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Upper bounds on the growth of free energy in gyrokinetics are derived. These bounds
apply to all local gyrokinetic instabilities in the geometry of a flux tube, i.e. a slender
volume of plasma aligned with the magnetic field, regardless of the geometry of field, the
number of particle species or collisions. The results apply both to linear instabilities and
to the nonlinear growth of finite-amplitude fluctuations.
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1. Introduction

For the last six and a half decades, an enormous effort has been devoted to the study
of microinstabilities in magnetically confined plasmas. Mathematically, such instabilities
can be described by the Boltzmann equation for the plasma particles coupled to Maxwell’s
equations for the electric and magnetic fields, but it is often sufficient to consider the
somewhat simpler gyrokinetic system of equations (Rutherford & Frieman 1968; Taylor &
Hastie 1968; Catto 1978; Antonsen & Lane 1980; Catto, Tang & Baldwin 1981; Frieman
& Chen 1982; Brizard & Hahm 2007; Krommes 2012; Catto 2019). These equations apply
if the instability wavelength perpendicular to the magnetic field is comparable to the
ion or electron gyroradius, but the wavelength is much longer in the direction along the
field, which is normally the case for the most important microinstabilities and turbulence
afflicting magnetised plasmas in the laboratory. Gyrokinetics also finds fruitful application
in other parts of plasma physics, such as astrophysics (Schekochihin et al. 2009), and has
been the subject of thousands of publications. Several millions of lines of computer code
has been written for the purpose of numerically simulating gyrokinetic instabilities and
turbulence (Kotschenreuther, Rewoldt & Tang 1995; Garbet et al. 2010).

As a result of this effort, a great deal of knowledge about various microinstabilities has
been accumulated. Ion-temperature-gradient- (ITG-) and electron-temperature-gradient-
driven modes, trapped-electron modes, kinetic ballooning modes and microtearing modes
have, for instance, been found to be unstable and cause turbulence in tokamaks, stellarators
and other fusion devices. However, a basic problem is that these and other instabilities
tend to be sensitive to assumptions made about plasma parameters and the magnetic-field

† Email address for correspondence: per.helander@ipp.mpg.de

https://doi.org/10.1017/S0022377822000277 Published online by Cambridge University Press

http://creativecommons.org/licenses/by-nc/4.0
https://orcid.org/0000-0002-0460-590X
https://orcid.org/0000-0002-4012-4038
mailto:per.helander@ipp.mpg.de
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0022377822000277&domain=pdf
https://doi.org/10.1017/S0022377822000277


2 P. Helander and G.G. Plunk

geometry. A cylindrical plasma does not have the same stability properties as a plasma
slab, toroidal plasmas are different from cylindrical plasmas, and tokamaks and stellarators
are also substantially different. As a result, little is known in general about gyrokinetic
microinstabilities, despite the great effort devoted to their study.

In a recent publication (Helander & Plunk 2021), universal upper bounds on the growth
rates of local gyrokinetic instabilities could nevertheless be derived in such a way that
the results hold in any low-beta plasma, regardless of the magnetic geometry, number
of particle species and collisions. The reason why these bounds are so general is they
result from thermodynamic considerations. It is the budget of the Helmholtz free energy
that constrains all instability growth rates to lie below the bounds in question. In the
present paper, we provide more mathematical details of this calculation and extend it by
showing how the bounds can be sharpened. In particular, we calculate the lowest possible
bound on the growth rate that can be obtained from the free-energy budget of a plasma
with ‘adiabatic’ electrons and a single kinetic ion species. In subsequent publications,
such rates of ‘optimal growth’ will be derived in more complex cases that include both
electrostatic and magnetic fluctuations. We will also show how the bounds can be lowered
by simultaneously considering the budget of free energy and electrostatic energy, and
compare them with gyrokinetic simulations. The present paper serves as an introduction
to this series of publications.

2. Gyrokinetic system of equations

The mathematical setting of our considerations is that of local gyrokinetics. The
distribution function of each species a is written as (Catto 1978)

fa(r,Ea, μa, t) = Fa0(ψ,Ea)

(
1 − eaδφ(r)

Ta

)
+ ga(R,Ea, μa, t), (2.1)

where r denotes the particle position and R = r − b × v/Ωa the gyrocentre position.
Here, the magnetic field has been written as B = Bb = ∇ψ × ∇α in terms of Clebsch
coordinates (ψ, α). If the magnetic field lines trace out toroidal surfaces, as in tokamaks
and stellarators, a ballooning transform is necessary unless all field lines close on
themselves. The gyrofrequency is Ωa = eaB/ma, where ma denotes mass and ea charge.
The equilibrium distribution function is taken to be Maxwellian, with density na(ψ) and
temperature Ta(ψ) constant on magnetic surfaces, and no mean flow velocity. The particle
velocity is denoted v = v‖b + v⊥, the unperturbed energy by Ea = mav

