
Dynamics of avalanches along general mountain slopes

Shiva Prasad PUDASAINI,YongqiWANG, Kolumban HUTTER

Institut fˇr Mechanik,Technische Universit�t Darmstadt, Hochschulstrasse 1, D-64289 Darmstadt, Germany

E-mail: pudasain@mechanik.tu-darmstadt.de

ABSTRACT. A continuum dynamical hydraulic model for the flow of a finite mass of
cohesionless shallow granular material down an inclined plane was proposed by Savage
and Hutter (SH) in 1989. This model consists of depth-averaged equations for the time
and space evolution of the velocity profile and the avalanche depth.Their model was gen-
eralized to incorporate more complicated topography in which the coordinate lines in the
downhill direction are curved but not twisted.We present recently developedmodel equa-
tions by Pudasaini and Hutter for free-surface geophysical gravity-driven flows (e.g. ava-
lanches, debris and pyroclastic flows) down complicated realistic mountain terrain
generated by arbitrary space curves with slowly varying curvature and torsion. These
are very important extensions to the successful SH theory, which incorporate curvature
and torsion effects of the sliding surface. Shock-capturing numerical schemes are used to
integrate the hyperbolic conservation systemof equations.The physical significance of the
numerical solutions is discussed.

1. INTRODUCTION

Avalanches, debris and mud flows as well as landslides are
common natural phenomena to the inhabitants of high-
mountain areas who have learned to accept their occa-
sional occurrence and to avoid the damage that accom-
panies them. Nevertheless, accidents causing damage to
property and loss of life have regularly occurred in the
past and continue to occur today.This is why the study of
avalanches is a topic of permanent public concern in
mountainous regions.The physics of the release or failure
of a large mass of soil, gravel or snow and the dynamics of
its motion must be understood if the concomitant danger
is to be avoided or the impact of amoving mass on the ava-
lanche track or on obstructing buildings is to be estimated.
One hopes that understanding their physical basis will en-
able the appropriate defensive measures to be taken. An
exact analysis of an avalanche is perhaps an unattainable
goal. Nevertheless, the last few years have witnessed in-
creased efforts devoted to the physical understanding of
avalanche formation and motion in complex topography.

In this paper, we present an extension of the Savage and
Hutter (1989) (SH) model by Pudasaini and Hutter (2003)
to rapid shear flows of dry granular masses in a non-uniformly
curved and twisted channel and some basic numerical results on
it.The computations presented here are for a particular case
of the extended theory, namely for the basal topography
which is curved downhill and laterally channelized. To de-
scribe the shock phenomenon observed in granular ava-
lanches when supercritical flow merges into a region of
subcritical flow and to ensure the numerical stability, a
shock-capturing numerical scheme is used to solve the
model equations. The intention is to obtain some basic in-
sights into these new model equations.The results highlight
fundamental characteristics of the dynamics of flowing
avalanches.

2. OVERVIEWOF THE SH MODEL

Savage and Hutter (1989) developed a continuum hydrau-
lic theory to describe the evolving geometry of a finite
mass of a granular material and the associated velocity
distribution as an avalanche slides down an inclined sur-
face. In order to formulate a realistic model, the following
assumptions were made:

(i) The moving dry and cohesionless granular mass is
incompressible and obeys a Mohr^Coulomb yield
criterion both inside the deforming mass and at the
sliding basal surface.

(ii) The geometries of the avalanching masses are shallow
in the sense that typical avalanche thicknesses are
small in comparison to the extent parallel to the sliding
surface.

(iii) To obtain a dimensionally reduced theory the field
equations are integrated through the depth of the
avalanche.

(iv) Scaling analysis isolates the physically significant
terms in the equations and identifies the terms that
can be neglected.

