Corollary 0.4]), which we assume from
now on.

We have a surjective homomorphism Pic(X**®) — Pic(X). To prove Pic(X) is finite, it
suffices to prove that Pic(AX"°®) is finite. For each singular point z; of X, let F; dZEf)\_l(zi)red
and let {D; ;}1<j<n, be the set of irreducible components of E;, 1 <i <t. Thus, E; is a
reduced proper curve over the residue field k(z;) at z; which is a finite field. We have an
exact sequence

M Bl (&]2,2) —"— Pic(S) = Pie(A™¥) -0,

where § maps the copy of Z indexed by the pair (i,5) to the class of the divisor D; ;.
Further, we have an isomorphism

Pic(S) & Jim Pic(S,,)

n>1
(cf. [9, premiere partie, Corollaire 5.1.6]).

LEMMA 4.2. We use notations as above. To prove that Pic(X"°8) is finite, it suffices to
prove the following two assertions:
(A) The cokernel of the composite map

¢n: M ol (@7,7) —— Pic(S) - Pic(Sn)

18 finite forn > 1.
(B) There exists ng >0 such that the map

PiC(Sn+1) — PlC(Sn)
s an isomorphism for n > ng.

Proof of Lemma /.2. Follows from the above discussion and the fact that we have an
exact sequence

M — @Pic(é’n) — ]'glcokerwn) =0,

n>1 n>1
where the first map is induced by the maps ¢,, : M — Pic(S,), n > 1, and @n> . coker(¢y,)
is finite if assertions (A) and (B) are satisfied. -
This finishes the proof of Lemma 4.2. O

The rest of this section is devoted to the proofs of assertions (A) and (B).

Proof of assertion (A). Let {n,}5_; be the generic points of Xy, let p: S§" — Sy be the

morphism of normalization, let E; def p H(E;),1<i<t, and let H, = {n,} be the closure

in S§°F of the (inverse image in Sy of the) generic point 1, of Xp, 1 <r <s. Thus, H, is a
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connected affine normal one-dimensional scheme over F. Let
d: Pic(Sg) —£— Pic(8p) 255 M —e!_ (e],2)

be the composite map where the first map is the pullback of line bundles via the
normalization morphism p: §§°" — Sp, and the map deg is obtained by taking the degree
of a line bundle on each irreducible component D; ; of E;.

Cram 1. ker(d) is finite. 0

Proof of Claim 1. We have a commutative diagram of exact sequences

0 0 0
0 A ker(d) —— ker(deg) = @:_, Pic(H, )& (&'_, Pic’(E;))
0 A, Pic(Sy) — Pic(S8°%) = @_, Pic(H,) & (@!_, Pic(E;))
d deg
M _ —— M

where A; and A; are defined so that the above sequences are exact, and A, is finite as follows
from the facts that the sheaf p*(Oggor) / (’)gO is a skyscraper sheaf and the residue fields at

closed points of Sy are finite fields. The kernel ker(deg) = ®:_, Pic(H,) & (&f_, Pic’(E;)) of
the right lower vertical map is finite: PicO(Ei) is finite since E; is a proper and non-singular
curve over a finite field, and for 1 <r < s it holds Pic(H,) is finite since H, is an affine
and normal one-dimensional scheme of finite type over the finite field F. Indeed, assume

for simplicity that H, is geometrically connected over F. Let ¢/F be a finite extension

such that U, def H, Xgpec rSpecl admits a smooth and connected compactification C, with

(C-\U.)(¥) # 0. Let U, — H, be the canonical morphism, and let Pic(H,) — Pic(U,.) be
the induced map of pullback of line bundles. Then Ker[Pic(H,.) — Pic(U,)] is finite (cf. [10,
Theorem 1.8]). Further, the map Pic”(C,.) — Pic(U,.) obtained by restricting a degree 0 line
bundle on C, to U, is surjective (if z € (C, \ U,)(¢) and D € Pic(U,) has degree m then
D —maz € Pic’(C,.) restricts to D on U,); hence, Pic(U,) is finite since Pic’(C,.) is finite.
From the above, it follows that Pic(H,) is finite.

This finishes the proof of Claim 1. 0

Consider the composite map
¥n  Pic(S,) = Pie(Sp) —2= M =al_, (7,Z).
CrLAaM 2. ker(v,) is finite.

Proof of Claim 2. First, we prove that the kernel of the map Pic(S,,) = Pic(S,,—1) is
finite for n > 2. Write Z,, for the sheaf of ideals of Og defining S,,. We have an exact sequence
of sheaves on S,,:

1=1+Zn-1/T,) = o;n — (’)gni1 —1
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which induces an exact sequence in cohomology
HY (8,14 (Z,_1/T,)) — Pic(S,) — Pic(Sp_1) = H*(Sp, 14+ (Tn-1/T,)).

