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INDICATOR SETS, REGULI, AND A NEW CLASS 
OF SPREADS 

F. A. SHERK AND GÛNTHER PABST 

1. Introduction. Let 2 be the projective 3-space over the field GF(q) 
where q = p\ p an odd prime. A spread W in S is a set of q2 + 1 lines in 2 
which are such that each point of 2 lies on exactly one line of W. Thus the lines 
of W are all mutually skew. The notion of a spread extends to higher dimen­
sions and also applies for arbitrary fields [1; 3; 6, p. 29; 7, p. 5]. Our concern, 
however, will be within the narrower but still extensive bounds indicated. 

A particular type of spread, which is now usually identified as a regular 
spread, appears in the classical literature as an elliptic linear congruence 
[9, p. 315]. Contemporary interest in spreads arises from their intimate associa­
tion with translation planes: every spread determines a translation plane, and 
every translation plane can be so determined [6, p. 133]. Here the term 
''spread" must have a wider definition which includes spreads in higher dimen­
sional spaces. Spreads in the projective 3-space 2 over GF{q) determine the 
class of finite translation planes of odd characteristic which are of dimension 
two over their kernels [6, p. 133]. 

It is possible to study spreads in 2 through the study of indicator sets, which 
are sets of q2 points in the affine plane ir over GF(q2), with a characteristic 
property to be presently explained (Lemma 2). The appealing feature of this 
point of view is that a knowledge of the geometry of points in the plane IT can 
be invoked to gain new knowledge about spreads, which may be obscured in 
direct methods of attack in the 3-space 2. The method has been used to 
advantage by Bruen [4] who, among other interesting results, used indicator 
sets to give an example of a spread in 2 which contains no regulus, and to pro­
vide a construction of some semifield planes. 

This paper is in the same spirit as [4], but addresses itself to different prob­
lems. In Section 2 we introduce indicator sets in a manner which is equivalent 
to that of [4] but which is more adaptable to our methods. Section 3 establishes 
the connection between collineation groups in 2 and in 7r, which are the main 
tools for achieving our results. The results of Section 3 are immediately applied 
in Section 4 to describe in precise detail the manner in which reguli in 2 are 
indicated by points in ir. 

With this preparation we then introduce in Section 5 the concept of 
M-spreads and wd-spreads, generalizations of the subregular spreads of Bruck 
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[2]. We produce in Section 6 a class of rad-spreads which appears to be new. 
Aside from the intrinsic interest of these new spreads, we feel t ha t their pro­
duction vindicates the indicator set approach. I t is possible to re-produce these 
spreads by more conventional methods in the geometry of lines in 2 , bu t they 
do not appear in the ' ' na tu ra l " context of this approach. Also one is less likely 
to produce them by other methods in the generality in which they are produced 
by the indicator set approach, and the properties of particular cases are less 
apparent . 

A final section explores the md-spreads produced in Section 6, showing tha t 
two particular cases determine irregular nearfield planes, looking a t a case t ha t 
has special features of interest, and suggesting a method of further general­
ization. 

T h e authors are indebted to T. G. Ostrom for many helpful comments on 
the material of this paper. 

2. T h e ind ica tor p lane and ind ica tor se t s . Let F be the field GF(q), 
where q = p\ p any odd prime and e any positive integer. Let K be the quad­
ratic extension of F. We shall denote the elements of F, with the exception 
of 0 and 1, by small Greek letters, and those of K by small Latin letters. Select 
a particular non-square v in F (when q = — 1 (mod 4) the natural choice is 
v — —1), so t ha t the quadrat ic equation t2 — v — 0 is irreducible over F. 
Then any element of K may be uniquely represented in the form a + t/3, where 
a, P £ F and t2 = v. 

2 = P G ( 3 , q), the projective space of dimension 3 over F, and 
7T = AG(2, q2), the affine plane over K, are both most frequently defined in 
terms of vector spaces in a well-known process [6, p. 27]. The points, lines, and 
planes of 2 are the 1 — , 2 — , and 3-dimensional subspaces of the four-dimen­
sional vector space V±(q) over F, and incidence is defined by inclusion. T h e 
collineations of 2 are the semilinear transformations of F4(<z), and the pro­
jective collineations are the linear transformations [6, p . 31]. w may be defined 
either through F2(ç2) or F3(g2) , bu t our purposes are bet ter suited by the lat ter 
route. T h a t is, we first define the projective plane PG(2, q2) from Vz(q2), and 
then remove a line lœ from PG(2, q2) to produce w. An affinity of w is a projec­
tive collineation of PG(2, q2) t ha t fixes /œ. 

Let / be a line in the projective 3-space 2 and let J?f be the set of all lines in 
S which have no points in common with /. We establish a bijection between the 
lines of ££ and the points of the affine plane T. Expressing the points of S in 
terms of the homogeneous coordinates (o-i, a2} r i , r 2 ) , let / be the line 
(ri = (r2 = 0. Then any line of ££ has equations n = CTIJUI + 0-2̂ 2, T2 = v\\i.z + 
(T2M4. In convenient matrix form this is 

Y = XM, 

where X, F, M are the matrices (0-1 0-2), (ji r^) and respectively. 
LM2 M4J 
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T h u s each line of ££ is represented by a 2 X 2 matr ix M o v e r F. Conversely, 

each matr ix M represents a dist inct line of i f . We now match M with the 

point (pi + tfx2, M3 + tui) in w, and the bijection is complete. 

Definition, w is called the indicator plane of 2 relative to I, or simply the 
indicator plane of «if. 

Notation. Let the lines a, b, . . . of 2 correspond to the points 
A, B, . . . respectively of TT under the above bijection. 

L E M M A 1. Two distinct lines a and b of J£ intersect if and only if the corre­
sponding points A and B in -K are joined by a line with slope from the 
set {oo} U F. 

By a line with slope oo , we mean a line with equation x = a (a G K). T h e 

slope of the line joining two points (xi, yi) and (x2, 3/2), x2 ^ Xi, is 

(y* - yi)/(x2 - xi). 

Proof. Let a and b be represented by the matrices M = \ 1 3 and 

iV = 1 M respectively. These two lines intersect if and only if {aid2)M = 
[_V2 ViJ 

(cr1cr2)7V for some pair a1, cr2 which are not both zero. T h e necessary and suffi­
cient condition for this is t ha t the matr ix M — N be singular, i.e. t ha t 

(Ml — ^ l ) (M4 — V4) — (M2 — ^2)(M3 — ^3) = 0 . 

T h u s either MI — v\ — \x2 — v2 = 0, or else /x3 — vz = X(MI — *>i), jn4 — VA = 
X(ju2 — ^2) for some X Ç F. In the former case, A and 13 both lie on the line 
x = MI + ^ 2 of 7T, so t h a t 4̂ has slope 00, and the la t ter case, AB has slope 

(ju3 + tfXj) — (y3 + fc4) = Xpui — v\) + X/(/x2 — ^2) = . 
C/ti + ^2) — 0>i + ^2) (MI — v\) + (̂M2 — ^2) 

Definition. Two dist inct points A and B in 7r are compatible if the slope of the 
line ^4i> is in K — T7. yl and B are incompatible if they are not compatible. 

Suppose now tha t W is a spread in 2 , i.e. H7 is a set of lines such t h a t each 
point of 2 lies on exactly one line of W. Suppose further t ha t the 
line / : 0-1 = (72 = 0 is a line of W. Then the remaining lines of W form a subset 
of the set «if and correspond under the bijection to a subset J = J (W) of 
points in ir. J is called the indicator set of W, and we say t ha t any subset of 
J indicates the corresponding subset W — {I}. 

From Lemma 1 and the fact t h a t any two lines of W are skew, we deduce the 
fundamental proper ty of « / , namely 

L E M M A 2. The slope of the join of any two points of J> is an element of K — F. 

