
J. Aust. Math. Soc. 81 (2006), 363-368

RADIAL DISTRIBUTIONS OF JULIA SETS
OF MEROMORPHIC FUNCTIONS

LING QIIF and SHENGJIAN WU

(Received 15 July 2004; revised 18 July 2005)

Communicated by P. C. Fenton

Abstract

We consider a meromorphic function of finite lower order that has oo as its deficient value or as its Borel
exceptional value. We prove that the set of limiting directions of its Julia set must have a definite range
of measure.
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1. Introduction

Let / be a meromorphic function defined in the complex plane C or on the Riemann
sphere C = C U {oo}. The Fatou set F(f) of / is the subset of C where the iterates
/ " (n = 1, 2 , . . . ) of / are defined and {/"} forms a normal family. The complement
of F(f) is called the Julia set. It is obvious that F(f) is an open set and J(f) is
closed. In general, the Julia set is very complicated.

Let f(z) be a transcendental meromorphic function in the complex plane. Suppose
that arg z — 0 is a ray from the origin. We say that 0 is a limiting direction ofJ(f) if,
for any e > 0 and any R > 0, the domain {z : 9 — e < argz < 6 + s, \z\ > R} has
nonempty intersection with J(f). We define the set E e [0, 2n) to be all the limiting
directions of J(f).

Baker first proved in [3] that, for a transcendental entire function / , the set E
contains infinitely many points. Later Qiao [6] proved that if the function is of finite
lower order, then E contains an interval whose length depends on the lower order.
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In [8], the authors considered the case of meromorphic functions with oo as their
deficient value and, under some additional conditions, they proved the set E has a
definitely positive measure.

In this paper, we remove the additional condition in [8, Theorem 1] and prove the
following result.

THEOREM 1.1. Let f(z) be a meromorphic Junction of lower order /i < oo with
deficiency 6(00, / ) > 0. Then

4 /<5(oo,
mes E > min < 2n, — arcsin Jarcsin J > .

If 00 is a Borel exceptional value, then we can prove E contains an interval with
a definite length. Let / (z) be a meromorphic function in C of order 0 < k < 00.
Recall that a € C is a Borel exceptional value of f(z) if it satisfies

— logn(r, f = a)
hm —^ < X,
r-K» log r

where n(r, f = a) is the counting function in value distribution theory of meromorphic
functions.

In this case.we have the following result.

THEOREM 1.2. Let f(z) be a transcendental meromorphic function of finite order
A. > 0. Suppose that 00 is a Borel exceptional value of fix). Then there exists
a closed interval I e R such that all 9 e I are limiting directions of J(f) and
mes/ > 7r/max(l/2, X).

The proofs of the theorems depend strongly on the Nevanlinna theory of meromor-
phic functions. The reader can refer to [4] and [7] for the basic definitions and results
in value distribution theory of meromorphic functions, in particular for the symbols
such as T(r, / ) , N(r, / ) , and so on.

2. Proofof Theorems 1.1 and 1.2

The following lemma, which is a special form of the result proved in [2], is sufficient
to prove our theorem.

LEMMA 2.1 ([2]). Let f{z) be a meromorphic function of finite lower order /x.
Suppose 00 is a deficient value of f with 6(00, / ) > 0. Let Mj —> +00 (7 -*• 00)
and define

(2.1) E(r) = { 0 : \ f i r e i e ) \ > r M > } .
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Then there is a sequence {r;} with rj —*• oo (j —> oo) such that

liminf mes E(rA > min \2n, — a r c s i n , / '
j-oo I fj,

In the following we denote the angular domain {z : 0 — 8 < arg(z — zo) < 0 + 8}
by J2(ZQ, 0, 8), where 6 e K and 0 < 5 < n. We state Lemma 1 from [6] in the
following form.

LEMMA 2.2 ([6]). Let f(z) be analytic in SI (z0, 0, S). Suppose that f(Q (z0, 0, 8))
is contained in a simply connected hyperbolic domain in C. Then

\f(z)\<O(\z\)"», z e n ( z o , e , 8 ' )

for any 8' € (0, 8).

The proof of Lemma 2.2 is the same as that of [6, Lemma 1]. For meromorphic
functions, the form we state in Lemma 2.2 is more convenient for our use.

PROOF OF THEOREM 1.1. Set

. 4 . <S(oo,
a — min { 2n, — arcsin J

We conversely suppose that mes E < o and seek a contradiction.
Take a t > 0 such that a — mes E > t > 0. Since E is closed, S — [0, In) \ E

consists of (at most countably many) open intervals / from which we can find finitely
many open intervals I, (i = 1, 2 , . . . , m) such that mes (S \ ( J ^ , /,) < AT/2, where
K = a-mesE—t > 0. By the assumption of Theorem 1.1, it follows from Lemma 2.1
that there exists a sequence {r,} of positive numbers such that mes E(rj) > a — t > 0,
where E(rj) is defined as in (2.1). Obviously we have

mes(£(r,) n S) = mes (E(r,-) \(ED E(rj))) > mes £ ( r ; ) - mes E > K > 0.

Thus there exists an open interval / = /,-„ C S such that for infinitely many j

is

(2.2) mes(£(r,) n /) > — > 0.
2m

By passing to a subsequence if it is necessary, we can assume that for each j , (2.2)
holds. Write / = (a,b). Take a positive number a such that

(2.3) mes(E(r;) n / „ ) > — > 0, J = 1 ,2 , . . . ,
3m
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where we denote by /„ the interval (a + a, b — a), (0 < 8a < b — a). It is easy to
see from / D E = 0 that there exists a positive R such that

Q(R, /„) = {z e C : \z\ > R and argz 6 /„} c F(f).

