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Summary

The maintenance of polygenic variation through a balance between mutation and stabilizing
selection can be approximated in two ways. In the ' Gaussian' approximation, a normal distribution
of allelic effects is assumed at each locus. In the 'House of Cards' approximation, the effect of new
mutations is assumed to be large compared with the spread of the existing distribution. These
approximations were developed to describe models where alleles may have a continuous range of
effects. However, previous analyses of models with only two alleles have predicted an equilibrium
variance equal to that given by the 'House of Cards' approximation. These analyses of biallelic
models have assumed that, at equilibrium, the population mean is at the optimum. Here, it is
shown that many stable equilibria may coexist, each giving a slight deviation from the optimum.
Though the variance is given by the ' House of Cards' approximation when the mean is at the
optimum, it increases towards a value of the same order as that given by the 'Gaussian'
approximation when the mean deviates from the optimum. Thus, the equilibrium variance cannot
be predicted by any simple model, but depends on the previous history of the population.

1. Introduction

Despite the importance of continuously varying charac-
ters in both natural adaptation and artificial selection,
we know almost nothing about their genetic basis. The
most that can be measured in the majority of organ-
isms are the phenotypic mean, and the genetic and
environmental components of the variance. We would
therefore like to find a simple model which would
describe the evolution of the mean and the variance,
and which would be independent of the unknown
relationship between genotype and phenotype. Since
many characters are known to be under stabilizing
selection in nature (see Lande, 1975, and Turelli, 1984),
a particularly important problem is to predict the
genetic variance maintained at equilibrium under such
selection; this may be seen as a special case of the
general problem of predicting the evolution of contin-
uous characters under arbitrary patterns of selection,
mutation, and drift.

If no other forces were acting, and if a finite number
of loci were responsible for polygenic variation, stabili-
zing selection would eventually eliminate all varia-
bility. The simplest explanation for the maintenance of
high levels of genetic variation in natural populations
is that it is generated by mutation (Kimura, 1965;
Lande, 1975; Turelli, 1984); recurrent mutation may

also be an important source of variation in popula-
tions under artificial selection (Hill, 1982). Of course,
this is not the only possibility: polygenic variation
could be caused by the pleiotriopic effects of balanced
polymorphisms. This explanation would be more
likely if most electrophoretic polymorphism is main-
tained by balancing selection, but is still plausible even
if the majority of such variation is neutral. However,
if polygenic variation were simply the side effect of
balancing selection, it would not be possible to pre-
dict the evolution of the character of interest without
understanding the underlying polymorphisms (though
see Gillespie, 1984). It therefore seems reasonable to
begin by analysing models of mutation/selection
balance, in order to find whether measured rates of
mutation and stabilizing selection could account for
the abundant genetic variation which is observed for
most continuous characters.

Kimura (1965) showed that, if the mutation rate to
new alleles is sufficiently high, the distribution of
effects of each locus will be Gaussian. Lande (1975,
1980) has used this assumption of normally distri-
buted effects to account for the effects of linkage and
pleiotropy; his model has been applied to a variety of
problems (see review in Turelli, 1984). In the simplest
case, where variation is due to n equivalent loci, and
where linkage disequilibrium is negligible, the vari-
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ance maintained at equilibrium is y/(2nU/s); here, U
is the variance produced by new mutations per zygote
per generation, and s is the strength of stabilizing
selection (as defined below). The Gaussian model can
be extended, under the same assumptions, to describe
the general dynamics of the mean and the variance
under selection and drift (section 3 below).

Unfortunately, the genetic variance which is main-
tained in even a simple balance between mutation and
stabilizing selection depends on the nature of the varia-
tion at the underlying loci. Turelli (1984) has argued
that the mutation rate per locus is unlikely to be high
enough to maintain an approximately normal distribu-
tion of effects; he shows that the alternative ' House of
Cards' approximation (appropriate for low mutation
rates (Kingman, 1978)) predicts an equilibrium vari-
ance equal to 4I.fi/s, where // is the mutation rate at
each locus. This is a qualitatively different form from
that derived using the 'Gaussian' approximation.
The ' House of Cards' approximation can be extend-
ed in a similar way to the 'Gaussian' approximation
to describe the dynamics of a quantitative character
under arbitrary selection pressures (section 3
below).