Further, the truncated exponential map « +— 1+ « induces an isomorphism of sheaves
Zn-1/Tn = 14+ (ZTu-1/T) [(Zn-1/Tn)? = 0]; hence, H?(S,,1+7Z,_1/Z,) =0 and the
map Pic(S,) — Pic(S,_1) is surjective. Moreover, H'(S,,Z,_1/Z,) is finite. Indeed,
HY(S,,Z,-1/I,) is a finitely generated B,-module with finite support since the morphism
MEUEZa\{z1,--,2}) = Zn\ {21,..., 2} is affine and RY(m,)«(Z,—1/Z,) is the sheaf
associated with the B,,-module H'(S,,,Z,,_1/Z,); here, \,, : S,, = Z,, is the proper morphism
induced by A. This shows that the kernel of the map Pic(S,,) — Pic(S,—1) is finite for all
n > 2. A similar argument shows that the kernel of the map Pic(S;) — Pic(Sp) is finite.
Hence, using Claim 1, ker(v,,) is finite.

This finishes the proof of Claim 2. i

In light of Claim 2, and in order to prove assertion (A), it suffices to prove that the
cokernel of the composite map

M et (@1,2) —— Pie(S) = Pic(Sa) = Pic(S) —4= M = @l_,(@7,2)

is finite. The latter follows from the nondegeneracy of the intersection pairing (EB?;IZ) X
(©}L,Z) — Z on each fiber E; (cf. [26, Lemma on page 69 and the discussion on page 71
after this lemmal), 1 <14 <t.

This finishes the proof of assertion (A).

Proof of assertion (B). Let J be an ample invertible Og-ideal such that Supp(Ogs/J) =
So. The existence of such J follows from the facts that H, is affine (cf. Proof of Assertion
A), 1 <r <s, the intersection pairing (©72,Z) x (®2,Z) — Z on each fiber E; is negative
definite (cf. [26, Lemma on page 69 and the discussion on page 71 after this lemmal), and
the numerical criterion of ampleness on curves. More precisely, V 1 <4 <t, one can find a
divisor D = Z?;lmijDi,j with m; ; <0 and D.D; ; >0 for all 1 <j <nj.

For m > 1, let S], be the closed subscheme of S defined by the sheaf of ideals J™. To
prove Assertion B, it suffices to prove that there exists mg > 0 such that the map

Pic(S;,.1) — Pic(S;,)
is an isomorphism for any m > mgy. We have an exact sequence of shaves on S;,  ;:
1 Jm/ gt =05 -0 =1,
m—+1 m
where the map J™/J™ ™ — O ;, ,, mapsa local section « to 1+ «, which induces an exact
sequence in cohomology
HYS,,  ,.T™/T™) = Pic(S,),.1) — Pic(S,,) — 0.

Now, there exists mg > 0 such that H* (S}, ,,J™/J™ ') =0 if m >mg by [9, premiére
partie, Proposition 2.2.1].

This finishes the proof of assertion (B).

This finishes the proof of Proposition 4.1.
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85. Compactification of formal germs of p-adic curves

In this section, we use the following notations: K is a complete discrete valuation field

with valuation ring R, uniformizing parameter 7, and with perfect residue field ¢ def R/mR.

Further, A is a two-dimensional normal complete local ring containing R with maximal
ideal m4 containing 7 and residue field £ = A/m 4. We assume that X & Spec(A®pr K) is

geometrically connected. Given a finite extension L/K, we write Oy, for the valuation ring

of L, A, d:efA®(9L L, Ao, d:efA®R OL, and AFY the normalization of Ao, in its total ring

of fractions.

PrOPOSITION 5.1 (Compactification of formal germs of p-adic curves). We use the
above notations. There exists a finite extension L/ K, a flat, proper, connected, and normal
Oy -relative curve Y — SpecOp,, a closed point y € Y, and an isomorphism Oy , = AB}

where @yyy is the completion of the local ring Oy, of Y at y.

Proof. By the main result in [4, Introduction], there exists a finite extension L/K with
uniformizing parameter my, such that A?Q"Lr / WLA?QOLT is reduced. Note that A%"Lr is a normal
two-dimensional complete local ring with perfect residue field (cf. [2, Chap. IX, §4, Lemma
1] and our assumption that X is geometrically connected). Without loss of generality, we
will assume that A/mA is reduced. We show that there exist a proper, flat, connected, and
normal relative R-curve ) — Spec R, a closed point y € )V, and an isomorphism (’A)yy 5 A