The simple spatially one-dimensional model of SH,
applicable along a straight sliding surface, has been gener-
alized to higher dimensions, to more complex geometries,
and has also been tested against realistic laboratory ex-
periments. Very good agreement was obtained between
the theoretical predictions and the experiments (see Sa-
vage and Hutter, 1991; Gray and others, 1999; Denlinger
and Iverson, 2001; Pudasaini and others, 2003). Here we
will focus on a three-dimensional extension of the SH
model as well as its application to avalanche motion over
a realistic flow path.
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3. EFFECTOF THE TOPOGRAPHY

Curved flow-path surfaces strongly influence the flow dy-
namics because transverse shearing and cross-stream
momentum transport occur when the topography obstructs
or redirects the motion due to its curvature and torsion.
Local deceleration and deposition of mass may occur due
to energy dissipation. Resistance due to basal friction is
modified by ‘‘centrifugal forces’’ induced by the bed curva-
ture as well as torsion.

Recently Pudasaini and Hutter (2003) extended the
SH theory to flows of dry granular masses in a non-uniformly
curved and twisted channel. In the extended theory a general
orthogonal coordinate system is introduced that is able to
describe a finite region of a natural landscape. Consider an
avalanche-prone landscape and a subregion of it where the
topography allows identification of the avalanche track. A
single space curve parallel to the talweg of the valley is
singled out as a master curve C (which can be obtained by
shifting the talweg along its normal or vertical direction)
fromwhich the track topography will be modelled.The cur-
vature and torsion of the master curve, � ¼ �ðxÞ; � ¼ �ðxÞ,
are assumed to be known as functions of the arc length x of
the master curve. Then, an orthogonal coordinate system
along the master curve is introduced and the model equa-
tions are derived in this general coordinate system. In the
model equations under consideration in this paper, x; yð Þ
form a curved reference surface, where x is the coordinate
along the talweg of amountain valley, while y is the circular
arc length in a cross-sectional plane perpendicular to the
talweg whose value is determined by the relation y ¼ "�zT,
where " is the aspect ratio between the avalanche height and
the extent (both the length and width are assumed to be of
the same order of magnitude), � is the azimuthal angle
which accounts for the cross-slope curvature and zT (usual-

ly zT � 1) is the radial distance between the master curve
and the talweg and z is the coordinate perpendicular to the
reference topography. Every quantity in this paper is writ-
ten in non-dimensional form.The channel topography and
the geometry of the avalanche in lateral and longitudinal
directions are illustrated in Figures 1and 2, respectively.

First, we discuss some terms and parameters arising in
the model equations presented in the next section. gx, gy
and gz are the projected components of the gravitational ac-
celeration along the downslope, cross-slope and normal dir-
ections, respectively, and are given by

gx ¼ b1n2 � b2n1ð Þ=�;

gy ¼ t2 n1� þ b1�ð Þ � t1 n2� þ b2�ð Þð Þ=�;

gz ¼ t1 b2� � n2�ð Þ � t2 b1� � n1�ð Þð Þ=�; ð1Þ
� ¼ t1 n2b3�b2n3ð Þþt2 b1n3�n1b3ð Þþt3 n1b2�b1n2ð Þ;
� ¼ cos �þ ’ðxÞ þ ’0ð Þ; � ¼ sin �þ ’ðxÞ þ ’0ð Þ;

’ðxÞ ¼ �
R x
x0
�ðx0Þ dx0;

where ’0 is an arbitrary constant and ’ðxÞ accounts for the
accumulation of the torsion. ðtiÞ; ðniÞ and ðbiÞ; 1 � i � 3,
are the components ofT,Nand B, respectively, with respect
to the standard Cartesian basis (see Fig. 1).The aspect ratio
", and �, the measure of curvature relative to the typical
avalanche length, are both small numbers.The basal topog-
raphy (which includes the small-scale features of the topog-
raphy) will be denoted by bðx; yÞ.