Both Lande's' Gaussian' models, and Turelli's appli-
cation of the' House of Cards' approximation, assume
that there is continuous distribution of allelic effects at
each locus. However, Turelli (1984) predicts the same
equilibrium variance as Wright (1935a), Latter (1960),
Bulmer (1972, 1980) and Kimura (1981), who use
models in which only two alleles segregate at each
locus. Turelli (1984) shows, using computer simula-
tions of a three allele model, that the distinction
between the 'Gaussian' and the 'House of Cards'
approximations depends on the mutation rate, and not
on the number of alleles involved: the latter approxi-
mation is relevant whenever the loci responsible for
poly genie variation are close to fixation.

In this paper, I extend Wright's (1935 a, b) biallelic
model to include mutation as well as stabilizing selec-
tion. Analysis of this model shows than when allelic
effects are limited to a discrete set of values (in this case,
two), the evolution of the genetic variance is much
more complex than is suggested by either Lande's
(1975) or Turelli's (1984) continuum-of-alleles models.
Over the range of mutation rates for which polygenic
variation is maintained by a balance between muta-
tion and stabilizing selection, many alternative equili-
bria are possible. The genetic variance depends
strongly on which equilibrium is reached. At the opti-
mal equilibrium, the variance is minimized, and
roughly equals that predicted by the 'House of Cards'
approximation; this was the case assumed implicitly by
Wright (1935a), Latter (1960), Bulmer (1972) and
Kimura (1981). However, at other stable equilibria,
the variance may be much greater, and approaches
that predicted by the 'Gaussian' approximation. Since
the equilibrium variance depends critically on the his-
tory of the population, it cannot be predicted from the

observed distribution of the character: without detail-
ed knowledge of the genetic basis of continuous charac-
ters, only a crude description of their evolution is
possible.

2. The model

(i) Selection

Consider a single character, z', which is determined by
the sum of the effects of n loci. The effect of the /th locus
is Oj, and the states of the two homologous genes in a
diploid individual are denoted by l{, /*; lt is 0 or 1,
depending on the state of the locus. Thus:

z^l^+/?-!). (1)

The character is assumed to be completely heritable;
the effect of environmental variability would merely be
to dilute the effects of selection, and would not signifi-
cantly alter the conclusions. The fitness, W, of an
individual with phenotype z' is assumed to follow a
Gaussian curve centred on some optimum, z0, and with
variance \/s:

\ogW=-s(z'-zoy/2. (2)

The mean fitness of a population with mean z and
variance v (assuming that the phenotype, z', is nor-
mally distributed, and sv <g 1) is:

log W=-s(z-zo)y2-sv/2

where

z =

(3a)

Qb)

(3c)

(Here,/»f, qt are the frequencies of the two alleles at the
f th locus.)

Provided that selection is much slower than recombi-
nation, linkage disequilibrium will be negligible;
Bulmer (1980) and Turelli (1984) argue that this is a
reasonable assumption for most natural populations.
Thus, changes in allele frequency are given by the
general relation dpjdt = (ptqt/2) (6 log W/dpt). (Sel-
ection is here assumed to be weak enough that evolu-
tion is approximately continuous in time; this
condition is automatically satisfied if selection is much
weaker than recombination). I will assume that all loci
have equal effects. The equations can then be simpli-
fied by rescaling time relative to stx2/2, which is a mea-
sure of the selection pressure associated with each
individual locus. The equation for the effects of selec-
tion which results is equivalent to equation 19 in
Wright (1935 a):

dpjdt = Piqt ((Pi-qi)-28). (4)

Here, 8 is the deviation from the optimum, relative to
the effect of a single gene, a: S = (z—zo)/a =
2I.((pi —£)-(zo/a)). Two forces are acting in (4).
First, stabilizing selection acts to reduce the phenotypic
variance, and hence to reduce the heterozygosity at
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each of the underlying loci. This causes disruptive
selection on the allele frequency, and hence a tendency
for fixation of one or other allele. Second, selection
acts to pull the mean towards the optimum, and so to
reduce S. I will begin by considering the equilibria
under selection alone, and their stabilities, and will
later introduce mutation.

At each locus, there are, in principle, three equili-
brium frequencies: p = 0, \+8, or 1; the number of
loci at these frequencies will be denoted by m, v, M,
respectively. The state of the whole system is des-
cribed by these three numbers. For each set of num-
bers, {m, v, M}, a large number of equilibria is
available, corresponding to different permutations of
loci. However, since the effects of each locus have been
assumed identical, these permutations will have identi-
cal properties. We will therefore only be concerned
with the differences between different classes of equili-
bria, characterized by different {m, v, M}.