In other words, any two points of J are compat ible . Conversely, given any 
set J' of points in -K any two of whose points are compatible, the image Z' of 
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J' under the bijection is a set of mutually skew lines in <if, and, with /, is 
called a partial spread in 2 [7, p. 53]. If W = Z'' \J {1} contains all points of 
2, then W is a spread and J' is the indicator set of W. 

Since the spread W contains q2 + 1 lines, </ is a set of g2 points of 7r, all 
mutually compatible. 

Examples of indicator sets are any lines of -K with slope in K — F. Less 
obvious examples are Baer subplanes of 7r [6, p. 118] all of whose lines have 
slope in K — F. Both of these examples indicate spreads which are called 
regular spreads, and which define Desarguesian planes. 

3. Collineations in £ and in «. Let V be any projective collineation of 
2 that fixes the line / : ai = a2 = 0. Then T permutes the lines Y = XM of 
J*?. In block matrix form V is therefore the mapping 

(XY)->(XY)[* J ] , 
where E, A, 0, !T are 2 X 2 matrices over F; E and yl are non-singular and 0 

n . and the 

matrix \C (X G F, \ ^ 0) yield the same collineation. 
Since T permutes the lines of «if, it induces a permutation of the points of 

the indicator plane T. This permutation may or may not be an affinity in w, in 
its most general form, an affinity in ir is the mapping (xy 1) —-» (x;y l)B, where 
B is a 3 X 3 non-singular matrix over K: 

a b 0 
c d 0 
h k 1 

and (xyl) are the coordinates of the point (x, y) of w in homogeneous form. 
It is important for our purposes to identify those collineations T which induce 
affinities in w, thus establishing an isomorphism between the group of such 
collineations V and the corresponding group of affinities in w. 

Accordingly, we note first that C = CiC2, where 

and / is the 2 X 2 identity matrix. Considering C\ first, we note that 

(XXM)d= (XXT + XMA); 

thus d carries the line Y = XM of i f into the line Y = X (MA + T). If 

A = \ a & and T = r l Vl I let A = di + td2, k = *n + fy2; recalling that 
L T ÔJ L^2 Î72J [- _-| 

x = MI + /M2 and 3/ = ju3 + t\x±, where M = 
[ "MI Msl 
LM2 M4j ' 

we conclude that the 
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collineation given by C\ induces the affinity 

{x,y, 1) -> (a, y, 1) 
a 0 0 
y à 0 
h k 1 

i n 7T. 

Turn ing now to the collineation of 2 with matr ix C2, we have 

( X J O f ) C 2 = (XEXM). 

Therefore C2 carries F = XM into the line F = XMr, where M ' = ErlM. If 

£ - 1 = x I C2 induces the permuta t ion {x, y) —» (#', y') in x where 

#' = (ci/xi + QM2) + (̂e2Mi + e4/X2) (3.1) 
y' = (eiM3 + €3^4) + (̂e2M3 + e4ju4) 

and {x, y) = (MI + ^ 2 , Ms + fyu)-
Now the point (0, 0) of -K is fixed ; hence the above permuta t ion is an affinity 

in 7T if and only if 

(3.2) 
x' = xei + ye% 
y' = xe2 + ye^ 

for some non-singular matr ix | 3 over K. Successively let t ing {x, y) be 
[_e2 ^ 4 j 

(1, 0 ) , (0, 1), {t, 0 ) , and comparing (3.1) with (3.2), we obtain ex = e4 = 

€1 + ^€2, 2̂ = ez = 0, e3 + tt\ = vt2 + tt\, where v = £2. Therefore C2 induces 

an affinity in TT if and only if E~l 

Le2 e i j 
and in this case the affinity has 

the form {x, y) —> {ex, ey) where e = ei + tti. 
Summarizing, we have 

L E M M A 3. The group Y of projective collineations 

(XY)-,(XY)\^ £ * J 
|_Q 0 7 d 

i'w 2 induces, and is isomorphic to, the group A 0/ affinities 

{xy 1) —> (xy 1) 

i'w 7T, w/zere fe = 0i + /02, & = rji + ^2 , awd e = {<pi + Z^ ) " 1 . 

Some familiarity with the action of the group A on the points and lines of x 
is necessary. In the remainder of this section we note the properties of A tha t 
are most impor tan t for our purposes. 

ea ep 0 
ey eô 0 
h k 1 
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First, we observe tha t A contains the following well-known affine collinea-
tions: 

I. All translations in w : (x, y) —» (x + h, y + k). 
I I . All central dilatations with any given centre, as for example the central 

dilatat ions (x, y) —> (ex, ey) with centre (0, 0) . We note t ha t the largest sub­
group of dilatations with a given centre is of order q2 — 1. 

I I I . Conjugates in A of the General Linear Group GL(2, q). In more geo­
metrical terms, GL(2, q) is the group of all affinities of the subplane A G (2, q) of 
7T which fix the point (0, 0) , and are simply the transformations 
(x, y) —» (x, y)A, where A is any non-singular 2 X 2 matrix over F. 

LEMMA 4. (i) A fixes the set of slopes {oo } \J F. 

(ii) A is transitive on all ordered pairs of points P, Q such that the slope of the 
line PQ is in K — F. 

Proof, (i) I t is clear from Lemma 3 tha t any element of A is a product of 
elements of types I, II and I I I listed above. Each of these types fixes the set 
of slopes j o o j U F . 

(ii) We note t ha t A is transit ive on the points of T, because A contains all 
translations. I t suffices therefore to show tha t A0, the stabilizer of (0, 0) in A, 
is t ransit ive on the lines y = xm (m £ K — F) and also t ransi t ive on the 
points T^ (0, 0) on the line y = xm. T o prove these we note t ha t A0 is the group 
of affinities 

ea eB 0 
(xyl) —» (xyl) ey eh 0 

0 0 1 

Under A0, (1, /, 0) -+ (e(a + ty), e{$ + to), 0) = (a + ty, 0 + tô, 0) . Now the 
only restriction on a, 13, y, ô is t ha t aô — fiy 9^ 0. Therefore, setting a. = 1 and 
7 = 0, we see tha t there is an element of A0 which carries slope / into any slope 
in K — F, i.e. A0 is transit ive on the slopes K — F. Finally, A0 contains all 
dilatations (x, y) —* (ex, ey) ; therefore there is an element of A0 taking (1, m) 
into (x, xm) for all x ^ 0, and A0 is transit ive on the points 9^ (0, 0) on 
y = xm. 

Let us re turn to a closer consideration of the geometric na ture of the sub­
groups of A which are of type I I I . Each subgroup of this type fixes some point 
of IT, and in view of Lemma 4 any point of w is left fixed by a t least one such 
subgroup. We lose no generality therefore in restricting our consideration to 
the group GL(2, q) itself, which fixes (0, 0) . The elements of this group are 
represented in the usual fashion, namely by 2 X 2 non-singular matrices 

-til 
over F> and the affinity is given by (xy) —» (xy)A. The centre of this group is 
the subgroup of dilatations with centre (0, 0) in A G (2, q) : (x, y) —> 
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(Xx, \y)(\ ^ 0) . T h e di latat ions fix every line through (0, 0) in AG(2, q) 
(and indeed in ir). T h e other affinities fix two, one, or no lines of A G (2, q). We 
therefore have three types: 

(a) A fixes exactly two lines in AG(2, q). Then A is either a strain, (some­
times called an affine homology) pointwise fixing one line (its axis), and moving 
all points off its axis in the direction of the other fixed line, or else it is the 
product of a strain and a dilatat ion. 

(b) A fixes exactly one line in A G (2, q). Then A is either a shear, sometimes 
called an affine elation) pointwise fixing t ha t line (its axis) and moving all other 
points in the direction of its axis, or else it is the product of a shear and a 
di la tat ion; cf. [6, p . 133]. 

