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Abstract

In this paper we obtain some ergodic properties and ergodic decompositions of a
continuous-time, Borel right Markov process taking values in a locally compact and
separable metric space. Initially, we assume that an invariant probability measure (IPM) µ

exists for the process and, without making any further assumptions on the transition kernel,
obtain some characterization results for the convergence of the expected occupation
measure to a limit kernel. Under the same assumption, we present the so-called Yosida
decomposition. Next, instead of assuming the existence of an IPM, we assume that
the Markov process satisfies a certain condition, named the T ′-condition. Under this
condition it is shown that the Foster–Lyapunov criterion is necessary and sufficient for the
existence of an IPM and that the process admits a Doeblin decomposition. Furthermore,
it is shown that in this case the set of ergodic probability measures is countable and
that every probability measure for the Markov process is nonsingular with respect to the
transition kernel.
Keywords: Markov process; continuous time; invariant probability measure; limit kernel;
Foster–Lyapunov criterion; ergodic decomposition; Doeblin decomposition; Yosida
decomposition
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1. Introduction

In recent years a great deal of attention has been given to ergodic properties of Markov
processes. For the discrete-time case, we refer to Hernández-Lerma and Lasserre (1998) and
Meyn and Tweedie (1993a) for rather complete discussions on this subject. In general the
analysis of the continuous-time case is made by looking at the ergodic properties of some
associated discrete-time Markov chains. This approach was taken in, for instance, Tuominen
and Tweedie (1979), Meyn and Tweedie (1993b), and Meyn and Tweedie (1993c), which
comprise only a small sample of papers on this subject. In this paper we derive some ergodic
properties and ergodic decompositions for a continuous-time, Borel right Markov process taking
values in a locally compact and separable metric space. As in Tuominen and Tweedie (1979),
we analyse the continuous-time case by looking at the ergodic properties of some associated
discrete-time Markov chains.

Initially, we assume that an invariant probability measure (IPM) µ exists for the process and,
without making any further assumptions on the transition kernel, obtain some characterization

Received 11 October 2005; revision received 23 March 2006.
∗ Postal address: Departamento de Engenharia de Telecomunicações e Controle, Escola Politécnica da Universidade
de São Paulo, CEP 05508 900, São Paulo, Brazil. Email address: oswaldo@lac.usp.br
∗∗ Postal address: Mathématiques Appliqées de Bordeaux, Université Bordeaux I, 351 cours de la Liberation, 33405
Talence Cedex, France. Email address: dufour@math.u-bordeaux1.fr

767

https://doi.org/10.1239/jap/1158784945 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784945


768 O. L. V. COSTA AND F. DUFOUR

results for the convergence of the expected occupation measure to a limit kernel. We follow
an approach closely related to that of Hernández-Lerma and Lasserre (1998). It is shown that
this limit kernel can be written µ-almost everywhere (µ-a.e.) as a composition of the limit
kernel associated with an embedded discrete-time Markov chain of the location of the process
at time 1 with an expected value operator of the integral of the process up to time 1. Moreover,
weak convergence of the expected occupation measure to the limit kernel occurs µ-a.e. In
relation to the ergodic decomposition of a continuous-time Markov process, we present the so-
called Yosida decomposition, which is the counterpart of the results obtained by Yosida (1980,
pp. 393–397) and Hernández-Lerma and Lasserre (1998) in the discrete-time context. The
Yosida decomposition shows that if an ergodic measure for the continuous-time process exists,
then there also exists an indecomposable maximal closed set in which the ergodic measure is
the unique IPM for the continuous-time process (see Proposition 5.2, below).

We then replace the assumption of the existence of an IPM by the assumption that the
Markov process satisfies a certain condition, named the T ′-condition. As will be pointed out
in some examples presented in Section 6, T -processes and irreducible processes in continuous
time are Markov processes satisfying the T ′-condition, but the converse is not in general true.
In this sense, processes satisfying the T ′-condition can be seen as abstract generalizations of
T -processes and irreducible processes. It is shown that the so-called Doeblin decomposition
for the state space of the Markov process holds for a process satisfying the T ′-condition.
Our result is related to the Doeblin decomposition studied by Tuominen and Tweedie (1979),
Tweedie (1979), and Meyn and Tweedie (1993d), (1993b). Under the T ′-condition, it is shown
that the Foster–Lyapunov criterion is necessary and sufficient to ensure the existence of an IPM.
To the best of the authors’ knowledge, this result seems to be the most general attempt to show
that the Foster–Lyapunov criterion is a necessary condition to ensure the existence of such a
measure. The results of this part of the paper are related to the results obtained by the authors
in the discrete-time context (see Costa and Dufour (2005b)). Moreover, the Foster–Lyapunov
criterion is shown to ensure both the decomposition of the set of ergodic IPMs into a countable
set of IPMs nonsingular with respect to the transition kernel (see Definition 6.5, below) and
that every ergodic IPM is nonsingular with respect to the transition kernel.

The paper is organized as follows. In Section 2 we recall some classical definitions related to
Markov processes. Our notation is similar to that of Tuominen and Tweedie (1979). In Section 3
we recall some limiting results for the occupation measure for a Markov chain, and some
recurrence structures relating continuous- and discrete-time Markov processes. In Section 4 we
present some characterization results for the convergence of the expected occupation measure
of the continuous-time process to a limit kernel, and in Section 5 deal with the so-called Yosida
decomposition, under the assumption that an IPM exists for the continuous-time process. The
results related to the Doeblin decomposition and the Foster–Lyapunov criterion are presented
in Section 6, under the assumption that the continuous-time process satisfies the T ′-condition.
It is also shown in this section that the set of ergodic measures is countable and, furthermore,
that each ergodic IPM is nonsingular with respect to the transition kernel.