The deviation from the optimum is given by:

d = (M-m-(zo/a))/(l-2v) (5)

The stability of the class of equilibria {m, v, M} is
determined by the eigenvalues of the matrix Si} =
62 log W/dpt dpj. These are:

X = — 2Q+ S) (m times) (6 a)

= - 2(| - S) (M times) (6 b)

= - (4v - 2) (i - 82) (once when v > 0) (6 c)

= 2(\-82) (v-1 times when v> 1). (6d)

001-

-0-4 +0-4

Fig. 1. The variance, V, plotted against the optimum, z0,
for two values of the mutation rate, fi. When there is no
mutation, (ft = 0), only one class of equilibria is possible
for a given optimum. For half the values of z0,
polymorphism is maintained at one locus (dotted curves);
for the other half, no polymorphism is possible (v = 0;
solid horizontal lines). The series of diagrams below the
main graph illustrate these two types of equilibria; they
show the equilibrium allele frequency at each of the
polygenes. Even a low mutation rate (here, fi = lO"6)
causes a qualitative change. The polymorphic equilibria
become unstable for all values of z0, whilst the
monomorphic equilibria become stable for a wide range
of optima (solid parabolas): two equilibria may now be
stable simultaneously. (Here, there are n = 100 loci, each
with effect a = 0-1. Stabilizing selection has strength
s=\).

The equilibrium can only be stable to the introduc-
tion of new alleles at fixed loci, or to perturbations at
polymorphic loci, if all these eigenvalues are negative.
Thus, (6d) implies that stability is only possible when
v = 0 or 1. Unless either M or m is zero, (6a, b) require
that |<5| < (!) (as shown by Wright, 1935a). Equation
5 can therefore be rearranged to show that the opti-
mum must lie inside the range (M—m) — (\) <
(zja) < (M—m) + ($). We can see that, for any
particular z0, stable equilibria are only possible for
one combination of {m, v, M).

Now, imagine that z0 is gradually increased, and that
mutations are supplied at a rate high enough to keep
the population at the stable equilibrium, but not so
high as to distort that equilibrium. The population will
pass from a state in which all loci are fixed for one or
other allele, through polymorphism at a single locus,
to a new state of fixation (Fig. 1). Thus, for roughly
half the parameter values, selection maintains no gene-
tic variance at all, whilst for the other half, variation
is maintained at only a single locus.

(ii) Mutation/selection balance

Suppose that we now introduce recurrent mutation. It
is simplest to assume that mutation occurs at an equal
rate fi in each direction; I do not believe that relaxing
this assumption of mutational symmetry would intro-
duce any qualitative change in the results. Equation 4
becomes, at equilibrium:

dpt/dt = 0=Piqi ((Pt-qi)-28)-2y(pi-qt). (7)

(Here, y is a measure of the rate of mutation, relative
to the selection pressure on a single locus: y = /x/stx2.)

This equation is identical to Wright's (1935a) equa-
tion 42, except that Wright assumed unidirectional
mutation, and more important, assumed that the mean
lies at the optimum (d = 0). The present analysis differs
from those of Wright (1935a, b), Latter 1960), and
Bulmer (1972) primarily in the inclusion of deviations
from the optimum; though these are small in magni-
tude, being less than half the effect of a single substitu-
tion, (|<5|<|), we will see that they introduce
significant complications.

I will first consider the conditions for the existence
of equilibria. In the absence of mutation (y = 0), we
have seen that, provided the mean does not deviate too
far from the optimum QS\ <£), three equilibria are
available at each locus. We will concentrate on those
equilibria in which all loci are near to fixation: m for the
' — ' allele, and M for the ' + ' allele. The frequencies
at these loci are denoted by (p, q) and (P, Q), respec-
tively. Both/? and P are solutions of (7); no loci lie at
the intermediate equilibrium, which is the solution of
(7) lying between p and P. When there is no mutation,
the above analysis shows that this class of equilibria
cannot be realized for roughly half the values of z0.
However, I show here that unless mutation is extre-
mely low ((«+1)2 y < 1), this class exists and is stable
for a wide range of z0. As y increases, this range be-
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comes wider, and the number of alternative equilibria
increases. As y increases still further, the heterozy-
gosity at each locus increases, until eventually all the
equilibria collapse into a single state, in which varia-
tion is maintained primarily by mutation pressure. The
first problem, then, is to find the parameter values
which allow the existence of each class of equilibria;
this is the most important part of the analysis, since it
will be shown that if these equilibria exist, they will be
stable.