(c) A fixes no lines in A G (2, q). Then A must fix two slopes in the larger 
plane ir, since K is the quadra t ic extension of F, and therefore the characterist ic 
equat ion of A is solvable in K. T h u s A fixes two slopes from the set K — F. 
We can be more specific: 

L E M M A 5. / / A fixes the slope m G K, A also fixes mq. Conversely, 
if m £ K — F, there exist affinities of type I I I ( c ) which fix the directions m 
and mq. 

Proof. Denote A by the matr ix . The line y = xm of -K is fixed (and 

therefore the slope m is fixed) if and only if 

(3.3) ym2 + (a - 6)m - 13 = 0. 

This equation is invar iant under the field automorphism x —> xq, and therefore 
mQ also satisfies (3.3). T o prove the last pa r t of Lemma 5, we note first t h a t the 

slopes t and tQ = tv{q~l)/2 = —t are fixed by the affinities A = I , which 
LP ^ J 

are of type I I I (c) if /3 ^ 0. Next, the slope t is carried into the slope m = y + tô 

(<5 9e 0) by the affinity T = . Therefore the affinities T~lAT are of 

type I I I (c) and fix m. By the first pa r t of Lemma 5, they also fix mQ. 

In vi r tue of Lemmas 4 and 5, we may analyse the affinities of type I I I (c) 
by examining those affinities of t ype I I I which fix t and tq = —t. An easy cal-

L/3 a\ culation yields t ha t these are precisely the affinities A = I , where 

a2 — vfi2 9^ 0. Now the de te rminant of A, a2 — v/32, is either a square ( ^ 0) 
or a non-square, and A is the product A'D, where A' has de te rminan t 1 or v, 
and D is a di latat ion. We are part icularly concerned with the case t h a t det 

A = l. r ,-i 
Let us denote A by R in this case. T h u s R = " K \(a2 - v/32 = 1). T h e 

LP a j 
set of matrices of the above form is a cyclic group of order q + 1 ; we call these 
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the rotations with centre ( 0 ,0 ) , by analogy with . n „ in the 
, sin 6 cos 6 \ 

real case. 
A second impor tant class is the reflections \ \ (a2 — vfi2 = 1), the 

name arising again by analogy with the real case. The reflections are of period 
2, and are special cases of type I I I (a), fixing the lines y = x( — a ± l) / /3 
(unless j3 = 0, in which case x = 0 and 3> = 0 are fixed). Moreover, if /3 ^ 0, 
y = x ( l — a)//3 is pointwise fixed, and if /3 = 0, 3/ = 0 is pointwise fixed. 
Hence if P is any non-fixed point, and if Pf is the image of P, then the line PP' 
has slope ( —1 — a)/$ if /3 ^ 0, and 00 if @ = 0. We therefore have 

LEMMA 6. Let P be any point which is not left invariant by a reflection Rf, and 
let P —» P' under R!. Then P and P' are incompatible. 

T h e rotat ions n and the reflections I \ (a2 — vfi2 = 1) fix 
LP aJ LP ~aJ 

any conic 

Cr : —vx2 + y2 = r 

in 7T [9, p . 245] which, again in analogy with real Euclidean geometry, we call a 
circle with centre (0, 0) . The circles Cr (r G K) divide into three mutual ly 
exclusive classes, namely 

(i) Co, which is a degenerate circle consisting of the two lines y = tx and 
y = —tx. 

(ii) Cr (r a square F^0 in K). By easy calculation, all the lines y = xm for 
which m2 — v is a square ^ 0 in i£, meet each Cr, and these are the only lines 
through (0, 0) which meet CT. 

(iii) Cr (r a non-square in K). Again by easy calculation, all the lines y = xm 
for which m2 — v is a non-square in X meet each Cr, and these are the only 
lines through (0, 0) which meet Cr. 

Clearly the rotat ions and reflections which we have defined are relative to 
the two slopes t and —t, which are fixed by the rotations and interchanged by 
the reflections. Similarly, and in vir tue of Lemmas 4 and 5, we have rotat ions 
and reflections relative to any pair of slopes m, mq in K — F, and they have 
similar properties to the rotations and reflections which we have defined. Also 
we have circles relative to any pair m, mq with similar properties to the 
circles Cr. 

4. Regul i a n d the ir i n d i c a t i o n in « . After defining reguli in 2 , which are 
central in our subsequent work, we proceed to specify the exact manner in 
which reguli of the type tha t arise later are indicated in w. Theorems 1, 2, and 2' 
which do this can be compared with Lemma 3.3 of [4, p. 526]. They embrace 
the results of this lemma, and go on to a more penetrat ing analysis of the indi­
cation of reguli. 
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T h e following definitions and preliminary results can be found in most good 
older books on three dimensional projective geometry, e.g. [9, Chapter X I ] . 

Let a, b, c be any three skew lines in 2 = P G ( 3 , q). Through any point on a 
there passes exactly one line t h a t meets b and c. Such a line is called a trans­
versal of a, b, and c\ there are exactly a + 1 transversals to any three skew 
lines, and they are all mutual ly skew. Now let a', b', d be any three transversals 
to a, b and c. The set 3% of transversals to af, V and c', which includes the lines 
a, b, c, is independent of the choice of a', &', c', and is called the regulus deter­
mined by a, b and c. I t can be shown tha t the same regulus is determined by 
any three of its q + 1 lines. Moreover, the set of transversals to any three lines 
of a regulus 3% is independent of the part icular choice of the three lines of 3%, 
and forms a regulus 3%', called the opposite regulus to 3%. T h u s every line of 3%' 
meets every line of 3ft, and 3% and 3%' both cover the same (q + l ) 2 points of 
2 , forming a doubly-ruled quadric i 2 . T h e lines of 3% and the lines of 3%'both 
lie in SI [9, p. 301; 2, p . 435]. 

We are interested in the manner in which a regulus in 2 is indicated in T. A S 
before, we consider the line I : <n = vi = 0, and regard T : AG(2, q2) as the 
indicator plane of the set of lines J£ which have no contact with /. Because we 
wish to deal later with spreads, our interest lies only with reguli 3? in 2 t h a t 
either contain / as one line, or else have no contact with /. T h e two cases are 
dealt with in the next two theorems. 

T H E O R E M 1. If 3? 5 I, 3% — {1} is indicated in TT by a set of q collinear points 
P i , P 2 , . . . , PQ with the property that the subgroup of dilatations with centre 
Pi(i = 1, . . . , q) and order q — 1 is transitive on the remaining members of the 
set. Conversely, any such set in TT indicates the lines j^l of a regulus containing I. 

Proof. Due to the extent of the group T of collineations in 2 (Lemmas 3 and 
4) , wTe lose no generality in assuming t ha t 31 — {1} contains the line a : n = 
T2 = 0, which is indicated by the point P j ( 0 , 0) in ir. Let pj be any other line 
of 3ê — {I}, and let Pj(x, y) be the indicator point of pj in TT. By Lemma 1, 
the line P t P ; of TT has slope in K — F. Now the collineations 

D - {[v ?]} x e F, x ^ o 

fix both / and a pointwise, and therefore fix 3?' linewise. Hence D permutes the 
lines of 3? — {1} — {a}, and D is easily seen to be transi t ive on this set. Bu t 
D induces the di latat ion (x, y) —> (\x, \y) with centre (0, 0) , and therefore 
the indicator points of 3? — {/} — {a} in TT are the images of Pj under these 
dilatat ions. Since these di latat ions form the subgroup of order q — 1 of dilata­
tions with centre (0, 0) , and since the choice of a as a line of 3? — {1} is 
arbi t rary , the first pa r t of Theorem 1 is established. As for the converse result, 
it follows by observing t h a t the above a rgument is reversible in every step. 