2. Definitions

Denote the set of nonnegative reals by R+, and let R
∗+ := R+ \{0} and N

∗ := N\{0}. Let X
be a locally compact and separable metric space and B the Borel field on X. For any probability
measure µ on X, we let L1(µ) := L1(X, B, µ), the space of real-valued, measureable functions
f on (X, B) such that µ(|f |) := ∫

X
|f (x)|µ(dx) < ∞. For any A ∈ B, Ac := X \ A and

1A(x) is the indicator function associated with A. For two measures µ and ν defined on the same
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measurable space, we write µ � ν to mean that µ is absolutely continuous with respect to ν.
In this paper we consider two types of time-homogeneous Markov process: the discrete-time
Markov chain {�n}n∈N, where the associated transition probability function is denoted by G,
and the continuous-time Markov process {Xt }t∈R+ . We shall assume that {Xt }t∈R+ is a Borel
right process (see Sharpe (1988, pp. 104–105)) where the associated transition semigroup is
denoted by {P t }t∈R+ , and for every t ∈ R+ shall write P t(x, A) = Px(Xt ∈ A), where
X0 = x ∈ X is the initial condition and A ∈ B.

We recall now some classical definitions related to Markov processes. For a complete
exposition on the subject, the reader is referred to Meyn and Tweedie (1992), (1993a), (1993b),
(1993c). Let us introduce the first hitting time of the set A ∈ B and the number of visits to the
set A, respectively τ�

A := inf{n ≥ 1 : �n ∈ A} and η�
A := ∑∞

n=0 1A(�n) in the discrete-time
case, and τX

A := inf{t ∈ R
+ : Xt ∈ A} and ηX

A := ∫ ∞
0 1A(Xt ) dt in the continuous-time case.

We also define

L�(x, A) := Px(τ
�
A < ∞), LX(x, A) := Px(τ

X
A < ∞),

for all (x, A) ∈ X × B.
Some of the following definitions will be presented only for the continuous-time process

{Xt }t∈R+ , but also hold for the discrete-time chain {�k}k∈N with the superscript ‘X’ replaced
by ‘�’.

Definition 2.1. A set A ∈ B is said to be uniformly transient if there exists a constant, M , such
that Ex(η

X
A) ≤ M for all x ∈ A. A set B ∈ B is said to be transient if it has a countable cover

consisting of uniformly transient sets. A set E ∈ B is said to be absorbing for {Xt }t∈R+ or for
{�n}n∈N if E �= ∅ and if P t(x, E) = 1 for all x ∈ E and t ∈ R+ or, respectively, G(x, E) = 1
for all x ∈ E. A set E ∈ B is called closed for {Xt }t∈R+ or for {�n}n∈N if E �= ∅ and if, for
all x ∈ E, Px(Xt ∈ E for all t ∈ R+) = 1 or, respectively, Px(�n ∈ E for all n ∈ N) = 1.

In what follows, for any A ∈ B we define MX(A) ∈ B by

MX(A) := {x ∈ X : Px(η
X
A = ∞) = 1}.

Definition 2.2. A set H ∈ B is called a Harris set for {Xt }t∈R+ if it is closed and if there exists a
σ -finite measure ϕ(·) on B such that, for ϕ(A) > 0, Px(η

X
A = ∞) = 1 for all x ∈ H . A closed

set A ∈ B is said to be maximal closed if A = MX(A), that is, if x ∈ A ⇔ Px(η
X
A = ∞) = 1.

We say that H ∈ B is a maximal Harris set if it is both Harris and maximal closed.

Definition 2.3. If b = {bk}∞k=0 is a probability on N, then the stochastic kernel K�
b associated

with the discrete-time Markov chain {�k}k∈N is defined on X × B by

K�
b (x, A) :=

∞∑
k=0

bkG
k(x, A) for all x ∈ X and all A ∈ B.

If F is a probability distribution on R+, then the stochastic kernel KX
F associated with the

continuous-time Markov process {Xt }t∈R+ is defined on X × B by

KX
F (x, A) :=

∫ ∞

0
P t(x, A)F (dt) for all x ∈ X and all A ∈ B. (2.1)

The resolvent associated with the transition semigroup {P t }t∈R+ is denoted by

R(x, A) :=
∫ ∞

0
P t(x, A)e−t dt. (2.2)

https://doi.org/10.1239/jap/1158784945 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784945


770 O. L. V. COSTA AND F. DUFOUR

Definition 2.4. A set C ∈ B is called a petite set for {Xt }t∈R+ or for {�n}n∈N if there exist
both a probability distribution F on R

∗+ or, respectively, a probability b on N
∗ and a nontrivial

measure ν on (X, B) such that, for all A ∈ B and all x ∈ C, KX
F (x, A) ≥ ν(A) or, respectively,

K�
b (x, A) ≥ ν(A).

The extended generator A for {Xt }t∈R+ and its domain, D(A), are defined next (see also
Down et al. (1995, pp. 1675–1676)).

Definition 2.5. Define D(A) as the set of all measurable functions V : X×R+ → R for which
there exists a measurable function U : X × R+ → R such that, for each x ∈ X and t > 0,

Ex

(∣∣∣∣
∫ t

0
U(Xs, s) ds

∣∣∣∣
)

< ∞,

Ex(V (Xt , t)) = V (x, 0) + Ex

(∫ t

0
U(Xs, s) ds

)
.

(2.3)

The extended generator A for {Xt }t∈R+ is defined for V ∈ D(A) by AV := U , and D(A) is
referred to as the domain of A.

We conclude this section by recalling the so-called Doeblin decomposition (since B is
assumed to be countably generated; see Tuominen and Tweedie (1979)).

Definition 2.6. The process {Xt : t ∈ T} has a Doeblin decomposition if the space X can be
expressed as X = E ∪ ⋃

n∈� Hn, where � is countable, Hn is a sequence of maximal disjoint
Harris sets, and E is a transient set.

3. Occupation measure and recurrence structure of Markov processes

In this section we recall some limiting results about the occupation measure for a Markov
chain, and some recurrence structures relating continuous- and discrete-time Markov processes.
Let G be a stochastic kernel associated with a discrete-time Markov chain, and suppose that ν

is an IPM for G. The n-step expected occupation measure G(n) associated with the kernel G is
defined, for any x ∈ X and B ∈ B, as

G(n)(x, B) := 1

n

n−1∑
k=0

Gk(x, B). (3.1)

From the mean ergodic theorem and the individual ergodic theorem (Yosida (1980, p. 388)),
for every f ∈ L1(ν) there exists an f ∗ ∈ L1(ν) such that

G(n)f → f ∗ in L1(ν) as n → ∞ and Gf ∗ = f ∗. (3.2)

For every f ∈ L1(ν), the aforementioned function f ∗ satisfies

G(n)f → f ∗ ν-a.e. as n → ∞ and ν(f ∗) = ν(f ). (3.3)

Consider a Borel right process {Xt }t∈R+ as defined in Section 2. Discrete-time Markov
chains associated with this continuous-time process can be introduced. Denote by {�k}k∈N the
Markov chain associated with the resolvent kernel R (defined in (2.2)). For a probability F on
R+, the Markov chain associated with the Markov kernel KX

F (defined in (2.1)) is denoted by
{�F

k }k∈N. We have the following result.

https://doi.org/10.1239/jap/1158784945 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784945


Continuous-time Markov processes 771

Lemma 3.1. If A ∈ B is such that A = MX(A), then MX(A) = M�(A).