2/2 + eaΦ(ψ),
and the magnetic moment μa = mav

2
⊥/(2B) is a lowest-order constant of the motion. The

geometry is taken to be that of a ‘flux tube’, i.e. a slender volume of plasma aligned with
the magnetic field, with a rectangular cross-section in the (ψ, α)-plane. Periodic boundary
conditions on the fluctuations will be applied in this plane, so that all perturbations can be
Fourier decomposed. For instance, the electrostatic potential fluctuations δφ are

δφ(ψ, α, l) =
∑

k

δφk(l) exp[i(kψψ + kαα)], (2.2)

where k = k⊥ = kψ∇ψ + kα∇α with kψ and kα independent of the arc length l along the
magnetic field. The Fourier coefficients must satisfy δφ∗

k = δφ−k in order that the potential
be real.
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Energetic bounds on gyrokinetic instabilities. Part 1 3

The ‘non-adiabatic’ part of the distribution function ga evolves according to the
nonlinear gyrokinetic equation (Frieman & Chen 1982)

∂ga,k

∂t
+ v‖

∂ga,k

∂l
+ iωdaga,k + 1

B2

∑
k′

B · (k × k′)χ̄a,k′ga,k−k′

=
∑

b

[
Cab(ga,k,Fb0)+ Cab(Fa0, gb,k)

] + eaFa0

Ta

(
∂

∂t
+ iωT

∗a

)
χ̄a,k, (2.3)

where ωd = k · vd denotes the drift frequency (with vd being the unperturbed drift
velocity),

ω∗a = kαTa

ea

d ln na

dψ
, (2.4)

ωT
∗a = ω∗a

[
1 + ηa

(
mav

2

2Ta
− 3

2

)]
, (2.5)

χ̄ak = J0

(
k⊥v⊥
Ωa

) (
δφk − v‖δA‖k

) + J1

(
k⊥v⊥
Ωa

)
v⊥
k⊥
δB‖k, (2.6)

and J0 and J1 are Bessel functions. The gyro-averaged and linearised collision operator
between species a and b is denoted by Cab, and the field perturbations are given by

∑
a

λaδφk =
∑

a

ea

∫
ga,kJ0a d3v, (2.7)

δA‖k = μ0

k2
⊥

∑
a

ea

∫
v‖ga,kJ0a d3v, (2.8)

δB‖k = −μ0

k⊥

∑
a

ea

∫
v⊥ga,kJ1a d3v. (2.9)

Here and in the following, we write λa = nae2
a/Ta and Jna = Jn(k⊥v⊥/Ωa). Equation (2.7)

expresses quasineutrality, (2.8) Ampère’s law and (2.9) the condition that the sum of the
thermal pressure and the magnetic pressure should be constant on the short length scale
of the fluctuations. The volume element in velocity space is

d3v = 2πv⊥ dv⊥v‖ =
∑
σ

2πB dEa dμa

m2
a|v‖| , (2.10)

where the sum is taken over both values of σ = v‖/|v‖| = ±1.
Note that we restrict our attention to the original gyrokinetic equation (2.3) of

Frieman & Chen (1982), which does not include equilibrium flows. We thus only
consider instabilities caused by density and temperature gradients, but not those
associated with velocity-space anisotropy or non-Maxwellian distribution functions,
such as fast-ion-driven instabilities (Chen & Zonca 2016). Moreover, stabilisation or
destabilisation associated with flow-velocity shear is not included in the analysis although
it can be quite important in practice (see, e.g., Barnes et al. 2011). It should be possible
to include such effects by adding an appropriate term to (2.3), at least in the case that
the equilibrium is axisymmetric (Artun & Tang 1994; Parra, Barnes & Peeters 2011). In
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4 P. Helander and G.G. Plunk

non-symmetric equilibria, the situation is fundamentally more complicated because any
equilibrium flow must be small (Helander 2014).

As we show in the following, it is advantageous to introduce the function

δFa,k = ga,k − eaJ0aδφk

Ta
Fa0, (2.11)

where all quantities are evaluated at the gyrocentre position R. The quasineutrality
condition then becomes∑

a

λa [1 − Γ0(ba)] δφk =
∑

a

ea

∫
δFa,kJ0a d3v, (2.12)

where Γ0(x) = I0(x)e−x, ba = k2
⊥ρ

2
a = k2

⊥Ta/(maΩ
2
a ) and we have used an integral given

in appendix A. In the following, we sometimes write Γ0a instead of Γ0(ba).