I t is worth remarking t ha t in the case t ha t 3? 3 /, which we have jus t con­
sidered, every line of 3%' meets /, and therefore no line of 3%' is indicated in TT. 
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Notation. For economy, and with little risk of confusion, we let the same 
symbol denote both a subset of J£ in 2 and the corresponding set of indicator 
points in IT. Thus for example, 3? may denote either a regulus of 2 having no 
contact with / or the set of q + 1 points of T which indicate this regulus. 

T H E O R E M 2. If 3% has no contact with /, then 3% is indicated by a set 3% of q + 1 
points on a circle relative to fixed slopes m and mq. This set is a single orbit under 
the group of rotations which fixes the circle. The opposite regulus 3%' is indicated 
by the images of 3% under any reflection fixing this circle. 

Proof. The reguli 3% and 3ir lie on a doubly-ruled quadric i2 , the equation 
of which is 

4 

(4.1) £ "i£&s = 0 

where atj = ajt for all i,j = 1, 2, 3, 4 [5, p. 259]. Since 3? has no contact with 
/, no point of / lies on i2 . Since the points of / are given by the coordinates 
(0, 0, n , r2) (ri , T2 £ F, n , r2 not both = 0) , substi tution in (4.1) yields the 
necessary and sufficient condition tha t / does not meet i2 , namely 

(4.2) o!342 — 0:330:44 is a non-square in F. 

In the matr ix notat ion of Section 2, let u : Y = XM be any line of 3? or of 
3?'. T h u s u is made up of points (X, XM) where X = (<n o-2) and X ^ (0 0) . 
Subst i tut ion in (4.1) yields the equation 

(4 .3) ifdx2 + 0(71(72 + To-22 = 0 

where <p, 6, and 7 are (quadratic) functions of MI, /x2, /x3, and >LX4, the entries of 
M. Because (4.3) holds for all values of <7i, <T2 in F, <p = 7 = 6 = 0. Successive 
steps of subst i tut ion of the particular points (1, 0, MI, /x3), (0, 1, JU2, M4) and 
(1, 1, /xi + jit2, ju3 + JU4) of w in (4.1) gives the explicit expressions for <p, 7, and 
0, namely 

(p = o:33Aii2 + 2a:34MiM3 + o:44M32 + 2«i3Mi + 2ai4M3 + « n = 0 

(4 .4) 7 = 0!33M22 + 2o!34/i2M4 + 0!44M42 + 2û!23/X2 + 2a24M4 + « 2 2 = 0 

6 = 2a33/xiM2 + 2O;34(MIM4 + M2M3) + 2a;44jU3M4 + 2a23/xi + 2ami2 

+ 2a24/x3 + 2ai4jit4 + 2aï2 = 0 
Consider the equation 

<P + vy + te = 0. 

Subst i tut ing the values of <£, 7, and 0 given in (4.4), we obtain 

(4.5) adZx2 + 2az±xy + a4<y2 + 2gx + 2fy + c = 0, 

where x = m + //x2, y = Ms + fyu, g = «13 + ta2z, f = au + ta24, and 
c — (an + WK22) + 2/«i2. Equat ion (4.5) defines a conic ^ in T which contains 
the indicator points of 3? and 3?'. 
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Solution of the equation a33x2 + 2auxy + omy2 = 0 establishes t ha t ^ 
contains the infinite points (1, ra, 0) and (1, mq, 0) where, by (4.2), 
m G K — F. By Lemma 4, the group A of affinities is t ransi t ive on the ordered 
pairs of slopes m, mq (m £ K — F). Consequently, we lose no generali ty here 
in assuming t h a t m = /, and hence mq = tQ = —t. Then a34 = 0 and we may 
take «44 = 1, so t h a t «33 = — v. Equa t ion (4.5) then becomes 

(4.6) -vx2 + y2 + 2gx + 2fy + c = 0. 

Re-arranged, this is 

-v{x - g/v)2 + (y +f)2 = -g2/v+f2 - c. 

Again by Lemma 4, we lose no generality in further assuming t ha t g = / = 0, 
so t ha t equat ion (4.6) becomes 

(4.7) -px2 + y2 = r 

(r = —c), which is the equation of the circle Cr previously defined. T h u s the 
indicator points S% (and 3$f) lie on the circle CT} establishing par t of Theorem 
2. T o complete the proof, let P 0 be any indicator point of 3?} and consider the 

q + 1 reflections R' where R' = \ a " ^ 1 (a2 - vp2 = 1). Let {Q0, Qu . . . , Qq\ 

be the images of P 0 under these reflections, and assume for the moment t h a t 
P 0 5^ Qj for all j = 0, 1, . . . , q. By Lemma 6, P 0 and Qj are incompatible. 
Consider also the points {P0 , P i , . . . , Pq), where Pt is the image of P 0 under a 

rotation R = \ (a2 — v/32 = 1). Since any rotat ion is the product R'Ri 
LP aJ 

of two reflections, where the choice of the first reflection R' is a rbi t rary , the set 
{PQ, P I , . . . , PQ} is the set of images of any point Qj under the reflections. I t 
follows t ha t {Qo, Qi, . . . , Qq) are the images of Q0 under the rotat ions, and 
t ha t P i and Qj (i,j = 0, 1, . . . , q) are incompatible. Moreover, the only points 
on CT which are incompatible with Pf are the points Ço, Qi, . • . , Qq, since 
these are the only points of Cr which are on lines through Pt with slope in 
{00 } \J F. Therefore, since P 0 G 3%, and every point of 3%' is incompatible 
with Po, {Qo, Qu . • • , Qq) = &'• Similarly, {P0 , P i , . . . , Pq) = @. 

In reaching this conclusion, we assumed t h a t P 0 5^ Qj for all j — 0, 1, . . . , q. 
If this were not t rue, then P 0 = Qo, say, and there are only q points on Cr, 
namely Qi, . . . , QQf which are incompatible with P 0 , contradict ing the fact 
tha t 3%' is on Cr and \3%'\ = q + 1. Therefore the assumption is valid and the 
proof of Theorem 2 is complete. 

In the proof of Theorem 2 we have jus t noted t h a t no indicator point of 3% 
can be fixed by a reflection. In other words, an indicator point P of 3% cannot 
lie on the axis of a reflection. Therefore P cannot lie on any of the lines x = 0 
or y = Ax (X G F). On the other hand, given any point P not on any of these 
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lines, application of rotations and reflections as in the proof of Theorem 2 
yields the converse of Theorem 2: 

T H E O R E M 2'. Let H be a group of order q + 1 consisting of rotations in w relative 
to fixed slopes m and mq in K — F. Let Si be an orbit of H consisting of mutually 
compatible points. Then Si indicates a regulus Si in 2 which has no contact with I. 

We conclude therefore t ha t any regulus in 2 having no contact with / is 
indicated in T by an explicitly specified subset of points on a circle, which also 
contains the indicator points of the opposite regulus. Both the regulus and its 
opposite regulus therefore are related to a certain point, namely the centre of 
the circle on which they both lie, which we call also the centre of the regulus. 

We noted in Section 3 tha t circles, as defined by rotations with a given centre 
and relative to given slopes m, mq, divide into three mutual ly exclusive classes. 
One class consists of the single (degenerate) circle comprised of two lines with 
slopes m and mQ intersecting in the centre. By Lemmas 4 and 5, we lose no 
generality in restricting consideration to the case m — t, with the centre (0, 0 ) . 
Looking therefore a t reguli indicated on the circle — vx2 + y2 = 0, and 
applying Theorems 2 and 2', we see tha t y = xt contains the set 
Si = {((a + (3t)x, (vfi + at)x)} (a2 — v$2 — 1) of points indicating a regulus 
Si of 2 having no contact with /, and we note in passing tha t the opposite 
regulus, Si', is indicated by the points Si' : {((a — fti)x, (vfi — at)x)) on 
y — —xt. 

