
Antarctic Science (2025), 00, 1–6

doi: 10.1017/S0954102025100229

Biological Sciences

Biomonitoring of genomic damage in shags from three Antarctic
localities

Marianela Beltrán1 and Verónica D’Amico2

1Instituto Antártico Argentino, Villa Lynch, Buenos Aires, Argentina and 2Centro para el Estudio de Sistemas Marinos (CESIMAR-CONICET), Puerto Madryn, Chubut,

Argentina

Abstract

Seabirds play an important role as top consumers in the food web and can be used as biomonitors for exposure to pollutants. Erythrocyte
nuclear abnormalities (ENAs) represent one of the most important ways to detect genomic damage associated with environmental
degradation and pollution. This study investigates the number of ENAs in three populations of two species of Leucocarbo shags. Blood
samples from the Antarctic shag (Leucocarbo bransfieldensis) breeding on the Antarctic Peninsula and the South Shetland Islands and the
South Georgia shag (Leucocarbo georgianus) breeding on the South Orkney Islands were analysed. The results revealed evidence of genomic
damage in all individuals, with a mean number of ENAs of 26.54 and 43.51/10 000 red blood cells for Antarctic and South Georgia shags,
respectively.Thus, the shags from theOrkney Islands showed a higher number of erythrocyte abnormalities, whereas no significant differences
were observed among shag populations across the Antarctic Peninsula and South Shetland Islands.These results suggest that, in the northern
part of the region, shags might be more exposed to pollutants. They also provide the first reference values for cytogenetic damage in this
species and establish a critical baseline for future biomonitoring efforts.
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Introduction

Antarctica is one of the most pristine areas of the world. However,
human settlements in this area and their associated activities,
such as fishing, tourism and research, produce pollution through
oil spills, sewage disposal, waste incineration and marine debris
(Cripps 1992, Da Silva et al. 2023, Stark et al. 2016). In addi-
tion, pollutants such as persistent organic pollutants (POPs) and
organochlorine pesticides (OCPs) released into environments can
reach remote areas through atmospheric transport and deposition
(Galban-Malagon et al. 2013, Rimondino et al. 2018), especially
in the polar regions (Potapowicz et al. 2020). Consequently, var-
ious studies have detected a wide range of pollutants, including
heavy metals and POPs, in the air, snow and soil of the Antarctic
environment (Cipro et al. 2017, Na et al. 2020, Liu et al. 2021).
Thus, obtaining information regarding the effects of environmental
contaminants on Antarctic organisms is essential to detecting and
mitigating the impacts of environmental pollution.

Seabirds provide information regarding the quality of the
marine ecosystems they inhabit. Due to their role as bioaccumula-
tors of contaminants within the food chain (Kursa & Bezrukov
2008, Skarphedinsdottir et al. 2010), these birds are suitable
candidates as sentinels of the genotoxic agents in the surroundings

Corresponding author: Marianela Beltran; Email: beltranela@gmail.com
Cite this article: Beltrán, M. & D’Amico, V. 2025. Biomonitoring of genomic damage

in shags from three Antarctic localities. Antarctic Science, 1–6. https://doi.org/10.1017/
S0954102025100229

of their feeding and reproductive areas. In recent years, many
studies have demonstrated the presence of genotoxic substances
in Antarctic seabirds, specifically in penguins (Barbosa et al. 2013,
De Mas et al. 2015, Jerez et al. 2012), petrels (Van den Brink 1997,
Colabuono et al. 2016) and albatrosses (Carravieri et al. 2014).
However, there is a lack of knowledge regarding the effects of these
pollutants in most Antarctic seabirds.