By choosing a point z0 on the bisector of / , we see that the angular domain

{z : z 6 C; \z - zol > 0 and arg(z - zo) e /„} C F(f).

So without loss of generality, we can suppose £2(0, 7a) c F(f).
In the following we assume that a is a fixed number such that (2.3) holds. Since

£2(0, /„) c F(f), f(z) has no pole in £2 and also does not take the values in J(f).
Take two fixed points Wj e J(f), (j = 1, 2). Thus / is meromorphic in £2(0, la)
and misses three points including infinity. Therefore the family {/ o <p], where <p is
a conformal automorphism of £2(0, Ia), is normal in £2(0, /„) (compare [5]). So take
a sequence of automorphisms <pj(z) of £2(0, Ia) such that <Pj(z) = r;z, r, = |z;|. We
see that / o <pj converges to a function g, which is either analytic or identically oo in
£2(0, /„). Now / is unbounded on {z;} and hence g = oo. Thus / o <pj converges
uniformly on {z : |z| = 1} fl £2(0, /„) to oo. This implies that

(2.4) lim | / (z) | = +oo,
L

where Lj = [z : \z\ = rj] n £2(0, 7^).
In the following we prove the number of bounded components of C \ /(£2'), where

£2' = £2(0, I2a) is at most one. If our conclusion is wrong, then we can take two
bounded components U\, U2 from C \ /(£2')- Choose two Jordan curves yt, y2 in
/(£2') such that y{ and y2 do not pass through critical values of /(z), Ux C int(yi),
U2 C int(y2), and int(yO n int(y2) = 0. We choose a branch of / " ' such that
f~\Y\), f~l(Yi) C £2'. Then f~\y{) n f~\y2) = 0. Take a fixed R > 0 such
that yi, y2 c {z : |z| < /?}. Noting that (2.4) holds, we see that every component of
/"'(yy). 7 = 1. 2, is bounded. Since the interior of y; contains some points in J(f),
it is easy to see that any component of / " ' ( /y) . j = 1. 2, cannot be closed. So it is
a Jordan arc. Now we take fixed j0 such that | / (z) | > R for all z € Lj(j > j0) and
/ - ' ( y , ) n £ 2 ' n { | z | < r , o } ^ 0 , ; = l ,2.

Take a component of /" ' ( />) . . / = 1 °r 2, in £2̂ o = £2' D (|z| < rj(s}. Let CT; be a
component of /~ '(y ; ) in £2̂ o, j — 1, 2. It is easy to see that o\ is homotopic to o2.
As /(z) is analytic on £2'., we deduce that yi = f((Ji) is homotopic to y2 = f(<J2).
This is a contradiction, which proves our claim.

For a transcendental meromorphic function / , its Julia set is an unbounded set
in C. If / ( / ) contains an unbounded component T, then C \ F is a simply connected
hyperbolic domain D and /(£2') c D. Otherwise all components of J ( /) are bounded
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and there are infinitely many bounded components in J(f). Using the fact we just

proved, it is not hard to find a simply connected hyperbolic domain D c C such that

/ ( « ' ) C D.
Using Lemma 2.2, there exists a positive number M such that \f(z)\ < \z\M for all

sufficiently large z € £2'. On the other hand, there are Zj e Lj such that \f(zj)\ >
\ZJ\MJ for all sufficiently large j . Noting that Mj ->• oo, we get a contradiction and
Theorem 1.1 is proved. •

PROOF OF THEOREM 1.2. Let f(z) be a transcendental meromorphic function in
the complex domain of order 0 < X < oo. If oo is the Borel exceptional value of / ,
then

— log N(r,f)
lim < A..
r-+oc log r

Thus f(z) must have the form f(z) = G(z)/Tl(z), where G{z) is a transcendental
entire function and I~I(z) is an entire function that is the typical product of the poles
of f{z). The functions G(z) and T\(z) have the following properties.

— log T(r, n) ^ - logm(r, n) — log N(r, / )
hm = lim — = lim = a < X
r-*oo lOgr r-KX> lOgr r^-OO log 7"

— Iog7(r,/) — log T(r,G) —logm(r,G)
lim = hm — = lim — • = X.

l r-»oo log r r-»oo log r

and

Since G(z) is a transcendental entire function of finite order X, it follows from the
Phragmen-LindelofTheorem that there is an interval (a, b) withfc—a > min(27z\ n/X)
such that

log log |G(rew) |
lim sup = A

r^oo log r

for all 0 e (a, b).
We are now able to prove [a, b] C E. If it is not true, then there is an subinterval

/ C (a,b) such that the angular domain Q({\z\ > R,aigz G /}) C F(f). Let
argz = 9Q be the bisector of / . Then we have log |n(/V°) | < ra+£, and

l o g | / ( / y * ) | = l o g

— ra+e = rx~E

for some e' > 0. Thus we can find a sequences of points {ZJ} on the bisector such that

l°g l/(*;)l > \zj\k~e for some e > 0.
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Therefore, as in the proof of Theorem 1.1, we can find a sequence of

Lj = {\zj\ew : a + a < 0 < b - a ) , 0 < a < ( b - a ) / S ,

such that (2.4) holds.
By the same argument of the proof of Theorem 1.1, we arrive at a contradiction.

The proof of Theorem 1.2 is completed. •

REMARK. Theorem 1.2 is also true for meromorphic functions of finite lower
order /x with poles having order of growth less than fj,. In fact in this case, as in
the proof of Theorem 1.2, / can be written as /(z) = G(z)/I~I(z), where G(z) is an
entire function of finite lower order /x, and Fl (z) is an entire function with order less
than \i. So applying a theorem of Baernstein in [1] to G(z), we get a similar result as
in Theorem 1.2.
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