Now [(a + (3l)x]q+1 = (a + /3t)q+1xq+1 = (a2 - v$2)xq+l = xq+1. The ele­
ment xq+1 is a non-zero element y of F, called the norm of x [2, p. 427, p. 508]. 
There are exactly q + 1 elements z G K such tha t zq+1 = 7; therefore S? can 
be characterized as the set of points {(s, zi)\ on y = xt such tha t zq+1 = 7. 
Looked a t in a slightly different way, Si is the set of points {(ux, uxt)} where 
x<7+i = y a n d u is any element of K such tha t uq+1 = 1 ; in other words Si is 
the set of images of the point (x, xt) under the group of dilatations 
(x, y) —• (ux, uy)(uq+l = 1). This point of view is helpful in tha t it is inde­
pendent of the restriction of the slope pair m, mq to /, — /, and is therefore 
descriptive of reguli on any line y = xm (m G K — F) which have centre (0, 0) . 

To generalize, again invoking Lemmas 4 and 5, the reguli with centre 
(a, am + b) on y = xm + b may be analysed by applying an appropriate 
element of A. The result is 

T H E O R E M 3. Let Si be a regulus of S which has no contact with /, and which is 
indicated on a line y — xm + b. Then S$ is indicated by the orbit of a point under 
the group of dilatations whose centre is (a, am + b) for some a, and whose order 
is q + 1. Also, Si' is indicated by the orbit of a point on the line y = xmq + 
(m — mq)a + b, under the same dilatations. 

In the case of greatest interest to us, we can describe Si, the set of indicator 
points of a regulus with centre (0, 0) on y = xm, as the set of points {(z, zm)\ 
where zq+l = 7. In addition to calling 7 the norm of z, we call it the norm of ^? , 
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and note tha t , for centre (0, 0 ) , 01 can be characterized by its norm and the 
slope m of the line y = xm on which it lies. There are therefore q — 1 different 
reguli so indicated on any line y = xm (m Ç K — F). 

5. &d-spreads a n d m d - s p r e a d s . We define a kd-spread to be a spread in 
2 = P G ( 3 , q) t h a t contains a set of fe disjoint reguli. fe, of course, is some non-
negative integer. Since a spread in 2 contains q2 + 1 lines, and since each 
regulus contains q + 1 lines, it follows t h a t k < q. T h e maximal case k = q — I 
is part icularly interesting. For ease of reference we shall call such a spread an 
md-spread, t h a t is, an md-spread is a (q — l )d-spread. 

Examples of fed-spreads abound. Any subregular spread [2, p . 442] is a 
fed-spread; however, a fed-spread is not necessarily subregular as our examples 
in Section 7 will show. A regular spread (which can be defined as a spread 
which contains with any three of its lines the whole regulus determined by 
those three lines [2, p . 436]) contains a set [3% i) (i = 1, . . . , q — 1) of disjoint 
reguli, called a complete linear set [2, p . 442]. Replacement of any 5 reguli 3$ i 
(i = 1, . . . , sj 0 < s < q — 1) by their opposite reguli 3& { produces a sub-
regular spread of index s, which is the spread associated with an André plane 
of order q2 with kernel of order q [2, p . 442; 7, p . 33 ; 8, p . 205]. 

T h e above remark concerning replacement bears emphasizing in the general 
case of fed-spreads. Any fed-spread S^ with disjoint reguli 3H\, 3%2, • . . , 3$k 

gives rise to a set of fed-spreads which includes 5^ and spreads obtained from 
5f by replacing each regulus 3% i in any subset of the disjoint reguli by its 
opposite regulus 3% I. We may refer to any two spreads in such a class as being 
related by replacement [6, p . 225]. 

6. A n e w c lass of m d - s p r e a d s . Let y be an md-spread in S. Then besides 
the q — 1 disjoint reguli, y contains two other lines, say / and a. If we let / 
be the line ai = a2 = 0, as in previous sections, then S^ is indicated in the 
plane -K by an indicator set J consisting of a single point (indicating a) and 
q — 1 reguli. T h e points of each regulus in J lie on a circle relative to a fixed 
slope pair m, mQ, and form an orbit under the rotat ion group fixing the circle 
(Theorem 2) . Here, as suggested earlier, we are using the term ' ' regulus" to 
denote the set of q + 1 points in w which indicate a regulus in 2 . 

T h e indicator set J^ of 5f is equivalent under t ranslat ions in the group A 
of affinities in TT to a set in which the line a is indicated by the point (0, 0) . We 
therefore assume wi thout loss of generali ty t h a t a is indicated by (0, 0 ) . We 
may further assume if desirable t h a t J contains another specified point, such 
as (1, t), and lose no generali ty in doing so (Lemma 4) , bu t for the present we 
shall leave this option open. 

I t would be very desirable to classify all md-spreads in 2 = PG(3, g), and it 
may be t h a t this can be done by considering their indicator sets. Our aim here 
is more modest, however. I t is to use the indicator set approach to produce a 
part icular md-spread £f m in S which belongs to a class of which only a few 
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cases appear to have been previously known, and which has a number of 
interesting properties, The indicator set Jm of Sfm will consist of (0, 0) and 
q — 1 reguli, all with centre (0 ,0 ) and distributed on lines y = xm 
for (q + 3 ) / 2 distinct values of m. 

From now on, whenever we refer to a regulus without specifying its centre or 
the circle on which it lies, it is to be understood tha t this regulus has centre 
(0, 0) and lies on a line y = xk (k £ K — F). 

LEMMA. 7. Let 3% be a regulus {(x, xk)\xq+l = 8}. Then 3?', the opposite regulus 
to 3?} is the regulus {(x, xkQ)\xq+1 = a}. 

Proof. Consider the regulus {(z, zkQ)\zQ+1 = 8}. If z = x, then the line 
(x, xk) (x, xkQ) has slope oo. If z ^ x, then the line (x, xk) (z, zkq) has slope 
(zkq — xk)/(z — x) — [{zkq — xk)/(z — x)]q, which is therefore in F. T h u s 
every point of this regulus is incompatible with every point of 3& ; the regulus 
is therefore 3%'. 

LEMMA 8. Let 3% and 3% be any two reguli on different lines y = xk, y = x_£ 
Denote the points of 3? by (uxo, uxQk), where uq+1 = 1, and those of 3$ 
by (UXQ, uxok). If the line (x0, Xo&)(x0, xok) has slope s £ {oo } \J K, then for 
each value of u, the line (uxo, ux^k) (UXQ, uxok) has slope s. 

Proof. The dilatation (x, y) —> (ux, uy), which preserves slopes, takes line 
(xo, Xo&)(xo, x0£) into line (UXQ, uxok)(itxoj uxok). 

If follows from Lemma_8 tha t there are exactly q + 1 slopes associated with 
any two reguli 3? and 3? on different lines, riamely the slopes of the lines 
joining any one point of 31 to each point of 3?. We say tha t 3$ and 3? are 
connected by any one of these slopes, and tha t 3% and 3& are compatible if all of 
their connecting slopes are in K — F; otherwise 3% and 3% are incompatible. 
Note tha t 3% and 3% are compatible if and only if every point of 3& is com­
patible with every point of 3%. Thus the earlier definition of compatibil i ty of 
points agrees with the definition of compatibil i ty of reguli. Two reguli on the 
same line are compatible if and only if the line has slope in K — F. The dis­
joint reguli in the indicator set of any md-spread must of course be mutual ly 
compatible. 

Notation. Let 3?y denote the regulus on y = xt with norm y, and let 3? denote 
the regulus on y = xmim ^ /, —/) with norm a. Thus 3$y is the set of points 
{(x, xt)\xq+1 = y} and 3$ is the set {(x, xm)\xq+1 = a}. 

LEMMA 9. 3? is incompatible with 3?ff and with 3#y, where 

y = [X2 - (m + mq)\ + mq+1]a/(\2 - v) (X £ F). 

3% and 3%y are connected by the slope X. 