Antarctic birds are important members of the Antarctic
ecosystem in terms of total biomass and environmental interaction
(Corsolini 2011). In particular, two phalacrocoraciid species are
found in Antarctica: the Antarctic shag (Leucocarbo bransfield-
ensis), which inhabits the Antarctic Peninsula and the South
Shetland Islands (SSIs), and the South Georgia shag (Leucocarbo
georgianus), which inhabits the South Orkney Islands (SOIs) and
the sub-Antarctic South Sandwich Islands, South Georgia and
Shag Rock (Kennedy & Spencer 2014, Orta et al. 2021). These
shags generally reproduce in isolated areas far from anthropic
activity and differ from other flying seabirds of Antarctica in their
capacity to dive deeper than 100 m to feed almost exclusively on
a variety of demersal fish (Casaux & Barrera-Oro 1993, Casaux
et al. 2002, Casaux 2004), occupying in inshore-shallow waters
the trophic niche of main predators of demersal fish (Casaux &
Barrera Oro 2006). These characteristics make the Antarctic shags
a suitable species for the study of marine contamination over wide
geographical areas and at different trophic levels. Shag population
data reveal a steady decline in the number of breeding pairs over the
last 25 years at several colonieswithin their breeding range (Naveen
et al. 2000, Casaux & Barrera-Oro 2006, Schrimp et al. 2018).
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Thus, evaluating the impacts of contamination on these species is
important to determine how they adapt to different environments
and to understand their population dynamics. There have been
few studies conducted on these species, most of which have been
related to diet and ecology, and none of them have investigated the
effects of pollutants.

Analysing erythrocyte nuclear abnormalities (ENAs) is a
technique that can be used to assess the effects of pollutants on
organisms (De Mas et al. 2015). ENAs are nuclear malformations
that appear in erythrocytes due to genomic damage from genotoxic
substances (Quirós et al. 2008). Thus, assessing differences in the
quantification of ENAs has been considered a practical tool for
evaluation and monitoring of the level of environmental contam-
ination. The most frequently studied such malformation is in the
micronucleus (MN; Schmid et al. 1976). MNs are cytoplasmic
chromatin masses with the appearance of small nuclei that arise
from chromosome fragments or intact whole chromosomes from
the anaphase stage of cell division (Schmid 1976). In addition,
other ENAs, such as lobed nuclei, binucleated cells, kidney-shaped
nuclei and notched nuclei, have been observed in the erythrocytes
of birds (Kursa & Bezrukov 2008, Clarck 2014, DeMas et al. 2015).
Although the mechanism responsible for the formation of all ENA
types has not been explained, bird research has shown that ENA
analysis was effective for evaluating the environmental quality of an
area (Barbosa et al 2013, Baesse et al. 2015), as well as the potential
impact of environmental factors on natural populations (Baos
et al. 2006). This study aims to investigate the frequency of ENAs
in peripheral blood erythrocytes of Antarctic and South Georgia
shags to obtain reference levels of genomic damage in these species.

Materials and methods

Field and laboratory procedures

Breeding Antarctic shags (L. bransfieldensis) were captured at
HarmonyPoint,Nelson Island, SSIs, and at three colonies located at
the Danco Coast (DC), west Antarctic Peninsula. The DC colonies
were Cape Herschel (64○04′S, 61○01′W), Midas Island (within
Antarctic Specially Protected Area No. 134, 64○10′S, 61○05′W)
and Point Py (64○13′S, 61○00′W). Captures of South Georgia
shag (L. georgianus) were made on Laurie Island, SOIs. Captures
occurred between November 2014 and February 2015 in the SSIs
and in January 2018 in DC and the SOIs. Birds were randomly
chosen and captured with a handled net from the nest. Handling
procedures included body weight data and blood collection. We
sampled a total of 60 reproductive individuals (20 South Georgia
shags and 40 Antarctic shags (20 from the SSIs and 20 from DC)).
Blood samples were collected by venipuncture of the alar vein
using heparinized syringes with sterilized needles (23 gauge).
Blood was placed into Eppendorf tubes, which were kept cool
and carried to the laboratory within 5 h of the blood draw. Once
at the laboratory, blood smears were prepared with a drop of

fresh blood, air-dried, fixed with 99% methanol for 10 min and
stained with Tincion 15 (Biopur). For every individual captured,
two slides were made. The ENA assay was performed by counting
the number of MNs and other ENAs on each blood smear under a
microscope (100× magnification) per 10 000 mature erythrocytes
(Schmid 1975) using the zig-zag model to avoid crossing the same
field more than once. ENAs observed were MN erythrocytes and
lobed, tailed, two-lobed, budding, cavity and kidney-shaped nuclei
(Kursa & Bezrukov 2008, De Mas et al. 2015). Erythrocytes with
other nuclear malformations were classified as ‘unknown’.