The extended theory is designed to model the flow of the
(debris) avalanches over curved and twisted channels hav-
ing general curvature and torsion. Although there are other
models that consider the problem of avalanche motion over
curved slopes (e.g. Maeno and Nishimura,1987; Norem and
others, 1987; Savage and Nohguchi, 1988; Zwinger and
others, 2003), the model equations considered in this paper
explicitly and simultaneously include the curvature and tor-
sion effects in a systematic and rigorous manner.This makes
the extended model amenable to realistic snow and debris
motions down arbitrary guiding topographies. In fact, Geo-
graphic Information System (GIS) applied to mountainous
avalanche- and debris-prone regions can be applied to this
model, which provides the geometrical basis for realistic ap-
plication and tuned to practical use, and thus lays the theor-
etical foundation towards this end. In contrast to the
original SH theory and all its previous extensions (e.g. Gray

Fig. 1. For a given value of the arc length, the avalanche do-

main in the lateral direction occupies a region in a circular

section of a plane perpendicular to the talweg of the valley,

and � is the azimuthal angle in this plane. O ~O ¼ zT is the

radial distance between the master curve and the talweg.The

lateral coordinate, y, is determined by the transformation

y ¼ �zT. fT;N;Bg is the moving orthonormal unit triad
following the talweg (equivalently the master curve). ~� is the
slope angle of the talweg with the horizontal.The depth of the

avalanche in this section is represented by a height function

hðx; y; tÞ and is measured in the radial direction.

Fig. 2. Avalanche passing through the transition into the run-

out zone in a vertical plane containing the talweg of the valley.

In this picture, xl and xr are the left and right end-points of

the continuous transition between the straight inclined upper

part with inclination angle ~�0 and the horizontal run-out in
the valley.
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and others, 1999; Wieland and others, 1999; Pudasaini and
others, 2003a, b), an arbitrary space curve is used to define an
orthogonal curvilinear coordinate system.The final govern-
ing balance laws of mass and momentum are written in
these coordinates. Pudasaini and Hutter (2003) are thus
able to study the simultaneous effects of curvature and tor-
sion on the flow avalanche in channels, which have not been
investigated analytically before.

4. MODEL EQUATIONS

As in the previous models of the SH theory, Pudasaini and
Hutter (2003) recently formulated the balance laws of mass
andmomentum as well as the boundary conditions in slope-
fitted curvilinear coordinates, averaged these equations
over depth and then non-dimensionalized the averaged
equations. The final thickness-averaged balance laws of
mass and momentum in the downslope and cross-slope dir-
ections take the form

@h

@t
þ @

@x
ðhuÞ þ @

@y
hvð Þ ¼ 0; ð2Þ

@

@t
huð Þþ @

@x
hu2
� �

þ @

@y
huvð Þ¼hsx�

@

@x

�xh
2

2

� �
; ð3Þ

@

@t
hvð Þþ @

@x
huvð Þþ @

@y
hv2
� �

¼hsy�
@

@y

�yh
2

2

� �
; ð4Þ

where h is the depth of the avalanche measured along the
normal direction of the reference surface and the factors �x

and �y are defined, respectively, as

�x ¼ �"gzKx; �y ¼ �"gzKy: ð5Þ

The terms sx and sy represent the net driving accelerations
in the downslope and cross-slope directions, respectively,
and are given by

sx ¼ gx �
u

juj tan � �gz þ ���u2
� �

þ "gz
@b

@x
; ð6Þ

sy ¼ gy �
v

juj tan � �gz þ ���u2
� �

þ "gz
@b

@y
: ð7Þ

juj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
is the magnitude of the velocity field tan-

gential to the reference (basal) topography.
The first terms on the righthand side of Equations (6)

and (7) are due to the gravitational accelerations in the
down- and cross-slope directions, respectively. The second
terms emerge from the dry Coulomb friction, and the third
terms are the projections of the topographic variations
along the normal direction.

Kx andKy in Equation (5) are called the earth pressure
coefficients. Elementary geometrical arguments may be
used to determine these values as functions of the
internal (	) and basal (�) angles of friction, (Hutter and
others,1993),

Kxact=pass ¼ 2 sec2 	 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 	 sec2 �

p� �
� 1;

Kyact=pass ¼
1

2
Kx þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kx�1ð Þ2 þ 4 tan2 �

q� �
;

ð8Þ

where Kx and Ky are active during dilatational motion

(upper sign) and passive during compressional motion
(lower sign).These values are selected according to