Proof. From Theorem 2.1(i) of Meyn and Tweedie (1993b), it is clear that MX(A) =
{x ∈ X : L�(x, A) = 1}. From Proposition 9.1.1 of Meyn and Tweedie (1993a), and since
A = MX(A) = {x ∈ X : L�(x, A) = 1}, it follows that {x ∈ X : L�(x, A) = 1} = M�(A),
completing the proof.

In Theorem 10.19 of Blumenthal and Getoor (1968, p. 58), those authors showed that, under
the hypothesis that the Markov process {Xt }t∈R+ is a Hunt process, the first hitting time of a
Borel set can be approximated by a sequence of first hitting times of compact subsets. However,
it can easily be shown that this result remains valid without this hypothesis.

Lemma 3.2. If B is a Borel set then, for each probability measure µ on (B, B), there exists an
increasing sequence of compact subsets of B, denoted by {Kn}, such that τX

Kn
↓ τX

B Pµ-almost
surely.

Proof. The proof exactly follows that of Theorem 10.19 of Blumenthal and Getoor (1968,
p. 58) except that the result about the first entry time given by Theorem A5.30 of Sharpe (1988,
pp. 393–394) must be used instead of Corollary 10.17 of Blumenthal and Getoor (1968, p. 57).

We have the following result.

Lemma 3.3. Suppose that E ∈ B is an absorbing set for R. Then MX(MX(E)) = MX(E)

and MX(E) is a maximal closed set for the continuous-time process {Xt }t∈R+ .

Proof. From Theorem 2.1(i) of Meyn and Tweedie (1993b), it is clear that

MX(E) = {x ∈ X : L�(x, E) = 1}.
Let D = MX(E). Since E is absorbing for R, we have E ⊂ D. If x ∈ D then, on the one
hand, it follows that L�(x, E) = 1; since obviously L�(x, D) = 1, we thus have x ∈ MX(D),
showing that D ⊂ MX(D). On the other hand, if x ∈ MX(D) then, from the strong Markov
property,

L�(x, E) = Px(τ
�
E < ∞) = Ex(L

�(Xτ�
D

, E) 1{τ�
D <∞}) = 1

and, thus, x ∈ D, showing that MX(D) ⊂ D. This gives the first part of the result.
From Lemma 3.1 it follows that D = M�(D), that is, D is a maximal closed set for R.

From Proposition 2.1 of Tuominen and Tweedie (1979), now using Lemma 3.2 instead of
Theorem 10.19 of Blumenthal and Getoor (1968, p. 58), the result follows.

The following result is an adaptation of Theorem 2.1 of Tuominen and Tweedie (1979), in
which is was assumed that {Xt }t∈R+ is a Hunt process. Here we relax this hypothesis by using
Lemma 3.2 (note that here the process is assumed to be Borel right).

Theorem 3.1. For any set A ∈ B,

(i) A is transient for {Xt }t∈R+ if and only if A is transient for {�k}k∈N, and

(ii) A is a maximal Harris set for {Xt }t∈R+ if and only if A is a maximal Harris set for
{�k}k∈N.

Proof. The proof of this theorem follows the proofs of Theorem 2.1 and Proposition 2.1
of Tuominen and Tweedie (1979). Note that the hypothesis that {Xt }t∈R+ is a Hunt process
appears only in the proof of Proposition 2.1 there, where Tuominen and Tweedie used the
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theorem of approximation of the first hitting times derived by Blumenthal and Getoor (see
Theorem 10.19 of Blumenthal and Getoor (1968, p. 58)). However, now using Lemma 3.2
instead of Theorem 10.19 of Blumenthal and Getoor (1968, p. 58), the result follows.

4. Limiting kernel

In this section we present some convergence results for the expected occupation measure
for the continuous-time process {Xt }t∈R+ , following an approach closely related to the one
presented in Yosida (1980, pp. 393–397) and Hernández-Lerma and Lasserre (1998). In
particular, we show that the limit kernel associated with the continuous-time process can be
written µ-a.e. (where µ is an IPM for the continuous-time process) as a composition of the limit
kernel associated with an embedded discrete-time Markov chain of the location of the process
at time 1 with an expected value operator of the integral of the process up to time 1. We also
obtain the weak convergence µ-a.e. of the expected occupation measure for the continuous-time
process without any Feller hypothesis (see, e.g. Yosida (1980, p. 393)) on the process.

We assume that an IPM µ exists for the continuous-time process {Xt }t∈R+ (and, thus, from
Lemma 1 of Azéma et al. (1967), for the discrete-time process {�k}k∈N associated with the
resolvent R). We define the operator G : L1(µ) → L1(µ) as follows. For f ∈ L1(µ),

Gf (x) := Ex

(∫ 1

0
f (Xs) ds

)
=

∫ 1

0
P sf (x) ds.

Since µ(|f |) < ∞, it is easy to verify that µ(|Gf |) < ∞. We denote by R(n) the n-step
expected occupation measure associated with the kernel R, as defined (for the kernel G) in
(3.1). Also define the stochastic kernel Q by Q := P 1. Clearly, µ is also invariant for Q,∑n−1

k=0 QkGf (x) = Ex(
∫ n

0 f (Xs) ds) for any f ∈ L1(µ), and µQG = µ. The occupation
measure P (t) for the continuous-time process {Xt }t∈R+ is defined by

P (t)(x, B) := 1

t

∫ t

0
P s(x, B) ds. (4.1)

Let 	̂′ : L1(µ) → L1(µ) be the Markov operator associated with the stochastic kernel Q

and let 	̂ : L1(µ) → L1(µ) be the Markov operator associated with the stochastic kernel R,
as in Hernández-Lerma and Lasserre (1998). Similarly, let ϕ′

x be the measure associated with
the stochastic kernel Q and let ϕx be the measure associated with the stochastic kernel R, as in
Lemma 3.3 of Hernández-Lerma and Lasserre (1998). We have the following results.