Equation 7 is a cubic polynomial. Although there is
an explicit formula for its roots (Abramowitz &
Stegun, 1965), it is complicated; analytic progress will
not be possible without some more tractable approxi-
mation. First, assume that y is small enough that each
locus is very close to fixation (y,p, Q -4 1). Taking
leading terms in y gives:

p = Q=-J-
(l-y)'

(8a)

- 1 0 + 10

-0-5 + 0-5

Fig. 2. The range of mutation rates (y = n/scP) and
optima (z0) for which each class of equilibria is stable.
Parameter values are as in Fig. 1; the five areas in Fig. la
correspond to (from left to right) the classes of equilibria
{m, v, M} = {100, 0, 0}, {75, 0, 25}, {50, 0, 50}, {25, 0, 75}
and {0, 0, 100}. The equilibrium in which all loci are near
fixation for the ' + ' allele (i.e. {0, 0, 100}) is stable for
arbitrarily large z0; the right-hand dotted line shows the
parameter values beyond which only a single class of
equilibria is stable. (A similar comment applies to the
left-hand dotted line.) Fig. 2b shows details for the region
near z0 = 0, y = 0, for the classes {51, 0, 49}, {50, 0, 50}
and {49, 0, 51}.

This approximation breaks down when \8\ is close to
^; since this may happen over a significant range of
parameter values, we must find a better approxima-
tion. Let 8 — \—e, and retain leading terms in e, y.
Then:

P = y, Q = (e-V[e2-4y])/2. (8 b)

A similar approximation can be derived for

, Q = y. (8 c)

When 131 is not close to \, e2 is much greater than 4y,
and so y/(e2 — Ay) s* (e—2y/e). Hence, the expressions
for Q,p in (8 b, c) reduce to those in (8 a). Equation 8 b,
c are therefore accurate whenever y -4 1, even when e
is large.

We can now use these approximations to find the
range of equilibria which exist for given y, z0. First,
suppose that (M—m) is much greater than its optimal
value, zo/a, so that the mean of the character is pulled
far above the optimum (8 close to +£). The closest
possible approach to 8 = \ is, from (8 b), when
e = \—8 = 2\/y, so that Q = \/y\ if the mean is pulled
beyond this point, the solution in (8 b) becomes imagi-
nary, and so cannot be realised. We can now substi-
tute these solutions into (3 b) and find the smallest
value of z0 for which the class of equilibria {m, 0, M}
exists. The same method can be used to find the larg-
est value of z0:

+O(My) < zja <
-\Wy+O(my). (9)

We can see that, if tiy/y is large (i.e. fi > s(a/n)2), a
large number of equilibria is possible for each value of
the optimum: roughly, 1 +(n — 2)\/y (Figs. 1-4). By
comparing the allowable ranges of z0 for consecutive
equilibria ({m, 0, M}, {m— 1, 0, M+1}), one can show
that, for some z0, no equilibrium in the class with all
loci close to fixation (v = 0) can exist when
(n+\)\/y < 1. When mutation becomes extremely
low, (9) shows that this class of equilibria becomes
impossible for half the values of z0, a result consistent
with the earlier treatment of selection alone (Fig. 1).

Turelli (1984) gave numerical results for a biallelic
model identical to that analysed here, and involving up
to six loci. However, he did not find multiple equili-
bria. This was because, with six loci, two equilibria can
only be simultaneously stable over a narrow range of
optima. For example, in Turelli's table vn, results are
presented for fi= lO"4, s = 005 (= l/Vs), and a2