First, A/mAis a (reduced) one-dimensional complete local ring with residue field ¢, hence
is isomorphic to a quotient £[[z1,...,2]]/a of a formal power series ring ¢[[z1,...,2]] over ¢
(cf. [2, chapitre IX, §3]). It then follows from [1, Theorem 3.8] and basic facts on the theory
of algebraic curves, that there exist a proper and reduced connected (but not necessarily
irreducible) ¢-curve Z, a closed point y € Z, and an isomorphism @Z,y 5 A/m A where @Z,y
is the completion of the local ring Oz, of Z at y. Moreover, Z is non-singular outside y.
There exists a rational function f on Z which defines a finite generically separable morphism
f:Z — P} such that y = f~1(00) (cf. [12, Proof of Theorem 3]). Thus, by considering the
completion of the morphism f above co, we obtain a finite generically separable morphism
g : Spec(A/mA) — Spec(¢[[t]]) where ¢ is a local parameter at co. This morphism lifts to a
finite morphism g : Spf A — Spf(R][[T]]) of formal schemes (cf. [12, Lemma 2]). Let Z — Z

be the morphism of normalization, and let {z1,...,2,,} C Z be the pre-image of y. There is
a one-to-one correspondence between the set {p1,...,pm} C Spec A of prime ideals of height
1 containing 7 and the set {z1,...,z,,}, p; corresponds to x;, 1 <i < m. The composite

morphisn} 77— P} induces, by corppletion above oo, finite separable morphism§ Ji
SpecFr(Oyz ) — Specl((t)) where Fr(Oy ) is the fraction field of the completion O
of the local ring O = of Z at x;, 1 <i<m (with the above notations t =7 mod ).
Consider the forn’lal closed unit disk D = Spf R < % > with parameter % and its special
fiber D, = Spec/[1] (D, = A}). By a result of Gabber and Katz (cf. [14, Main Theorem
1.4.1]), there exists, for 1 < i <m, a finite cover h; : C; — Dy with C; connected, which
only (tamely) ramifies above the point % =0 and such that the completion of h; above

t =0 is generically isomorphic to the cover g; : SpecFr(O5 2,) — Specl((t)). Using formal
patching techniques (cf. [23, 1.2]), one can lift the covers h; to finite covers h; : Y; — D

which only ramify above the point % =0, 1 <i<m. (Outside % = 0, the existence

of such a lifting follows from the theorems of lifting of étale covers [cf. [8, Exposé I,
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Corollaire 8.4]]. In a formal neighborhood of 1 =0, such a lifting is possible under the

tameness condition: étale locally near % the cover h; is defined by an equation y°* = tie,

where s > 1 is an integer prime to the characteristic of ¢, and one lifts to the cover

defined by Y*® = Tl) For 1 <i<m, let Api be the completion of the localization A,,

of A at p;. Thus, Api is a complete discrete valuation ring with uniformizing parameter

7 (recall A/mA is reduced) and residue field Fr((’jZ ). Let B be the completion of the

localization of R[[T]] at m. Thus, B is a complete disc?ete valuation ring with residue field
£((t)). The finite cover g: Spf A — Spf(R[[T]]) induces, by pullback to Spf B, finite covers
gi - Spf A,,, — Spf B which (by construction) lift the covers g; : SpecFr(@Z ) — Specl((1)),
1 <4 < m. Further, the cover h; :Y; — D induces, by pullback to Spva, a finite cover
h; : Spf B; — Spf B which by construction lifts the cover g; : SpecFr(@Z,wi) — Specl((t)).
Thus, the covers h; : Spf B; — Spf B and g, : Spf Api — Spf B are isomorphic since g; is
generically separable. Using formal patching techniques (cf. [8, Exposé I, Corollaire 8.4]),
one can patch the covers g: Spf A — Spf(R[[T]]) and h; : Y; — D, 1 <i <m, to construct a

finite cover ) — PL in the category of formal schemes with ) normal, connected, proper,

and flat over Spf R. The special fiber )y d:efy Xspec R Spect of Y consists of m irreducible

components which intersect at the point y and is (by construction) non-singular outside
y. The formal curve Y is algebraic by formal GAGA and (by construction) Oy, = A as
required.

REMARK 5.2. Proposition 5.1 asserts the existence, after possibly a finite extension of
K, of a proper R-curve ) and a closed point y € Y°' such that Oy., = A. The special

fiber )V, d:‘*fy Xspec R Opect of Y consists of my, d:efm (cf. the proof of Proposition 5.1 for the
definition of m) irreducible components {C4,...,C),} which intersect at y, Jy is non-singular
outside y, and the normalization morphism C}'** — C}; is a homeomorphism, 1 <7 <m. In
fact, one can, assuming the existence of a compactification of Spec A as in Proposition 5.1,
construct such a compactification ) of Spec A with the additional property that CP°" = Pj,
V1 <i<m (cf. [23, Remark 3.1}).

PROPOSITION 5.3. We use the above notations. There exist a finite extension L/K and

nor

a finite morphism Spec B — Spec AEY with B local, normal, hyperbolic (cf. Notations), and
the morphism Spec By, — Spec Ay, is geometric and étale.

Proof. This follows easily from Proposition 5.1, Remark 5.2, and Theorem 3 in [23]. [
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