Proposition 4.1. Let x ∈ X be such that Q(n)Gf (x) converges for any f ∈ L1(µ). Then
limn→∞ Q(n)Gf (x) = limt→∞ P (t)f (x).

Proof. For any f ∈ L1(µ), let f + = max{f, 0} ∈ L1(µ). Denote by �t� the integer part of
the positive real number t . For any t ≥ 1,

�t�
t

1

�t�
∫ �t�

0
Ex(f

+(Xs)) ds ≤ 1

t

∫ t

0
Ex(f

+(Xs)) ds

≤ �t� + 1

t

1

�t� + 1

∫ �t�+1

0
Ex(f

+(Xs)) ds

or, in other words, from (4.1),

�t�
t

Q(�t�)Gf +(x) ≤ P (t)f +(x) ≤ �t� + 1

t
Q(�t�+1)Gf +(x).
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Taking the limit as t → ∞, we obtain limn→∞ Q(n)Gf +(x) = limt→∞ P (t)f +(x). Simi-
larly, in the same limit we have limn→∞ Q(n)Gf −(x) = limt→∞ P (t)f −(x), where f − =
− min{f, 0} ∈ L1(µ). Therefore, limn→∞ Q(n)Gf (x) = limt→∞ P (t)f (x), which is the
desired result.

Proposition 4.2. Let f ∈ L1(µ) be a bounded function and let x ∈ X be such that P (t)f (x)

converges. Then, for every n = 1, 2, . . . , limt→∞ P (t)f (x) = limt→∞ P (t)R(n)f (x).

Proof. From the Markov property we have P tRf (x) = et Ex(
∫ ∞
t

e−sf (Xs) ds), and by
integration by parts we have∫ τ

0
P tf (x) dt =

∫ τ

0
P tRf (x) dt − eτ

(∫ ∞

τ

e−sP sf (x) ds

)
+ Rf (x).

Dividing this by τ and taking the limit as τ → ∞, from the fact that f is bounded we obtain
limτ→∞ P (τ)f (x) = limτ→∞ P (τ)Rf (x). By iterating this equation and adding the results
we obtain

n lim
τ→∞ P (τ)f (x) = lim

τ→∞ P (τ)

( n∑
k=1

Rk

)
f (x),

from which the desired result follows.

Proposition 4.3. For any f ∈ L1(µ) and t ≥ 0, P t	̂f = 	̂f .

Proof. From Lemma 4.3 of Down et al. (1995), we have AR	̂f (x) = (R − I )	̂f (x) (see
Definition 2.5), where I represents the identity operator. However, since (R−I )	̂f (x) = 0 (see
Lemma 3.2 of Hernández-Lerma and Lasserre (1998)), it follows thatAR	̂f (x) = A	̂f (x) =
0 and, from (2.3), that P t	̂f (x) − f (x) = ∫ t

0 Ex(A	̂f (Xs)) ds = 0, from which the desired
result follows.

Proposition 4.4. For µ-almost every x, we have ϕx(B) = ϕ′
xG(B) for all B ∈ B.

Proof. Let C0(X) be the space of continuous functions on X vanishing at infinity (recall
that any f ∈ C0(X) is a bounded function). Let X1 ∈ B be such that Lemma 3.3(a)–(e) of
Hernández-Lerma and Lasserre (1998) and (3.3) are satisfied for the kernels Q and R. Then
µ(X1) = 1 and from Propositions 4.1 and 4.2 we have, for every x ∈ X1 and f ∈ C0(X),

	̂′Gf (x) = lim
t→∞ P (t)f (x) = lim

t→∞ P (t)R(n)f (x) = 	̂′GR(n)f (x);

that is, for every n = 1, 2, . . . and x ∈ X1, 	̂′Gf (x) = 	̂′GR(n)f (x). Moreover, from (3.2),
R(n)f → 	̂f in L1(µ) as n → ∞.

Let us now show that GR(n)f → G	̂f in L1(µ). Indeed,∫
X

|GR(n)f (y) − G	̂f (y)|µ(dy) ≤
∫

X

∫ 1

0
P s(|R(n)f − 	̂f |)(y) dsµ(dy)

=
∫

X

(|R(n)f − 	̂f |)(y)µ(dy),

yielding the desired convergence. According to Lemma 3.2 of Hernández-Lerma and Lasserre
(1998), we have 	̂′GR(n)f → 	̂′G	̂f in L1(µ) as n → ∞. However, notice that

	̂′G	̂f (y) = lim
τ→∞ P (τ)	̂f (y) = 	̂f (y),
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by Proposition 4.3. This means that 	̂′GR(n)f → 	̂f in L1(µ) as n → ∞. As seen above,
we have 	̂′Gf (x) = 	̂′GR(n)f (x) for x ∈ X1, and µ(X1) = 1, so

0 = lim
n→∞

∫
X

|	̂′GR(n)f (x) − 	̂f (x)|µ(dx) =
∫

X1

|	̂′Gf (x) − 	̂f (x)|µ(dx). (4.2)

Therefore, from (4.2) there exists a setN(f ) ⊆ X1, N(f ) ∈ B, such thatµ(N(f )) = 1 and, for
every x ∈ N(f ), 	̂′Gf (x) = 	̂f (x). Moreover, from Equation (3.12) of Hernández-Lerma
and Lasserre (1998) and the definition of X1, we have 	̂′Gf (x) = ϕ′

xGf and 	̂f (x) = ϕxf ,
where ϕ′

x and ϕx are IPMs for Q and R, respectively. Now let {g
} be a countable, dense set
in C0(X) and set N = ⋂


 N(g
). The denseness of {g
} means that ϕ′
xGg = ϕxg for every

g ∈ C0(X) and x ∈ N , which implies the desired result.

We now prove the main theorem of this section, which traces a parallel with Theorem 3.1 of
Hernández-Lerma and Lasserre (1998).