Kx ¼
Kxact ; @u=@x > 0,

Kxpass ; @u=@x < 0,

(
ð9Þ

Ky ¼

Kxact
yact

; @u=@x > 0, @v=@y > 0;

Kxpass
yact

; @u=@x < 0, @v=@y > 0,

Kxact
ypass

; @u=@x > 0, @v=@y < 0,

Kxpass
ypass

; @u=@x < 0, @v=@y < 0:

8>>>><
>>>>:

ð10Þ

Equations (2^4), which are written in non-dimensional
form, constitute a two-dimensional conservative system of equa-

tions. These extended model equations can reproduce all
previous model equations of the SH theory mentioned at
the end of section 2. There are several advantages of the
model equations considered in this paper. They are as
follows:

(i) They simultaneously include the curvature and torsion
of the basal topography. Therefore, the model equa-
tions can be utilized to describe the flow of avalanches
along non-uniformly curved and twisted channels.

(ii) There is a non-zero gravity term gy in the cross-slope
direction. The torsion effect � of the topography is in-
cluded in the net driving-force components sx and sy
in the two flow directions. The y coordinate is curved
in the cross-slope direction, including the cross-slope
curvature, which was just a straight line before. For a
torsion-free master curve, which lies in a vertical plane,
these model equations exactly reproduce all previous
extensions of the Savage^Hutter equations. Also note
that in applications and numerical computations it is
convenient to take the sign of gz to be negative, which
corresponds to the upward-pointing normal of the tal-
weg.With this convention, these model equations can
exactly reproduce the previous equations of Gray and
others (1999) as a special case. In this sense, there is an
enormous application of these equations.

(iii) We can form a three-dimensionally curved and twisted
channel using downslope and cross-slope coordinates x
and y and we do not necessarily need to superimpose
basal topography on top of the reference topography.
In principle, it is thus possible to model a given channel
or avalanche gully by choosing � appropriately as a
function of the downslope coordinate. These are con-
siderably new contributions in the model equations
which we think are crucial to describe the motion of
avalanches in curved and twisted channels.

Given the master curve, C, the material parameters �
and 	 and the elevation of the basal topography, b, above
the curved reference surface, Equations (2)^(4) allow h; u
and v to be computed as functions of space and time once
appropriate initial and boundary conditions are prescribed,
where h is the avalanche depth and ðu; vÞ are the depth-
averaged velocity components parallel to the flow surface.

5. APPLICATIONS TO FLOWS IN CYLINDRICAL
CHANNELS

Due to the hyperbolicity and non-linearity of the model
equations, numerical finite-difference solutions with the tra-
ditional high-order accuracy are often accompanied with
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numerical oscillations of the depth profile and velocity
field. This usually leads to numerical instabilities unless
these are properly counteracted by a sufficient amount of ar-
tificial numerical diffusion. Here, a non-oscillatory central
(NOC) difference scheme with total variation diminishing
(TVD) limiter for the cell reconstruction is employed
which gives high-resolution solutions without spurious oscil-
lations (for more detail, see, e.g., LeVeque,1992;Tai, 2000).

In order to test the model equations of section 4, we con-
sider an idealized mountain subregion in which the non-
twisted talweg is defined by the slope function

~�ðxÞ ¼

~�0; 0 � x � xl,

~�0
xr � x

xr � xl

� �
; xl � x � xr,

0; x � xr,

8><
>: ð11Þ

where ~�0 ¼ 45� is the straight upper part of the talweg

which merges into a horizontal run-out plane as shown
in Figure 2, and xl ¼ 11:5 and xr ¼ 14:5 are the (non-
dimensional) initial and final points of the continuous
transition. The azimuthal angle � (which includes the
cross-slope curvature) is confined to the interval
½�14:32�; 14:32��, and the non-dimensional distance is set
to zT ¼ 20, corresponding to y 2 ½�5; 5� (see Fig. 1). A
hemispherical cap with non-dimensional radius R0 ¼ 1:04
holding the granular material in it is placed at
ðx0; y0Þ ¼ ð3:0; 0:0Þ of the chute and suddenly lifted. The
granular mass commences to slide and deform continuously
along the chute unless the bed friction is larger than the
downslope component of gravity.The values of the material
parameters are chosen as � ¼ 33� and 	 ¼ 43� which cor-
respond to marble chips with mean diameter 2^4mm.