(= c2) = 005; thus y = 004. The equilibria {3, 0, 3}
and {2, 0, 4} are only simultaneously stable when z0 is
between 0-11 and 0-22. Only the class {3, 0, 3} is stable
whenz0 = 0, as in Turelli (1984). For any of the alterna-
tive parameters used (n = 10~3, s = 001, a2 = 001),
y would be greater than \, and multiple equilibria
would be impossible for any number of loci. In gene-
ral, multiple equilibria are never possible when n < 4,
whilst when n < 7, they are impossible for some values
of z0 (Fig. 4).
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Fig. 3. A graph of the variance, V, against the optimum,
z0, for the classes of equilibria {75, 0, 25}, {50, 0, 50} and
{25, 0, 75} (reading from left to right). The mutation rate
is ft = 10~4; other parameters are as in Figs. 1 and 2, and
so y = 0-01. The horizontal dotted line shows the variance
expected from the 'House of Cards' approximation,
v = 4n/i/s = 0-04. The slanted dotted lines show the
variance expected on the assumption that y <̂  1 (equations

01

10

N-

Fig. 4. The dots show the values of the mutation rate
(y — fi/sa2) above which at least one equilibrium of the
class {m, 0, M) is stable for all values of the optimum.
The circles show the mutation rate (y = fi/soP) above
which at least two equilibria of the class {m, 0, M) are
stable for all values of the optimum. Thus, several stable
equilibria can coexist for some z0 when more than three
loci are involved (n > 3), and coexistence is possible for
all z0 when more than six loci are involved (n > 6). These
limits are derived from (10); when z0 ^ 0, there will also
be an upper limit to y (see Fig. 2).

The variance maintained at equilibrium for any
given {m, 0, M} can be calculated by solving (5) and
(7). When the mean is at the optimum (8 = 0), the
variance is 4nya2, which is equal to 4n/i/s (Wright,
1935 a; Latter, 1960; Bulmer, 1972); this value is equal
to that obtained for a continuum of alleles model
under the 'House of Cards' approximation (Turelli,
1984). The minimum variance may be very slightly less

than this value when the optimum is away from the
centre (Fig. 3, Table 1). However, stable equilibria may
exist in which the variance is much greater. At the
lower extreme of z0, the variance is (to leading order
in y) 2o?My/y, whilst at the upper extreme, it is
2a?my/y. The approximations of (8b, c) can be used to
find an approximation forthe variances = <x2{|(M—m)
—zo/a|—(I)}. This becomes accurate when the mean
is far from the optimum (\S\ « | ; Fig. 3, Table 1).

For the symmetric equilibrium (m = M = n/2), the
maximum possible variance reduces to a.2n-\/y =
an\/(ji/s); if we define 2nfia2 as U, the variance in the
character which is introduced per gamete per genera-
tion, we see that the maximum possible variance in this
biallelic model W[nU/2s\) is equal to half the vari-
ance predicted by the Gaussian approximation
(\/[2nU/s]): the maximum variance depends in the
same way on n, U, and s. Thus, the system lies be-
tween the predictions of the Gaussian and the ' House
of Cards' approximation, at a point which depends on
its previous history.

This analysis has assumed that mutation is weak
relative to selection (y < 1). To find the highest muta-
tion rate which is compatible with the existence of
multiple equilibria, a more general treatment is
needed. The condition that (7) has three real roots is
(from Abramowitz & Stegun, 1965):

S2 < ((i) + 5y — 2y2) — 2'\/[y(l+y)a]. (10)

This inequality defines a critical value of |<J|, above
which only a single real equilibrium is available at each
locus. When y is small, this value is approximately
\—2^y, as found above; as y increases, the allowable
range of 5 decreases, until above y = §, only a single
equilibrium is possible. Equation 10 can be combined
with (3 b) to find the combinations of mutation rate
and optimum (y, z0) which allow the existence of mul-
tiple equilibria (Fig. 2). When large numbers of loci are
invc -i, many different classes of equilibria may be
available for a given combination of parameters
(Figs. 2, 4).

(iii) Stability of the equilibria

The stability of the equilibria can be found from the
matrix of derivatives of (7) with respect to allele fre-
quency: Stj = d(dpi/dt)/dpj. An equilibrium is only
stable if the real component of every eigenvalue of S
is negative.