Theorem 4.1. Suppose that there exists an IPM µ for the continuous-time process {Xt }t∈R+ .
Then there are stochastic kernels 	(x, B) and 	̄(x, B) such that the following statements hold
µ-a.e. in X.

(a) 	 = 	P t for all t ≥ 0, 	̄ = 	̄Q, and 	 = 	̄G.

(b) limt→∞ P (t)f = 	f for all f ∈ L1(µ), and P (t)(x, ·) converges weakly to 	(x, ·).
(c) P t	 = 	 for each t ≥ 0, 		 = 	, and µ is an IPM for 	.

Proof. As in Hernández-Lerma and Lasserre (1998), let 	(x, ·) = ϕx(·) if x ∈ supp(µ)

and let 	(x, ·) = µ0 otherwise, where supp(µ) is the support of the measure µ and µ0 is
any measure equivalent to µ. Similarly, let 	̄(x, ·) = ϕ′

x(·) if x ∈ supp(µ) and 	̄(x, ·) = µ0

otherwise. Let us prove (a) first. As proved in Theorem 3.1(a) of Hernández-Lerma and Lasserre
(1998), 	 is an IPM for R µ-a.e. in X and, according to Lemma 1 of Azéma et al. (1967), 	

is an IPM for P t µ-a.e. in X. From Theorem 3.1(a) of Hernández-Lerma and Lasserre (1998)
again, 	̄ is an IPM for Q µ-a.e. in X. The proof of (a) then follows from Proposition 4.4, due
to the facts that 	(x, ·) = ϕx(·) and 	̄(x, ·) = ϕ′

x(·) for x ∈ supp(µ).
Let us now prove (b). We have Gf ∈ L1(µ) for any f ∈ L1(µ), and, from the definition of

the set N in Proposition 4.4 and the stochastic kernels 	 and 	̄, for any x ∈ N ∩ supp(µ) we
have Q(n)Gf (x) → ϕ′

xGf = ϕxf = 	f (x). From Proposition 4.1, limn→∞ Q(n)Gf (x) =
limt→∞ P (t)f (x). Since Cb(X) ⊂ L1(µ) (where Cb(X) represents the set of real-valued
continuous, bounded functions on X), the second part of (b) follows from the first.

Finally let us show (c). With B = N ∩ supp(µ), we have µ(B) = 1 = ∫
X

P t (z, B)µ(dz).
Therefore, for each t , we can find a set C(t) ∈ B such that µ(C(t)) = 1 and P t(z, B) = 1 for
every z ∈ C(t). Now notice that 	̂(y, ·) = 	(y, ·) for y ∈ B and that, from Proposition 4.3,

	f (x) = 	̂f (x) = P t	̂f (x) =
∫

B

	̂f (y)P t (x, dy) =
∫

B

	f (y)P t (x, dy) = P t	f (x)

for any f ∈ L1(µ) and x ∈ C(t) ∩ B. The first part of (c) follows. The remaining results
follow from Theorem 3.1 of Hernández-Lerma and Lasserre (1998).

https://doi.org/10.1239/jap/1158784945 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784945


Continuous-time Markov processes 775

5. Yosida decomposition

In this section we present the so-calledYosida decomposition for the continuous-time process
{Xt }t∈R+ , following an approach closely related to the one presented inYosida (1980, pp. 393–
397) and Hernández-Lerma and Lasserre (1998). In what follows we denote by SX the closed
sets for {Xt }t∈R+ and, similarly, by S� the closed sets (equivalent in this case to the absorbing
sets) for the discrete-time process {�k}k∈N.

Remark 5.1. Note that SX ⊂ S�. Indeed, suppose that E ∈ SX, whence P t(x, E) = 1 for
all x ∈ E and all t ∈ R+. Then clearly R(x, E) = 1 for all x ∈ E.

We now recall the following definition.

Definition 5.1. A measure υ on B is said to be ergodic if it is an IPM such that, for every
closed set B ∈ B, υ(B) = 1 or υ(B) = 0. We denote by UX the set of ergodic measures for
{Xt }t∈R+ and by U� the set of ergodic measures for {�k}k∈N.

We have the following results.

Lemma 5.1. Assume that υ is an invariant measure for the Markov chain {�k}k∈N. Then
υ(E) = υ(MX(E)) for all E ∈ S�.

Proof. For E ∈ S�, we have L�(x, E) = 1 and E ⊂ MX(E). Define

UE(x, B) :=
∞∑

n=1

[(R 1Ec)n−1R](x, B)

for all B ∈ B and x ∈ X. Consequently, using Theorem 10.4.7 of Meyn and Tweedie
(1993a), we find that the measure υ◦

E defined by υ◦
E(B) = ∫

E
UE(y, B)υ(dy) for all B ∈ B is

invariant for the Markov chain {�k}k∈N, and, since MX(E) \ E ⊂ {x ∈ X : L�(x, E) > 0},
we have υ(MX(E) \ E) = υ◦

E(MX(E) \ E). However, since E is absorbing, it follows that
UE(y, MX(E)\E) = 0 for all y ∈ E. Combining these results, we obtain υ(MX(E)\E) = 0,
from which the result follows.

Proposition 5.1. A measure υ is ergodic for the continuous-time process {Xt }t∈R+ if and only
if υ is ergodic for the discrete-time process {�k}k∈N associated with the resolvent R.

Proof. From Remark 5.1, the ‘if’ part is straightforward. To prove the converse implication,
suppose that υ is ergodic for {Xt }t∈R+ but not for {�k}k∈N. In this case we can find an E ∈ S�

such that 0 < υ(E) < 1. Using Lemma 5.1, we find that υ(E) = υ(MX(E)). However, from
Lemma 3.3, MX(E) ∈ SX. Consequently 0 < υ(MX(E)) < 1, implying that υ is not ergodic
for {Xt }t∈R+ , which leads to a contradiction. Therefore, υ is ergodic for {�k}k∈N, giving the
result.

The next result traces a parallel with Lemma 4.2 of Hernández-Lerma and Lasserre (1998).