Statistical analysis

For each species a descriptive statistical analysis was performed,
including average, standard deviation (SD) and range (minimum–
maximum) of the total sumof ENAs andMNs of blood smears.The
frequency of occurrence (F%) was calculated as the percentage of
individuals withmalformations out of the total number of sampled
individuals.

As the number of MNs was very low, they were included in the
total count ofmalformations, and only the ENA testwas considered
for the rest of the analysis. Differences in ENAs between species and
localities were determined using generalized linearmodels (GLMs;
function ‘glm’ in R). A Poisson distribution was used because the
number of ENAs is a count variable (Crawley 2012). As the models
showed signs of dispersion, we corrected the standard errors using
a quasi-GLM (quasi-Poisson distribution) in which the variance
is given by φ × μ, where μ is the mean and φ is the dispersion
parameter (Crawley 2012).

To explore sex differences, we examined the ENAs of the two
shag species separately using GLMs with sex as a fixed factor. In
the case of the Antarctic shag, by including two populations, the
fixed effect of locality was incorporated. In this case, the interaction
term between these main effects was also tested in the models
to determine whether locality differences depended on the sex
considered. In all cases, the bestmodel was selected using amanual
stepwise backwards deletion of non-significant terms from the full
global models.

To compare models with different levels of complexity, we used
the ‘Anova’ function with F-tests. Then, we used Tukey’s honestly
significant difference (HSD) post hoc test to compare locality or
sex differences. All analyses were performed using RStudio version
4.1.2 (R Development Core Team 2021).

Results

We determined the ENAs and MN frequency for Antarctic shags
and South Georgia shags. A small percentage of Antarctic shags
showed MNs, whereas no MNs were found in the smears of the
South Georgia shags (Table I). South Georgia shags showed a
significantly higher proportion of ENAs than Antarctic shags
(F = 9.92, P = 0.002; Table I). In addition, the breeding site of

Table I. Number of erythrocytic nuclear abnormalities (ENAs) and micronuclei (MNs) per 10 000 erythrocytes in each shag species.

Species Sample size ENAs MNs

Mean ± SD Range F% Mean ± SD Range F%

Antarctic shag (Leucocarbo bransfieldensis) 40 26.54 ± 14.61 5–58 100 1.29 ± 0.49 1–2 12.5

South Georgia shag (Leucocarbo georgianus) 20 43.41 ± 20.74 7–90 100 0 0 0

F%= frequency of occurrence percentage; SD= standard deviation.
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Figure 1. Boxplot of the number of erythrocytic nuclear abnormalities (ENAs) per

10 000 erythrocytes in three breeding localities of the two shag species. The boxes

contain 50% of the values. Median, minimum and maximum values are indicated.

Different letters indicate significant differences in ENA frequencies. DC = Danco Coast;

SOI = South Orkney Islands; SSI = South Shetland Islands.

the shags had a strong influence on determining the frequency of
ENAs (F = 4.95, P = 0.01). ENAs were significantly more frequent
in shags from SOIs than in those from the other two localities
(Fig. 1).

Regarding sexual differences, SouthGeorgia shags did not show
significant differences in the frequency of ENAs between females
and males (F = 2.45, P = 0.13; Table II). In Antarctic shags, the
number of ENAs varied between the sexes according to the locality
studied (sex × locality; F = 1.77, P = 0.01). The number of ENAs
was higher in males than in females from DC, Antarctic Peninsula
(W = 71.5, P < 0.01), whereas non-significant differences were
found between the sexes from Harmony Point, SSIs (W = 70.5,
P = 0.28). Intra-specific comparisons within the species did not
show differences between Antarctic shags from the SSIs and DC
(F = 0.13, P = 0.71; Table II).