-qt) (i=j) (lla)

(lib)

If M loci are at P, and m at q, the eigenvalues are:

k = (6pq-l-4y) + 28(p-q) (= g) (m-l times)
(12a)

= (6PQ- 1 -4y)+2d(P-Q) (= G) (M- 1 times)
(12*)

= (C+c+V[(C-c)2 + 64mMpqPQ]/2 (once)
(12c)

https://doi.org/10.1017/S0016672300023156 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300023156


N. H. Barton 214

= (C+c- - cf + 64mMpqPQ]/2 (once)
(I2d)

(where: c = (2pq — 1 — 4y) + 2S(p—q)
-4{m — 1) pq = g — 4mpq,

C = (2PQ-l-4y) + 2S(P-Q)
-4(M- 1)M = G-4MPQ)

In order for this class of equilibria to be stable, all these
eigenvalues must have negative real parts. Since the
first two sets of eigenvalues (denoted by g, G above) are
equal to the differentials of the cubic polynomial (7),
and since p, P are the smallest and largest roots of (7),
these two sets of eigenvalues must be negative
whenever the equilibria exist (g, G < 0). The other two
eigenvalues will have negative real parts whenever
c+ C < 0, and cC > \6mMpqPQ. Since c = g — 4mpq,
and C = G — 4MPQ, the first condition is satisfied. The
remaining condition can be rewritten as gG — 4mpqG —
4MPQg > 0, which is also satisfied. Thus, this class of
equilibria is stable whenever it exists. This is confirmed
by numerical calculations of the eigenvalues
(Table 1).

3. The phenotypic moments

Barton & Turelli (In prep; Eq. 4b) show that, provided
the alleles responsible for polygenic variation are rare,
the evolution of the mean and variance of a
quantitative character can be approximated by:

(dz/dt\
\dv/dt) W, vvjn.

(13)

Here, vjn is the ratio between the fourth moment and
the variance of the character. When all loci have an
equivalent distribution of effects, and when alleles are
close to fixation, vo/n remains constant; in the bial-
lelic model analysed here, it is equal to a2, so that
v0 = nix2 is a measure of the maximum variance which
could be maintained. If the third moment of the charac-
ter (m3) were negligible, (13) would describe the effects
of an arbitrary pattern of selection. In particular, it
could be combined with an equation for the variance
introduced by mutation to give the variance main-
tained in a mutation/selection balance. This approxi-
mation gives the same result as that obtained by
Wright (1935a), Latter (1960), and Turelli (1984).
However, we have seen that this result can only be

Table 1. The stable classes of equilibria with 100 loci; 5 = 7,
a = 01, /i = 00001, and hence y = 001

m

(«)
45
46
47
48
49
50
51
52
53
54
55

(*)
17
18
19
20
21
22
23
24
25
26

V M P

Optimum at;
0
0
0
0
0
0
0
0
0
0
0

55
54
53
52
51
50
49
48
47
46
45

00124
00124
00127
00133
00151
0-2042
0-3241
00483
00651
00818
00982

Optimum at;
0
0
0
0
0
0
0
0
0
0

83
82
81
80
79
78
77
76
75
74

00124
00124
00125
00127
00131
00139
00157
00210
00382
00686

P

ro = O
0-9018
0-9182
0-9394
0-9517
0-9676
0-9796
0-9850
0-9867
0-9873
0-9876
0-9876

-o = 5
0-9030
0-9138
0-9249
0-9361
0-9476
0-9591
0-9703
0-9801
0-9859
0-9874

z

+ 00311
+ 00307
+ 00292
+ 00255
+ 00169
0
-00169
-00255
-00292
-00307
-00311

50311
50309
50303
50290
50267
50225
50144
4-9987
4-9789
4-9036

V

01084
00924
00763
00604
00465
00400
00465
00604
00763
00924
01084

01496
01336
01173
01007
00839
00673
00515
00395
00393
00516

0095
0075
0055
0035
0015
—
0015
0035
0055
0075
0095

0155
0135
0115
0095
0075
0055
0035
0015
—
0015

00905
00803
00689
00568
00455
00400
00455
00568
00689
00803
00905

01349
01245
01133
01011
00880
00742
00602
00476
00403
00427

A

-000009
-000076
-000167
-000303
-000535
-000920
-000535
-000303
-000167
-000076
-000009

-000013
-000056
-000109
-000175
-000263
-000391
-000596
-000892
-000430
-000145

m3

-00068
-00057
-00045
-00031
-00016
0
+ 00016
+00031
+ 00045
+ 00057
+00068

-00113
-00103
-00091
-00079
-00065
-00050
-00035
-00019
-00003
+ 00011

Note: since the equilibria only depend on the ratio fi/stx2, these tables can be
rescaled to describe many other parameters, {m, v, M] are the numbers of loci at the
three alternative solutions of (7); p, P are the frequencies of' + ' alleles at loci at
the upper and lower solutions, z, v, and m3 are the mean, variance, and third
moment of the character, v, is the value derived from ($b, c) and is accurate when
y <̂  1, and when the mean is far from the optimum. v2 is the value derived from
the third moment, using (14). A is the largest eigenvalue; it must be negative if the
equilibrium is to be stable.
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produced by the biallelic model when the equilibrium
is such that the mean lies at the optimum. At other
equilibria, the variance may be very much greater.