Proof. Since 3% has norm cr, 3% and 3%a are incompatible, being connected 
by the slope co . If 3% and 3%y (y 9^ a) are incompatible, there is a slope X £ F 
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connecting Si and Siy. Thus , given any point (x, xm) (xQ+1 = a) in 8?, there is 
a point (y, yt) (yQ+1 = 7) in Siy such t ha t X = (yt — xm)/{y — x). Hence 
y = (X — m)x/(\ — t). Therefore 

y = yff+i = y*y = [(X - m)qxq/{\ - t)q][(\ - m)x/{\ - t)] 

= (X - mq)(X - m)xq+1/(\ - tq)(X - t) 

= [X2 - (m + mq)\ + mq+1]a/(\2 - v). 

L E M M A 10. / / Si and Siy are incompatible, then they are connected by at most 
two slopes from {co } U F. 

Proof. If Si and Siy are connected by three or more slopes from \zo } U F, 
then any point of 8? is incompatible with a t least three points of Siy. In terms 
of the reguli of 2 which 81 and 8$y indicate, this means t ha t each line of 8? is 
a transversal of 8?yj i.e., Siy = Si', the opposite regulus to 8i, which in view 
of Lemma 7 is a contradiction. 

LEMMA 11. (i). 8? and 8i<j are connected by a slope X G F as well as slope 00 if 
and only if m + mQ j* 0. In this case, the slope X is (mq+l + v)/{m + mQ). 

(ii). The slopes X and /* 7^ X in F both connect Si, with the same incompatible 
regulus 8iy if and only if 

(5.1) (m + mQ)\fx - (mq+1 + v) (X + n) + v(m + mq) = 0. 

Proof, (i) If slope X £ F connects Si and 8ia, then, by Lemma 9, 

<r = [X2 - (m + mq)\ + mq+l]a/(\2 - v), 

X2 - v = X2 - (m + mq)\ + mq+\ 

(m + mq)\ = raff+1 + *>. 

Now w + mQ = m 5 + 1 + 1/ = 0 implies t ha t m = t or —/, which is false, hence 
X exists if and only if m + mq ^ 0. 

(ii). By Lemma 9, slopes X and /x connect Si with ^ ? 7 if and only if 

[X2 - (m + w*)X + w« + 1 >/ (X 2 - v) = 7 

= [JU2 - (w + WC)M + mç+1]o-/(iLi2 - v), 

(M
2 - ^)[X2 - (m + m*)X + w5 + 1] - (X2 - v){»2 - (m + m')/* + w*+ 1] , 

[(m + WÇ)XJU - (m5 + 1 + i/)(X + M) + v{m + wfl)](X - M) = 0, 

from which (5.1) follows. 

Definition. Two incompatible reguli are doubly connected if they are connected 
by two distinct slopes from {00 } \J F. If they are connected by only one slope 
from {00 } \J F, they are singly connected. 

LEMMA 12. Suppose Si and Siy are incompatible and singly connected. Then 
A = (mq+1 + v)2 — v(m + mq)2 is a square in F. If A is a square in F, then 
there are exactly two reguli Siy on y = xt which are singly connected with Si. 

Proof. \iSi and Sia are singly connected, then, by Lemma 11 (i),m + mq = 0, 
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so A = (m9+1 + v)2 is a square in F. \i& and^?7 (7 ^ a) are singly connected, 
let X £ T7 be the slope connecting & and &y. By Lemma 11 (ii), the equation 
(5.1) has no solution /x distinct from X. Re-arranged, (5.1) is 

(5.2) [(w + w5)X - (m5+1 + P)]IJL = (m5+1 + )̂X - v{m + m3). 

Now m + mq = mq+1 + ^ = 0 implies that m = t or —/, contrary to the 
choice of ^?. Hence if (m + w5)X — (mq+1 + v) = 0 in (5.2), then also 
(mq+l + *>)X — v{m + m5) = 0, implying (m + mq)(X2 — v) = 0. Since *> is 
a non-square in 7% we must have m + mq = 0. But then m?+1 + y = 0 also, 
which possibility we have just eliminated. Therefore (m + mq)\ — 
(mq+1 + v) 7* 0, and so /x = [(raff+1 + v)\ - j/(w + mQ)]/[(m + mq)\ -
(wc+1 + v)] is a solution of (5.1). We require /x = X. Thus (5.1) becomes a 
quadratic equation in X which is reducible in F. The necessary and sufficient 
condition for this is that the discriminant, 4(ra?+1 -\- v)2 — ^v(m -{- mq)2 = 4A 
be a square in F. 

Suppose now that A is a square in F. If m + mq = 0, then by Lemma 11 (i), 
8% and 8%a are singly connected, namely by the slope <x>. Equation (5.1) 
reduces to 

(m<z+i + v) (x + M) = 0. 

Since m + mq and mq+l + ^ are not simultaneously = 0, /x = —X, yielding 
/x ^ X except when X = 0. Therefore in the case that m + mq = 0, any regulus 
^ 7 which is connected with 8% by slope X is also connected with 8% by slope 
— X, and Lemma 12 follows in this case. On the other hand, if m + mq 9e 0, 
8% and S%a are doubly connected, by Lemma 11 (i). By Lemma 11 (ii), 8% and 
^?7 (7 ^ o") are connected by slopes X and /x ^ X in F if and only if equation 
(5.1) holds. Now equation (5.1) has two distinct solutions X and \x 9e- X except 
when 

(5.3) (m + mQ)\2 - 2(mq+1 + */)X + v(m + mff) = 0. 

Since m -\- mq 9^ 0 and the discriminant of (5.3), 4A, is a square 9^ 0 in F, 
(5.3) has two distinct solutions Xi, X2. Hence there are two reguli, 8$yi (i = 1,2) 
which are connected with 8? by exactly one slope, namely \ u and the proof of 
Lemma 12 is complete. 

Notation. ST = $~ (8$) denotes the set of reguli 8%y on y = xt that are 
incompatible with 8$. 

Since |{oo } \J F\ = q + 1, Lemma 12 has the following immediate corollary: 

COROLLARY 1. 

• ^ - _ J (q + l ) / 2 if A is a non-square in F, 
v (<Z + 3)/2 if A is a square in F. 

LEMMA 13. A = (m2 — v)q+1, and A is a square in F if and only if m2 — v is 
a square in K. 

https://doi.org/10.4153/CJM-1977-013-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-013-6


148 F. A. SHERK AND G. PABST 

Proof. 

(m2 - v)q+l = {m2 - v){m2 - v)q = {m2 - t2){m2q - t2) 

= (m - t) {mq - t){m + t) (mq + t) 

= [mq+1 + v - t{m + mq)][mq+1 + v + t{m + mq)] 

= {mq+1 + v)2 - vint + mq)2 = A. 

Now m2 — v = e\ where e is a primitive root in K, and therefore 
A = e^q+1). A is a square in F if and only if i is even, and i is even if and only if 
m2 — v is a square in K. 

Let H be the cyclic subgroup of order q + 1 of the affinities of w which are 
. . i ^ vB 

the rotat ions ' , and let R be a generator of t h a t group. Let D be the 

(cyclic) group or order q + 1 of di latat ions (x, y) —> (ux} uy) where uq+1 = 1. 
H C\ D consists of the ident i ty and the half-turn {%, y) —> ( — x} —y), and 
therefore G = HD is an Abelian group of order (q + l ) 2 / 2 . 

LEMMA 14. G fixes each regulus &y on y = xt and moves the regulus & in an 
orbit of length (q + l ) / 2 . 

Proof. G = FID. I t follows from Theorem 2 t h a t H fixes ^? 7 , and from 
Theorem 3 t ha t D also fixes 3?y. T h a t D fixes & is also a consequence of 
Theorem 3. Now the rotat ion R moves the line y = xm (m ^ t or —/) in an 
orbit of length (g -f l ) / 2 , the half-turn 7? ( < m ) / 2 fixing each line of the orbit . 
Also, i ^ + D / 2 ç £>, and therefore it fixes the regulus ^ . 