Discussion

The present study investigates for the first time the occurrence of
ENAs in the blood cells of the two species of shags from three
Antarctic localities along a longitudinal gradient. We found evi-
dence of genotoxic damage, measured as the number of ENAs,
in all breeding individuals from the three localities studied. All
individuals presented at least one type of erythrocyte abnormality,
whereas MNs appeared in low proportions or were absent from
Antarctic and South Georgia shags, respectively. Other studies

have reported a lack of sensitivity when using the MN test alone,
suggesting that the ENA test represents a more effective alternative
for assessing genotoxic damage (Guilherme et al. 2008, Monteiro
et al. 2011).

Previous studies have evaluated the frequency of erythrocyte
abnormalities in several bird taxa from different environments.
For instance, Martinez-Haro et al. (2017) registered 18.6 and
40 ENAs/10 000 red blood cells (RBCs) for burrowing owls (Athene
cunicularia) from pristine and urbanized areas, respectively.
Frixione et al. (2020) found 71.5 ENAs/10 000 RBCs in American
kestrels (Falco sparverius) from an agricultural area. In contrast,
a heterogeneous sample of 25 bird species in southern Brazil pre-
sented an overall mean frequency of ENAs of 16.68/10 000 RBCs
(Tomazelli et al. 2022). However, information regarding ENAs in
seabirds is scarce, and such research has mainly been conducted
in gulls and penguins. In black-headed gull (Chroicocephalus
ridibundus) embryos, the means of investigations of two natural
populations in Lithuania ranged from 0.057‰ to 4.7‰ (Stoncius
et al. 2003). In Audouin’s gulls (Ichthyaetus audouinii) captured in
Italy, the mean ENA value was 33/10 000 RBCs (Borghesi 2016).
In Antarctica, a few studies have reported on ENAs in seabirds:
one in south polar skuas (Stercorarius maccormicki), with 0.71
ENAs/10 000 RBCs (Kursa & Bezrukov 2008), and several in
pygoscelids (Barbosa et al. 2013, De Mas et al. 2015, Olmastroni
et al. 2019). ENA averages of 20 and 19/10 000 RBCs have been
registered for gentoo penguins (Pygoscelis papua) in Antarctic
localities with high visitor rates (Afanasieva et al. 2006, Barbosa
et al. 2013), in comparison with 5.3/10 000 RBCs for a rarely visited
gentoo penguin rookery (Barbosa et al. 2013).

Our results show that themean numbers of ENAs in shags from
Antarctica were 26.54 and 43.51/10 000 RBCs for L. bransfield-
ensis and L. georgianus, respectively. Considering the frequencies
observed in other seabirds frompolluted environments, it is proba-
ble that the observed frequencies of ENAs in shags fromAntarctica
have been caused by exposure to genotoxic agents. ENA counts
represent one of the main methods for detecting genomic damage
related to environmental deterioration and pollution (Stoncius &
Lazutka 2003, Van Ngan et al. 2007). In this sense, several studies
have shown the presence of heavy metals such as mercury (Seco
et al. 2019) and POPs such as polycyclic aromatic hydrocarbons
and OCPs in several localities of the SSIs, the SOIs and the Antarc-
tic Peninsula (Cao et al. 2018, Vergara et al. 2019), as well as in
seabirds’ faeces and feathers (Metcheva et al. 2011, Brasso et al.
2012). Alternatively, it is possible that exposure to genotoxic agents
might have occurred outside of the breeding season.Unfortunately,
there is no information available regarding wintering areas for
these species to assess the level of exposure to pollutants during
that season.

ENAs were similar between the sexes in shags from SOIs and
SSIs. However, males fromDC showed greater ENAs than females.
The Antarctic shag is known for its inter-sexual variation in for-
aging strategies during the breeding season, including in relation

Table II. Number of erythrocytic nuclear abnormalities (ENAs) per 10 000 erythrocytes in each shag species by sex and locality. Sample size n= 10 in all cases.