Proposition 5.2. If the measure υ is ergodic for the continuous-time process {Xt }t∈R+ , then
there exists a maximal closed set Ê ∈ SX such that υ(Ê) = 1. Moreover, with {X̂t }t∈R+ the
restriction of {Xt }t∈R+ over Ê, it follows that

(i) υ is the unique IPM of the continuous-time process {X̂t }t∈R+ , and

(ii) Ê is indecomposable.
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Proof. Let ϕx be the measure associated with the resolvent R, as in Lemma 3.3 of
Hernández-Lerma and Lasserre (1998), and let S̃ = {x ∈ X : ϕx = υ} ∩ {x ∈ X : R(n)(x, ·)
converges weakly to ϕx}. According to Theorem 3.1 and Lemma 4.2 of Hernández-Lerma and
Lasserre (1998), we have υ(S̃) = 1. Following the approach ofYosida (1980, pp. 393–397) (see
also Hernández-Lerma and Lasserre (1998, p. 113)), we can find an absorbing set Ẽ ∈ S� such
that Ẽ ⊂ S̃ and υ(Ẽ) = 1. Let Ê = M(Ẽ) = {x ∈ X : L�(x, Ẽ) = 1} (from Theorem 2.1(i)
of Meyn and Tweedie (1993b)). From Lemma 3.3, Ê ∈ SX and, clearly, Ẽ ⊂ Ê, meaning that
υ(Ê) = 1.

Let us show that Ê ⊂ S̃. Consider an x ∈ Ê and any function f ∈ Cb(X) (recall that Cb(X)

denotes the space of bounded continuous functions on X). We have

n∑
k=1

Rkf (x) = Ex

( n∑
k=1

f (�k)

)
=

∞∑
m=1

Ex

( n∑
k=1

f (�k) 1{τ�

Ẽ
=m}

)
,

since Px(τ
�

Ẽ
< ∞) = 1. However, from the Markov property it follows that, for n > m,

1

n
Ex

( n∑
k=1

f (�k) 1{τ�

Ẽ
=m}

)
= 1

n
Ex

( m∑
k=1

f (�k) 1{τ�

Ẽ
=m}

)
+ 1

n
Ex

(n−m∑
k=1

Rkf (�m) 1{τ�

Ẽ
=m}

)
.

Note that �τ�

Ẽ

∈ Ẽ ⊂ S̃. By using the bounded convergence theorem, we obtain

lim
n→∞

1

n
Ex

(n−m∑
k=1

Rkf (�m) 1{τ�

Ẽ
=m}

)
= υ(f ) Px(τ

�

Ẽ
= m).

Combining these results yields

lim
n→∞

1

n
Ex

( n∑
k=1

f (�k) 1{τ�

Ẽ
=m}

)
= υ(f ) Px(τ

�

Ẽ
= m)

and, again from the bounded convergence theorem, we obtain

lim
n→∞

1

n

n∑
k=1

Rkf (x) = υ(f )

∞∑
m=1

Px(τ
�

Ẽ
= m) = υ(f ).

Thus, R(n)(x, ·) converges weakly to υ and x ∈ S̃, implying that Ê ⊂ S̃. From Lemma 3.3 of
Hernández-Lerma and Lasserre (1998), for an arbitrary IPM µ for P t(x, ·) (and, thus, for R)
such that µ(Ê) = 1, we have µ(B) = ∫

Ê
µ(dx)ϕx(B) = υ(B) for all B ∈ B, proving item (i).

Now suppose that Ê can be decomposed as the union of two disjoint closed sets A and
B with υ(A)υ(B) > 0. Then, from Remark 5.1, A and B are disjoint absorbing sets for R,
leading, according to the proof of Lemma 4.2(h) of Hernández-Lerma and Lasserre (1998), to
a contradiction.

As in Hernández-Lerma and Lasserre (1998), let µ be an IPM for P t(x, ·) and define

�(f, ϕx) =
∫

X

(ϕx(f ) − µ(f ))2µ(dx),

define X1 as the set of points in X such that Lemma 3.3(a)–(e) of Hernández-Lerma and Lasserre
(1998) holds, and define X2 = {x ∈ X1 : �(f, ϕx) = 0 for all f ∈ C0(X)}. The following
result presents the so-called Yosida decomposition for the continuous-time process {Xt }t∈R+ .
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Theorem 5.1. Let µ be an arbitrary IPM for the continuous-time process {Xt }t∈R+ , define ϕx

as in Lemma 3.3 of Hernández-Lerma and Lasserre (1998), and let X2 be as defined above.
Then, for every x ∈ X2, there is a maximal closed set Êx ∈ SX such that ϕx(Êx) = 1.
Moreover, with {X̂t }t∈R+ the restriction of {Xt }t∈R+ over Êx , it follows that

(i) ϕx is the unique IPM of the continuous-time process {X̂t }t∈R+ , and

(ii) Êx is indecomposable.

Proof. As defined in Hernández-Lerma and Lasserre (1998, pp. 114–115), ϕx is an ergodic
probability measure for R. From Proposition 5.1, ϕx is an ergodic probability measure for the
continuous-time process {Xt }t∈R+ , and the result follows from Proposition 5.2 with υ replaced
by ϕx .

6. Doeblin decomposition and Lyapunov criterion

We start by recalling the definition of an everywhere-nontrivial T -continuous component
for a stochastic kernel K , and that of T -processes (see Meyn and Tweedie (1993b)).

Definition 6.1. Let K(·, ·) : X ×B → R+ be a stochastic kernel. A kernel T (·, ·) : X ×B →
R+ is called a T -continuous component nontrivial everywhere on X if

(i) T (x, ·) ≤ K(x, ·) for all x ∈ X,

(ii) 0 < T (x, X) ≤ 1 for all x ∈ X, and

(iii) for each A ∈ B, T (·, A) is a lower-semicontinuous function.

Definition 6.2. A continuous-time Markov process {Xt }t∈R+ will be called a T -process if there
exists a probability F on R

∗+ such that the stochastic kernel KX
F admits an everywhere-nontrivial

T -continuous component. A discrete-time Markov chain {�n}n∈N will be called a T -process
if there exists a probability b on N

∗ such that the stochastic kernel K�
b admits an everywhere-

nontrivial T -continuous component.

The following definitions are related to the T ′-condition presented by Costa and Dufour
(2005b), and generalize the concepts of T -continuous component and T -process (see the
examples below).