Figure 3 depicts the thickness contours of the avalanch-
ing body at ten non-dimensional time-steps. Figure 3a^d

Fig. 3. A sequence of numerical snapshots of avalanching motion of a granular material with internal and basal friction angles

	 ¼ 43� and � ¼ 33�, for different time points (a^j).The contours of equal thickness are plotted at ten time intervals using

‘‘unrolled’’projected non-dimensional curvilinear coordinates ðx; yÞ.The transition zone lies between x ¼ 11:5 and x ¼ 14:5.
The 45� inclined section lies on the left, and the horizontal part lies on the right of each panel.The talweg of the valley is indicated

by the line y ¼ 0.The panels thus demonstrate the deformation and settling of avalanches in cylindrically curved (in both down-

slope and cross-slope directions) channels.
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clearly show that once the cap is opened, the avalanche ac-
celerates and spreads rapidly in the downslope direction
due to the channelling effect in the cross-slope direction.
The avalanche decelerates rapidly as soon as it enters the
run-out zone, from Figure 3d for t > 4:5. Due to the contin-
ued mass flux from the tail, its front is then able to spread
out laterally as seen in Figure 3e^g. After t ¼ 7:5 (Fig. 3f),
due to the channelling effect of the cross-section, the tail of
the avalanche is reducing in width, but the head of the ava-
lanching body is expanding in width in the run-out zone.
The curvature of the transition zone induces a shock asso-
ciated with the height of the avalanche and moving up-
stream from time t ¼ 9:0 (Fig. 3g) onward. The avalanche
comes to rest after t ¼ 13:5. Figure 3a^c indicate that due
to the dilatations, the granular body is extending in all dir-
ections, mainly in the downhill direction. Although the
front is descending rapidly, the tail moves upward in the be-
ginning because of the earth pressure. At t ¼ 4:5 (Fig. 3d)
the front reaches the transition zonewhile the tail also starts
tomove downward. At t ¼ 6:0 (Fig.3e), the front part of the
body has fully reached the transition zone. Therefore the
mass at the front is contracting due to the effect of the pas-
sive earth pressure coefficient, but the mass in the tail is still
extending. At t ¼ 7:5 (Fig. 3f), the deposition of the mass
starts in the vicinity of the lower end of the transition zone.
Owing to the effect of the curvature, the flowing body starts
contracting longitudinally but extending laterally. After
t ¼ 9:0 (Fig. 3g), a steep surface (height) gradient starts to
develop on the tail side of the avalanche. Although the front
of the body is almost at standstill, the mass from the tail is
continuously flowing down and is deposited on the tail side

of the body. This is the main mechanism for the develop-
ment of the shock front moving upstream. The physical
explanation for this is that from the front there is a strong
resistive force from the bed which prevents the body from
further sliding. So, mass arriving from the upper part of
the channel must be deposited at the back side of the body.
Consequently, the stopped body must extend upward. Fig-
ure 3h^j show the continuous development of the upward-
moving shock. At the same time, there is no motion at the
front. Due to the partial lateral confinement, the extension
of the body in the cross-slope direction is almost negligible.

Figure 4 depicts the channelling effects for different
channel curvatures. Parameter values are the same as in
Figure 3. The contours represent the final deposits of ava-
lanches for four different channel curvatures. As the value
of the parameter � increases, lateral curvature increases
and the width of the channel decreases. The values of
� ¼ 0�; 15�; 25� and 45� correspond to the non-dimen-
sional distances (representing, to some extent, the radius of
curvature of the lateral bed profile)1; 19:1; 11:46 and 6:4,
respectively, while the range of y is kept fixed as before, i.e.
y 2 ½�5; 5�. Consequently, with the increase of � the granu-
lar material tends to accumulate around and along the tal-
weg of the channel, the geometries of the deposited piles are
changed, andboth the pile heights and the run-out distances
increase considerably. This effect is directly associated with
the lateral component of the gravitational acceleration (gy)
which depends on the lateral curvature (this was always
zero in previous extensions of the theory).