Antarctic shag (Leucocarbo bransfieldensis) South Georgia shag (Leucocarbo georgianus)

Danco Coast Harmony Point South Orkney Islands

Mean ± SD Range Mean ± SD Range Mean ± SD Range

Male 36.89 ± 10.98 25–58 28.73 ± 13.78 8–56 38.33 ± 20.16 7–90

Female 18.11 ± 9.83 5–34 22.40 ± 12.15 5–53 55.60 ± 18.42 34–75
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to diving depth, distance from the colony and diet composition
(Casaux et al. 1998, 2001). Thus, the observed sexual differences
in the number of ENAs in DC shags might be related to local
conditions and foraging habitats in terms of exposure to pollutants.
However, assumptions regarding differences in foraging patterns in
these areas and exposure levels between the sexes need to be further
investigated.

Our study revealed notable variation in the frequency of ENAs
between the two shags species studied, which could be due to
species-specific sensitivity. For example, Barbosa et al. (2013)
found that on Isla 25 de Mayo/King George Island, where three
penguin species live in mixed colonies, Adélie penguins had
the highest genetic instability and the highest number of ENAs
compared with gentoo and chinstrap penguins. The species-
specific differences could reflect genetic variations in the capacity
to produce such ENAs or a lower physiological ability to remove
these altered cells (Zúñiga-González et al. 2001). However, species-
specific ecological characteristics, such as diet and trophic level
during the breeding season, might contribute to the observed
differences in the frequencies of abnormalities between the
species, as they play a role in both contaminant exposure and
the biomagnification processes that may have adverse impacts
on DNA. However, Antarctic shags and South Georgia shags are
closely related, both genetically and in terms of feeding strategies
and trophic position (Casaux et al. 2016). Thus, more probable
explanations for these observed differences might be associated
with spatial variation. In this sense, L. georgianus breeds on
the SOIs and South Georgia Island, much further north than
L. bransfieldensis, which is found in the Antarctic Peninsula and
the SSIs. Thus, the higher ENA concentration found in shags
from the SOIs could be attributed to a geographical gradient in
the bioavailability of trace elements (Cossa et al. 2011), partly
influenced by the proximity to the American continent. Clear
latitudinal gradients in persistent contaminants, such as mercury,
were previously described across the Southern Ocean (Mills et al.
2022). For example, Seco et al. (2019) observed that krill from the
SOIs have total mercury concentrations five- to seven-times higher
than Antarctic krill from the Antarctic Polar Front, reflecting
differential contaminant bioavailability in the Southern Ocean. In
this sense, Corsolini et al. (2011) also detected higher contaminant
concentrations in migrating seabirds (S. maccormicki and brown
skua, Stercorarius antarcticus) in comparison with sub-Antarctic
species (snow petrel, Pagodroma nivea) and Antarctic species
(Pygoscelis spp.) from the same sampling sites, suggesting higher
contamination events at lower latitudes. Similarly, the differences
in ENA concentrations between individuals of similar species but
from different sampling areas suggest geographical variations in
the concentration of bioavailable contaminants in seabirds. We
would need to measure the level of pollutants in birds in each
locality to validate this hypothesis.

In summary, we have established the baseline data on ENAs as
biomarkers of genomic damage in shag populations from Antarc-
tica. The results and conclusions of our study are subject to certain
limitations.These include the difficulty of achieving a large sample
size, the lack of additional information on the concentration of
pollutants at the survey sites and the limited knowledge regarding
the foraging areas and movements of these species during winter.
Therefore, although it is difficult to identify the source of pollution,
this study is the first attempt to establish baseline values for cyto-
genetic damage in these species, and such data may be useful for
long-term comparisons regarding the health of shag populations.
Future studies should include assessments of contaminant levels in

individuals in order to investigate potential relationships between
such contaminants and genotoxic damage.
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