We now wish to examine the compatibi l i ty properties of the reguli in the 
orbit of reguli under H to which S% belongs. T o t ha t end, we denote by 8%* the 
regulus which is the image of 8% under the rotat ion Ri (i = 1, . . . , (q + l ) / 2 ) . 
By Lemma 14, ^<«+D/2 = &. 

L E M M A 15. Let 8^ ' be the set of reguli 8ft'§ with which 8% is compatible. Fhen 
each 8%l is also compatible with the reguli of 8T'. 

Proof. 8f' is of course the complement of $~ = U~ (8?) on the line y = xt. 
Each regulus 8?y of 8T is connected to 8& by a t least one slope from {co } \J F. 
Now Ri preserves 8Hy, and also preserves the set of slopes {oo } \J F (Lemma 4) . 
Therefore 8fty is incompatible with 8ftl if and only if it is incompatible with 8ft. 
Hence &~ {8ftl) = ^~ {8ft), and the result follows. 

L E M M A 16. If m2 — v is a non-square in K, then the reguli 

OT= 1 , . . . , (<z+l)/2} 

are mutually compatible. 

Proof. Clearly it is sufficient to show tha t 8ft is compatible with each 8ftl 

(i 5* (q + l ) / 2 ) . Suppose therefore t ha t 8ft and 8ftl {i = 1, . . . , (q + l ) / 2 ) 
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are incompatible. Then 3% and Sft1 are connected by a slope /x from {GO } VJ T7. 
The rotat ion i?1' fixes no slope from {co} U F; hence there is a slope X in 
joo) U F X ^ ju, such tha t R* takes X into /x. Now let <$?7 be the regulus on 
y = xt which is connected with 3? by slope X. Since Z!* fixes 3$y (Lemma 14) 
and carries 3? into 3?1, 3?f and ^ ? 7 are connected by the slope M. But ^? and 
3?l are connected by the slope xx, and so 3% and <^7 are connected by the slope /x. 
Therefore ^? and ^ ? 7 are doubly connected, by the two slopes X and /x ^ X, 
where the rotation i?z carries X into /x. 

In the remainder of the proof we shall ignore the special cases in which either 
X or /x is the slope oo. These are easily handled as special adapta t ions of the 
general case, in which X, /x are both in F. Lett ing Ri be the rotat ion 

[ _ \(a2 — v/32 = 1), and applying R{ to X, we have tha t M = 

P « J 
(j//3 + a\)/(a + /3X). By Lemma 11 (ii), X and JU satisfy equation (5.1). Sub­
st i tut ing the value /x = (v/3 + a\)/(a + /3X) into (5.1) and collecting coeffi­
cients, we obtain the quadrat ic equation 
(5.4) [a{m + mq) - $(mq+l + v)}\2 + 2[v/3(m + mq) - a(mq+l + v)]\ 

+ v[a(m + mq) - (3(mq+1 + v)] = 0 

in X. Since X exists in F, the discriminant of equation (5.4) must be a square 
in F. This discriminant is 

4{h8(m + mff) - a ( m e + 1 + i^)]2 - i/[a(ra + mq) - /3(q+1 + v)]2} 

= 4[(^2/32 - va2)(m + mq)2 + («2 - v$2)(mq+l + y)2] = 4A, 

since a2 — vf$2 = 1. Hence A must be a square in Z, and therefore by Lemma 
13, m2 — v is a square in K. Thus if m2 — v is a non-square in K, 3% and ^?* 
are compatible. 

T H E O R E M 4. Ze/ m be any element of K — F different from t or —t and such 
that m2 — v is a non-square (in K). Let 3% be the regulus {(x, xm)\xq+1 — a], 
and let \S^l\ be the reguli in the orbit of 3% determined by the rotation group H. 
Let \3%i\ be the set of reguli on y = xt which are compatible with 3%. Then the 
set of points 

J m = { ( 0 , 0 ) U { ^ Ô ) \J{^)) 

is the indicator set of an md-spread Iff 'm. 

Proof. By Lemma 14, the orbit of 3% has length (q + l ) / 2 . By Corollary 1, 
there are q - 1 - (q + l ) / 2 = (q - 3 ) / 2 reguli in the set {3%b). Hence Jm 

contains q — 1 reguli in addition to the point (0, 0) . By Lemmas 15 and 16, 
these q — 1 reguli are mutual ly compatible. Finally, (0, 0) is compatible with 
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each point of each regulus, since the reguli all lie on lines y = xk with slope 
k £ K- F. 

Thus J m is the indicator set of an md-spread S^m-

Other new examples of rad-spreads can be obtained from j ^ m by replacing 
any reguli in {^5} W {Si1) by their opposite reguli, although of course these 
spreads are all related by replacement. Lemma 7 gives an explicit expression 
for the opposite reguli used in the replacement. 

Note also that the group G = HD is (sharply) transitive on the (q + l ) 2 /2 
indicator points of Jm not on y = xt. In particular, the subgroup H partitions 
this subset of indicator points into (q + l ) / 2 orbits of q + 1 each; by Theorem 
2' each orbit indicates a regulus. Therefore the (q + l ) 2 /2 lines of the set 
{S%l\i = 1, . . . , {q + l ) / 2} , in addition to forming reguli S%1 (which are orbits 
under D) may also be partitioned into reguli S?j, say, (j = 1, . . . , (q + l ) /2 ) 
with centre (0, 0), which are orbits under H. Thus J'm may be thought of as 
the set {(0, 0) VJ {S%h\ ^ {S?j}}} which again indicates an md-spread. Thus 
there are two distinct sets of q — 1 disjoint reguli in_J^m, and in that sense, 
^m is an md-spread in two distinct ways. The reguli S%û, when thought of as 
indicator points, do not of course lie on lines of -K. Rather S%* is on the circle 
Crj : — vx2 + y2 = Tj, where rj = (m2 — V)ZJ2 ( z / + 1 = a). By Theorem 2, 
â$j/, the opposite regulus to &j, also lies on Crr 

7. Properties of S^m. We can now easily describe S^m in terms of its 
spread set S = {M}, where, as in Section 2, { Y = XM) is the set of lines in 2 
which are distinct from / [6, p. 220]. The indicator points of Jm in T are the 
points {(lt)M], and are given in Theorem 4 as the set {(0, 0) VJ {3?8} W {^?'}j, 
where ô ranges over the (q — 3)/2 non-zero elements of F which are not in the 
set 7 » = {[X2 - (m + mq)\ + mq+1]a/(\2 - v)\ (Lemma 9). Hence 5 3 0, 
the zero matrix, and if we take up the option of including (1, t) in J>m, 
then S 3 I, the identity matrix (the inclusion of (1, t) in Jm imposes the con­
dition on a that 1 g 7 » . ) . g%h = {(x, xt)\xq+1 = 5; Ô £ T(a), M 0 | ; the 

corresponding elements of S are < 8l ^ 2 <5i2 - vô2
2 = ô>. & = 0?° = 

{(x, xm)\xQ+1 = a} ; the corresponding elements of 5 are 

Finally, 0l^l^\ where R* = \ a V& \{a2 - v/32 = 1), and therefore the 

elements of S corresponding to S?i are \\ * 2 n 1 ^ r-

Summarizing: 
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The spread set S of S^m is 

.02 cr i J Lo M 
a v\ 

LP a_\ 

2 2 2 Q2 
d\ — V(J<L = <T\OL — Vf) - } } 

(i) /ii, /i2 are fixed elements of F such that A = (MI2 — *>M22 + v)2 — 4*>/ii2 is 
a non-square in F. 

(ii) cr is a fixed non-zero element of F and 

7 » = {[X2 - 2/iiX + /ii2 - ^ 2 2 > / ( \ 2 - v)\\ e F}. 