In order to analyze the dispersion of the avalanching
mass quantitatively, we consider the total volume

Fig. 4. Channelling effects; parameter values are as in Figure 3.The contours represent the final deposits (at t ¼ 13:5) of ava-
lanches for four different channelwidths (curvatures) corresponding to the parameter �. As the value of the parameter � increases,
the width of the channel decreases. Consequently, the granular materials tend to accumulate around and along the talweg of the

channel, the geometries of the deposited piles are changed, and both the pile heights and the run-out distances increase.

Table1.The dispersion of the avalanchingbody at different non-dimensional time-steps t and azimuthal angles �.The first and the

second coordinates in each column represent the dispersion of mass in the x and y directions, respectively, as evaluated with

Equation (13)

� ¼ 0� � 2 ð�15�; 15�Þ � 2 ð�25�; 25�Þ � 2 ð�45�; 45�Þ

t ¼ 3 (1.60, 0.75) (1.60, 0.72) (1.59, 0.70) (1.63, 0.67)
t ¼ 6 (2.99, 0.95) (3.00, 0.81) (2.98, 0.76) (3.04, 0.69)
t ¼ 9 (2.53,1.09) (2.55, 0.89) (2.57, 0.82) (2.59, 0.73)
t ¼ 12 (0.97,1.18) (1.01, 0.97) (1.04, 0.91) (1.10, 0.84)
t ¼ 13:5 (0.86,1.20) (0.91,1.00) (0.95, 0.95) (1.02, 0.89)
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(V ¼
R
hðx; yÞ dx dy) and define the center of the mass as

follows:

x; yð Þ ¼ 1

V

Z
xhðx; yÞ dx dy; 1

V

Z
y hðx; yÞ dx dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ 0 by symmetry

0
BBB@

1
CCCA:

ð12Þ
The dispersion of the deformable granular body can thenbe
computed by the following (standard deviation) formula
(where ‘‘dis’’ stands for dispersion):

xdis; ydisð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V

Z
x� xð Þ2 hðx; yÞ dx dy

s
;

 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V

Z
y� yð Þ2 hðx; yÞ dx dy

s !
:

ð13Þ

Table 1 represents the data for the dispersion of the sliding
and deforming granular body for different non-dimensional
time-steps and azimuthal angles. Other parameter values
are the same as in Figure 4. Analyzing the table, we arrive
at the following conclusions:

(i) Since xðtÞ is the same for all � the center-of-mass posi-
tion is independent of the azimuthal angle �, at all
times. This is exactly what one would expect since the
equation of motion for the center of mass will not be
affected by lateral spreading. The dispersion in the
downhill direction first increases then decreases but
the dispersion in the cross-hill direction increases
monotonically for all values of �.

(ii) In general, the dispersion in the downhill direction in-
creases as � increases, but this relation is reversed for
the dispersion in the cross-slope direction, as expected.
In other words, increasing � reduces lateral dispersion,
and the resulting increased depths lead to higher pres-
sures causing increased x dispersion increasing the
maximum runout.

(iii) Finally, since the channel is flatter around the talweg
and has larger cross-slope gradients at the outer rims
in the downhill direction than elsewhere, dispersion in
both directions is more pronounced in the first two
panels than in the last two panels of Figure 4. This is
exactly what is quantitatively shown inTable 1.

6. CONCLUSION

In summary, we have presented the Savage^Hutter ex-
tended theory by Pudasaini and Hutter and simulations
using the NOC difference scheme with a TVD limiter,
which gives high resolution of shock solutions without any
spurious oscillations near the discontinuities.The main rea-
son for using such a scheme is that shocks are an important
property of granular flows when the flow path is non-trivial
and contains obstructions. In such situations, traditional

numerical schemes do not work properly. The numerical
simulations presented here, even though they cover only a
particular case, are a step forward in demonstrating that
the extended depth-averaged theory is capable of predicting
the flow of granular avalanches over realistic mountain top-
ography.
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