Definition 6.3. (T ′-component.) Let K(·, ·) : X×B → R+ be the stochastic kernel associated
with the Markov chain {�k}k∈N. This kernel admits a T ′-component if there exist a probability
b on N

∗ and a kernel T (·, ·) : X × B → [0, 1] such that

(i) T (x, ·) � K�
b (x, ·) for all x ∈ X,

(ii) 0 < T (x, X) ≤ 1 for all x ∈ X, and

(iii) there exist an � ⊆ N∗ and a countable sequence of sets {Bn}n∈� in B such that, for every
absorbing set E of the Markov chain {�k}k∈N, there is an � (E) ⊆ � such that

{x ∈ X : T (x, E) > 0} =
⋃

i∈� (E)

Bi. (6.1)

Definition 6.4. (T ′-process.) A continuous-time Markov process {Xt }t∈R+ where the associ-
ated transition semigroup is denoted by {P t }t∈R+ will be called a T ′-process if there exists a
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distribution F on R
∗+ such that the stochastic kernel KX

F admits a T ′-component. A discrete-
time Markov chain {�n}n∈N where the associated transition probability function is denoted
by G will be called a T ′-process if there exists a distribution F on R

∗+ such that the stochastic
kernel G admits a T ′-component.

Next, we present three examples of Markov processes that are T ′-processes. The first
two examples show that standard classes of Markov process (such as irreducible processes
or T -processes) are T ′-processes. In the last example it is shown that the class of processes
satisfying the T ′-condition is wider than the class of irreducible processes and T -processes.

Example 6.1. If {Xt }t∈R+ is ϕ-irreducible then it is a T ′-process. Indeed, from the definition
of ϕ-irreducibility, if for some ϕ we have ϕ(B) > 0, then Ex(η

X
B ) > 0, and from Theorem 2.1(i)

of Meyn and Tweedie (1993b) we have L�(x, B) > 0, where {�k}k∈N denotes the Markov
chain associated with the resolvent. Consequently, it follows that {�k}k∈N is ϕ-irreducible. As
shown by Costa and Dufour (2005b), {�k}k∈N is a T ′-chain, and from Definition 6.3 {Xt }t∈R+
is a T ′-process.

Example 6.2. If {Xt }t∈R+ is a T -process then, for some distribution F , it is immediate that
the stochastic kernel KX

F admits a T ′-component and, from Definition 6.3, that {Xt }t∈R+ is a
T ′-process.

Example 6.3. Consider a scalar Markov jump linear system given by

ż(t) = aθ(t)z(t), z(0) ∈ R, θ(t) ∈ N, a1 = −1, a2 = −2,

where N = {1, 2}, θ(t) is a continuous-time Markov process with jump rates λ12 = 1, λ21 = 1,
and a dot denotes a time derivative. Note that this class of models has been the subject of
extensive research over the last few years, and the associated literature is now fairly extensive.
The interested reader may consult the following references (and the references cited therein): in
the discrete-time context see Costa et al. (2004), and in the continuous-time context see Fragoso
and Rocha (2005).

It is easy to see that z(t) = exp{∫ t

0 aθ(s) ds}z(0), and that z(t) is a strictly decreasing function
of t for z(0) > 0 and a strictly increasing function of t for z(0) < 0. We define the Markov
process {Xt }t∈R+ , with Xt = (z(t), θ(t)) taking values in X = R × N .

For any i ∈ N , let x0 = (0, i), A0 = {0} × N , and xn = (1/n, i). For any T -continuous
component of KX

F , we have 0 = KX
F (xn, A0) ≥ T (xn, A0) ≥ 0 and, thus,

0 = lim
n→∞ T (xn, A0) ≥ T (x0, A0) ≥ 0,

meaning that T (x0, A0) = 0 (and, thus, T (x0, (R \ {0}) × N) > 0), which is a contradiction
since clearly 0 = KX

F (x0, (R\{0})×N) ≥ T (x0, (R\{0})×N). Therefore, with the topology
generated by the usual metric, we conclude that this process is not a T -process.

For x = (z, i) ∈ R × N and A any Borel set of R, let

T (x, A × {j}) =

⎧⎪⎪⎨
⎪⎪⎩

1

2z
µLeb.(A ∩ (0, z)), j = 1, 2, for z > 0,

− 1

2z
µLeb.(A ∩ (z, 0)), j = 1, 2, for z < 0,

T (x, {0} × {j}) = 1

2
, j = 1, 2, for z = 0.
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Also, let F(t) be the exponential distribution with rate 1, let {Bn}∞n=2 be a countable basis of
the open sets in R, and let B1 = {0}. With these choices we see that {�k}k∈N is a T ′-chain with
b1 = 1 and, thus, that {Xt }t∈R+ is a T ′-process.

The next result shows that a T ′-process admits a Doeblin decomposition.

Proposition 6.1. Assume that {Xt }t∈R+ is a Borel right process. It is then a T ′-process if and
only if the Markov chain {�k}k∈N is a T ′-chain. If {Xt }t∈R+ is a T ′-process, then it admits a
Doeblin decomposition.

Proof. Let us first show that if {Xt }t∈R+ is a T ′-process then the Markov chain {�k}k∈N is a
T ′-chain. From Definition 6.4, if {Xt }t∈R+ is a T ′-process then there exists a distribution F on
R

∗+ such that the stochastic kernel KX
F admits a T ′-component. According to Corollary 2.19

of Costa and Dufour (2005b), there exist a countably generated and separated T1 topology
consisting of all open sets in B and a probability d on N

∗ such that
∑∞

k=1 dk(K
X
F )k admits a

T -continuous component that is nontrivial everywhere on X (or, in other words, KX
H admits a

T -continuous component that is nontrivial everywhere on X, where H = ∑∞
k=1 dkF

∗k and F ∗n

represents the n-fold convolution, since
∑∞

k=1 dk(K
X
F )k = KX

H ). Now, according to Proposi-
tion 3.1 of Meyn and Tweedie (1993b), there exists a distribution G on R

∗+ that has a bounded
density g with respect to the Lebesgue measure and for which KX

G admits an everywhere-
nontrivial continuous component with respect to the T1 topology. We denote by {�̃k}k∈N the
Markov chain that is generated from the stochastic kernel KX

G . Again using Corollary 2.19 of
Costa and Dufour (2005b), it follows that {�̃k}k∈N is a T ′-chain. Consequently, there exist a
probability b on N

∗ and a kernel T (·, ·) such that conditions (i), (ii), and (iii) of Definition 6.3
are satisfied.