This discrepancy arises because the third moment
can become large enough to alter the variance substan-
tially. Provided that y < I, the effect of mutation pres-
sure on the mean is negligible, and the increase in
variance per generation is 2n/ia.2. Hence, (13)
becomes:

fdz/dt\ _(v n

\dv/dt) \m3 v<

Hence, at equilibrium:

dz/dt = 0 = - saSv -sm3/2, (15a)

dv/dt = 0 = - sct5m3 - sv<x2/2+2/i/za2. (156)

When m3 = 0, (156) gives v = 4n/i/s, as expected on
the 'House of Cards' approximation. However, when
the third moment is large enough that the third term
in (156) can be neglected (\sam3\ $> (2nfitx2)),
v = —2m38/(x. Substituting for 8 from (15a) gives
v = \m3/a\. In the model analysed above, m3 is
approximately equal to — 2Mo?y/y when the optimum
is as low as possible (9). Hence, the greatest possible
value of the variance is given correctly, in the limit of
very small y, by the above equation: v = 2Ma.2\/y. The
exact values of J;, given in Table 1 for y = 001 , do not
agree very well with the simple prediction, \m3/a.\, even
at extreme equilibria. This is because the third term in
(156) has been neglected; if <5 is substituted into (156)
from (5), and the resulting quadratic is solved for v,
given the observed m3, agreement is good (v2 in Table

1).
The present analysis is therefore consistent with the

approximation of (13); however, it shows that the third
moment of the character is not usually negligible, so
that the approximation cannot, in general, give an
explicit formula for the equilibrium variance.

4. Discussion

In this simple biallelic model, many alternative equili-
bria may exist, and may give a wide range of vari-
ances. This complex behaviour only occurs at
intermediate mutation rates. When mutation is so rare
that only a single class of equilibria exists, most of the
genetic variance is associated with a single locus. Con-
versely, when mutation is so frequent that the mul-
tiple equilibria merge together, selection becomes
negligible: variation is maintained primarily by recur-
rent mutation. Thus,/or the range of mutation rates for
which polygenic variation is maintained by a mutation/
selection balance, several stable equilibria will coexist.

This range of mutation rates is likely to include those
found in nature. Turelli (1984) and Lande (1975) sug-
gest that the total mutation rate to genes affecting
quantitative characters, 1^, is typically 10~2 or

greater; that the variance produced by mutation per
generation, £^<x2, is a 10~3^, where Ve is the
environmental variance; that the number of genes, n,
is in the range 102 to 104; and that a selection pressure
s x 005 is typical of values measured in natural and
laboratory populations (s is expressed in units of the
standard deviation of environmental fluctuations,
VK)- The behaviour of the model depends on the
relative rates of mutation and selection, y = fi/sa2.
This can be rewritten in terms of the observed values,
giving y = (E//)2/(n.y(Z//a2)) = 2 x 10"* to 2 x 10~4,
well within the range which allows multiple equilibria
(l/n2 = 10-" to 10-8 < y < I).

This model is, of course, unrealistic in many
respects. Mutation rates, allelic effects, and numbers of
alleles are likely to vary from locus to locus; random
fluctuations in selection pressures, and random drift,
may shift the population between different equilibria;
and linkage disequilibrium may reduce the pheno-
typic variance. I will consider these effects in a later
paper; though the details are complicated, it seems that
variation in allelic effects will reduce the observable
differences between different classes of equilibria, and
that sampling drift, for a wide range of population
sizes, may be able to keep the population close to the
optimal equilibrium. Thus, the 'House of Cards '
approximation may in fact be applicable to natural
populations, even though the results here show it to be
misleading in simple systems.

Thanks are due to J. Felsenstein, J. Gillespie, S. Rouhani,
M. Slatkin, and M. Turelli for stimulating discussions, and
for their comments on the manuscript. This work was sup-
ported by a travel grant from the Royal Society, and by a
research grant from the SERC.
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