(iii) ô 6 F, ô F^ 0, awd <5 g T(<r). If a is chosen so that 1 g r ( c ) , /feew 5 a w -
/aiw5 /Ae identity matrix I. 

I t is instructive to contrast 5 with a spread set representation for André 
subregular spreads [2, p. 492; 7, p. 33], which may be exhibited as the set 

Mfe th' -** -M €1 — ^ 6 2 

€2 — C i J 
V62 

where G and 5 are in two disjoint sets whose union is F — 0. The contrast 
suggests, bu t does not prove, tha t Sf m is not in general an André subregular 
spread. I t can be shown however, by a comparison of indicator sets, t ha t for 
every case except q = 3, «5^m is not a subregular spread. Therefore in part icular 
j ^ m is not an André subregular spread. The proof is straightforward, bu t ra ther 
long. 

The spreads S^m will of course define translation planes. Any plane defined 
by a particular choice of S^m is of dimension two over its kernel, and has the 
proper ty t ha t its q2 + 1 parallel classes of lines is the union M ^J NXVJ N2 

of three sets M, Ni and N2 consisting of 2, (q — 3)(q + l ) / 2 and (q + l ) 2 / 2 
parallel classes respectively. These correspond to the three divisions of the 
indicator points Jm\ the single point (0, 0) (which indicates a parallel class 
of M, the other arising from lœ), the (q — 3 ) / 2 reguli 3?y on y = xt, and the 
(q + l ) / 2 reguli &\ The linear translation complement [8, p. 197] of the 
resulting plane contains an abelian group G of order (q + l ) 2 / 2 which fixes 
both parallel classes of M. Also G permutes the parallel classes of N\ 
in (q — 3 ) / 2 orbits, each of length q + 1, and is sharply transit ive en the 
parallel classes of 7V2. Each of the orbits in Ni determines a derivable net. 
Moreover, N2 can be expressed in two different ways as a union of disjoint 
derivable nets. 

At least three of the planes defined from particular choices of S^m are 
known. They are the nearfield plane of order 9, and the irregular nearfield 
planes of orders 25 and 49. T h a t j ^ m , when q = 3, yields the nearfield plane 
of order 9 is of course trivial: ^m yields a non-Desarguesian translation plane, 
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and the nearfield plane is the only non-Desarguesian translation plane of 
order 9. 

When q = 5 we can chose v = —2,m = 2 — t, and a = — 1. Then the spread 
set S of ym is 

OU c i 

-0"2 

" 2 ( 7 2 ][; -2J 
L1

2 + 2(T22 = - l ; a 2 + 202 

Letting i? 
" [ • 

-2 
1 

where i, j = 0, . . . , 5, and T = 

a
2/ î]|a2 + 2/32=l}vj{[ 

x[; ~T] 
" ^ we have that 5 is the set {0 U {R1} U {2JT2Î'}}, 

" H Now i?3 = T2 = | ~ J _ J | and 

(RT)Z = / , from which it follows that every element of the group N = (R, T), 
generated by i? and T, can be expressed either as Rl or as RiTRj 

(i,j = 0, . . . , 5). Therefore N C S. Examining N further, we note that it is 

equally well generated by T and TR = 0 . Transforming N by the 
f l 0l L " J 

matrix U = 9 , we have that iV^ is generated by 4̂ = U~lTU = 

and 5 = U~lTRU = I -, __9 • A and i? are the generators of [? 
the multiplicative group of the irregular nearfield of order 25 as given in 
[6, p. 231] (with an error corrected). Therefore S = N VJ 0, and 5 defines the 
irregular nearfield plane of order 25 [6, p. 220]. Thus for the choices of v, m 
and a taken above, S^m defines the irregular nearfield plane of order 25. 

The situation is a little different when q = 7. Here we choose v = — 1, 
m = —3 — 2/, and a = 3. Then the spread set S of S^m is 

<J\ —(72 

.(72 (7l ][; 3 
o"i + o"2 = 3, a + j8 - } } • x[; ?] 

, we have that S is the set 

^ ] j Ô!2 + 52
2 = -1} W j * 1 } U ji? W } } , 

where t , j = 0 7 and T = | ^ ~ J J [ J " g j = [~l ~3j- I f WC 

reverse the regulus given in S by s * <5i2 + <52
2 = — 1 f we get a 

spread <5^V, derived from 5^w, whose spread set S' is {0 VJ {TR2TRi} U 

Letting i? = I 2 
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[R*] U {R*TR>}}. NowR* = T2 = (RT)* = * ° 
0 - 1 _ 

every element of the group N = (R} T) can be expressed either as R\ or as 
TR2TR\ or as RiTRj (i,j = 0, . . . , 7). Therefore iV C 5. If we now choose 

and it follows that 

[ - 1 o ] l W < generators T and T~lR of TV, and transform by U = , we identify 

iV*7 with the multiplicative group of the irregular nearfield of order 49 as given 
in [6, p. 231]. Therefore 5 = N \J 0 and 5 defines the irregular nearfield plane 
of order 49. Thus for the choices of v, m and a taken above, the irregular near-
field plane of order 49 is defined by a spread derived from S^m by the reversal 
of the regulus ^?_i. 

We examine one more feature of Sf m> There are of course many different 
spreads S^m, corresponding to different choices of ra, for any particular value 
of q. Two spreads S^m and ïf m> m' 9^ m are usually not equivalent in the 
sense that Jm and Jm> are images under the group A of affinities. Nor are the 
planes defined through $f m and Sf m> necessarily isomorphic. The properties 
that distinguish $f m from 5f m> (or J1

 m from Jm>) in the case that they are 
not equivalent do not appear to be strikingly different, except in certain special 
cases. One very interesting special case is that in which q = — 1 (mod 4), 
v = — 1, and mq+1 = —1. For in this case, and only in this case, there is a 
rotation in the group H of Section 6 that takes slope m into slope mq, namely 

- G -J] the rotation R«+»'* = . This means that the regulus &«+»'* is the 

set of points {(xra, xmq+l)\xq+l = a} = {{z, zniq)\zq+l = — a} on the line 
y = xmq. Thence, by Lemma 7, 3?/{q+1)/\ the opposite regulus to ^?((Z+1)/4, is 
the set of points {(z, zm)\zq+l = — a) on y = xm, the same line which contains 
3?. Note however that S% and 3?/{q+l)H are different reguli, having norms a 
and — a respectively. If similarly we reverse each regulus &k, where 
k = (q + l ) /4 , (q + 3)/4, . . . , (q — l ) /2 , we obtain from Jm the interesting 
indicator set J^m', which has a set of q — 1 disjoint reguli arranged in such a 
way that (q — 3)/2 lie on the line y = xt, and the remaining (q + l ) /2 lie in 
pairs on (q + l ) / 4 other lines through (0, 0). 

We emphasize that the above case occurs only when q = — 1 (mod 4) and 
mq+l = v = — 1. The case is remarkable because it provides an instance in 
which &~ (0$), the set_of reguli <̂ ?7 on y_j= tx that are incompatible with 3%, 
is identicajjwith 3T (3?), where 3? and 3? are different reguli on the same line 
y = xm (£% of course is the regulus &'(q+l)/A). In fact, further examination of 
<^~(0%) reveals that the above example is the only case in which this phenom­
enon can occur. The necessary and sufficient condition for this occurance can 
be shown to be that 3T (S%) contains <^_T whenever it contains &y. 

The properties of the set 3T (0ft) for arbitrary choice of m £ K — F are like­
wise interesting. We have worked out several, using the formula given in 
Lemma 9 as a basic tool. We shall not present these results here; we are con­
vinced however that a thorough analysis of ^~(!3$) is the key to the discovery 
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of more rad-spreads (if they exist) and possibly to a complete classification 
of md-spreads. 
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