Let us show that T (x, ·) � R(x, ·) for all x ∈ X. Indeed, suppose that A ∈ B is such that
R(x, A) = ∫ ∞

0 P t(x, A)e−tdt = 0. Then

∞∑
k=1

bk(K
X
G)k(x, A) =

∫ ∞

0
P t(x, A)

∞∑
k=1

bkg
∗k(t) dt = 0,

implying that T (x, A) = 0. Moreover, if E is an absorbing set of {�k}k∈N then E is an
absorbing set of {�̃k}k∈N. Indeed, suppose that E is an absorbing set of {�k}k∈N. Then, for
every x ∈ E, we have R(x, E) = 1, meaning that R(x, Ec) = ∫ ∞

0 P t(x, Ec)e−t dt = 0 and,
thus, that KX

G(x, Ec) = ∫ ∞
0 P t(x, Ec)g(t) dt = 0, whence KX

G(x, E) = 1 for every x ∈ E.
Now, it is easy to see that the resolvent R satisfies Definition 6.3 for the T ′-component T .
It thus follows that {�k}k∈N is a T ′-chain.

Conversely, if {�k}k∈N is a T ′-chain then it is easy to see, by taking dF(t) = e−t dt , that
KF = R admits a T ′-component and, thus, that {Xt }t∈R+ is a T ′-process, from which the first
part of the result follows.

The second part of the result is a straightforward combination of the first part, Theorem 3.1
(here) and Theorem 2.18 of Costa and Dufour (2005b).

The next result shows that the Lyapunov criterion is necessary and sufficient for the existence
of an IPM for a nonexplosive Borel right T ′-process. For the Borel right process {Xt }t∈R+
(which will be assumed nonexplosive in the sequel), the extended generator is as defined in
Definition 2.5.

Theorem 6.1. Assume that {Xt }t∈R+ is a nonexplosive Borel right process satisfying the T ′-
condition. Then {Xt }t∈R+ admits an IPM if and only if there exist a petite set C and a closed
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set H for {Xt }t∈R+ , a measurable function W : X → R+ in the domain of A, and a constant
d ∈ R+ such that

AW(x) ≤ −1 + d 1C(x) for all x ∈ H.

Proof. If there exists an IPM for {Xt }t∈R+ then, according to Lemma 1 of Azéma et al.
(1967), there exists an invariant probability for the Markov chain {�k}k∈N associated with
the resolvent R. Using Proposition 6.1, we find that {�k}k∈N is a T ′-chain. Consequently,
following the proof of Proposition 5.1 of Costa and Dufour (2005b), there exists a maximal
Harris set H for {�k}k∈N such that

RV (x) ≤ V (x) − 1 + d 1C(x) for all x ∈ H, (6.2)

where d ∈ R+, C is a petite set for R, and V : X → R̄+ = R+ ∪ {∞} is a measurable function
with V (x) < ∞ for all x ∈ H . Denote by V̂ the restriction of V to H . Since H is a maximal
Harris set for {�k}k∈N, it is also a maximal Harris set for {Xt }t∈R+ , by Theorem 3.1. Consider
the restrictions {X̂t }t∈R+ and {�̂k}k∈N of the process {Xt }t∈R+ and, respectively, the Markov
chain {�k}k∈N to H . Moreover, denote by Â the generator of the process {X̂t }t∈R+ . Clearly
{X̂t }t∈R+ is a nonexplosive Borel right process, and we denote by R̂ its associated resolvent.
It is easy to show that RV (x) = R̂V̂ (x) for all x ∈ H . From (6.2), it follows that V̂ is in the
domain of R̂; from Lemma 4.3 of Down et al. (1995) we thus find that

ÂR̂V̂ (x) = (R̂ − I )V̂ (x) for all x ∈ H. (6.3)

Define the function W : X → R+ by

W(x) :=
{

R̂V̂ (x) for x ∈ H,

0 for x ∈ H c.

Clearly W is a measurable function. Since H is a closed set for {Xt }t∈R+ , we have

Ex(W(Xt)) = W(x) + Ex

(∫ t

0
(R − I )V (Xs) ds

)
for all x ∈ H,

implying that AW(x) = (R − I )V (x) for all x ∈ H . Moreover, AW(x) = 0 for all x ∈ H c.
Therefore, W is in the domain of A. Finally, using (6.2), we find that

AW(x) ≤ −1 + d 1C(x) for all x ∈ H,

where C is a petite set for {Xt }t∈R+ (since it is petite for R), from which the ‘if’ part of the
result follows.

The converse result is Theorem 4.1 of Costa and Dufour (2005a).

Before presenting our final result, we recall the following definition.

Definition 6.5. An IPM µ is said to be singular with respect to P t(x, ·) if, for each x ∈ X,
there exists a set Ex such that µ(Ex) = 1 and

∫ ∞
0 P t(x, Ex) dt = 0. Otherwise µ is said to be

nonsingular with respect to P t(x, ·). Similarly, an IPM µ is said to be singular with respect to
R(x, ·) if, for each x ∈ X, there exists a set Ex such that µ(Ex) = 1 and

∑∞
k=1 Rk(x, Ex) = 0.

Otherwise µ is said to be nonsingular with respect to R(x, ·).
Theorem 6.2. If {Xt }t∈R+ is a T ′-process and an IPM µ exists for it, then every IPM is
nonsingular with respect to P t(x, ·) and UX is countable.
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Proof. From Proposition 6.1 and the hypothesis that {Xt }t∈R+ is a T ′-process, it follows
that {�k}k∈N is a T ′-chain. From Theorem 2.21 of Costa and Dufour (2005b), U� is countable
and every IPM for {�k}k∈N is nonsingular with respect to R(x, ·). From Proposition 5.1,
UX = U�, from which the first part of the result follows. The second part follows from the
identity

∫ ∞
0 P t(x, Ex) dt = ∑∞

k=1 Rk(x, Ex) and Lemma 1 of Azéma et al. (1967).
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