3. Helmholtz free energy

The budget of Helmholtz free energy has been considered by several authors, e.g.
Krommes & Hu (1993), Brizard (1994), Sugama et al. (1996), Garbet et al. (2005),
Schekochihin et al. (2009), Banon Navarro et al. (2011), Hatch et al. (2016) and
Stoltzfus-Dueck & Scott (2017), and is obtained by multiplying the gyrokinetic equation
(2.3) by Tag∗

a/Fa0, taking the real part, summing over all species and wavenumbers,
integrating over velocity space and, finally, taking an average over the volume of the flux
tube, which we denote by angular brackets,

〈· · · 〉 = lim
L→∞

∫ L

−L
(· · · )dl

B

/∫ L

−L

dl
B
. (3.1)

We note that the average could also be defined keeping L finite, e.g. for periodic systems,
without affecting what follows. In order for the integral to converge, we require that the
functions χ̄k(l) should be bounded. On the left-hand side of (2.3), this operation,

Re
∑
a,k

Ta

〈∫
(· · · ) g∗

a,k

Fa0
d3v

〉
, (3.2)

annihilates the second term because

Re
〈∫

v‖
g∗

a,k

Fa0

∂ga,k

∂l
d3v

〉
= lim

L→∞

∑
σ

πσ

m2
a

∫ L

−L
dl

∫
dEa

Fa0

∫
∂|ga,k|2
∂l

dμa

/∫ L

−L

dl
B

= 0,

(3.3)
where we have used (2.10) and assumed that |ga,k|2 remains bounded as l → ∞.1 The
operation also eliminates the third term because ωda is real, and the fourth term because

Re(k × k′)g∗
a,kχ̄a,k′ga,k−k′ = Re(k × q)ga,−kχ̄a,k+qga,−q, (3.4)

where q = k′ − k and we have used g∗
a,k = ga,−k. Because the right-hand side changes

sign if k and q are interchanged, the result vanishes upon summation over k and q. The

1For finite systems, Dirichlet boundary conditions, ga,k(±L) = 0 (as used in gyrokinetic simulations), or periodic
boundary conditions, ga,k(L) = ga,k|(−L), work equally well here.
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remainder of the equation thus becomes

d
dt

∑
a,k

Ta

〈∫ |gak|2
2Fa0

d3v

〉
=

∑
k

C(k, t)+ Re
∑
a,k

ea

〈∫
g∗

a,k

(
∂

∂t
+ iωT

∗a

)
χ̄ak d3v

〉
,

(3.5)
where

C(k, t) = Re
∑
a,b

Ta

〈∫ g∗
a,k

Fa0

[
Cab(ga,k,Fb0)+ Cab(Fa0, gb,k)

]
d3v

〉
≤ 0 (3.6)

is negative or vanishes by Boltzmann’s H-theorem. By using the field equations
(2.7)–(2.9), we find

∑
a

ea

∫
g∗

a,k
∂χ̄ak

∂t
d3v = 1

2
d
dt

(∑
a

λa|δφk|2 − |δBk|2
μ0

)
, (3.7)

where |δBk|2 = |k⊥δA‖k|2 + |δB‖k|2 and, thus, we obtain our key equation:

d
dt

∑
k

H(k, t) = 2
∑

k

[C(k, t)+ D(k, t))] , (3.8)

where we have written

D(k, t) = Im
∑

a

ea

〈∫
ga,kω

T
∗aχ̄

∗
a,k d3v

〉
, (3.9)

H(k, t) =
∑

a

〈
Ta

∫ |ga,k|2
Fa0

d3v − λa|δφk|2
〉
+

〈 |δBk|2
μ0

〉
. (3.10)

It is helpful to write H in terms of δFa, defined in (2.11), instead of ga:

H(k, t) =
∑

a

〈
Ta

∫ |δFa,k|2
Fa0

d3v + λa(1 − Γ0a)|δφk|2
〉
+

〈 |δBk|2
μ0

〉
, (3.11)

which makes it clear that H can never be negative and only vanishes if all
distribution-function perturbations δFa vanish everywhere in phase space. The first term
in H is recognised from the Gibbs entropy formula: if F = F0 + δF, then to second order
in δF,

−
∫

F ln F d3v = −
∫ [

F0 ln F0 + (1 + ln F0) δF + δF2

2F0

]
d3v, (3.12)

which motivates us to define

Sa(k, t) = −
〈∫ |δFa,k|2

Fa0
d3v

〉
. (3.13)

Furthermore, we write

U(k, t) =
〈∑

a

λa(1 − Γ0a)|δφk|2 + |δB|2
μ0

〉
, (3.14)
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6 P. Helander and G.G. Plunk

and note that, in the short-wavelength limit, ba = (k⊥ρa)
2 � 1, Γ0(ba) = 1 − ba + O(b2

a),
so that

U(k, t) =
〈∑

a

manak2|δφk|2
B2

+ |δB|2
μ0

〉
, (3.15)

where the first term represents the kinetic energy of E × B motion and the second term
magnetic energy. We thus arrive at the formula

H(k, t) = U(k, t)−
∑

a

TaSa(k, t), (3.16)

with U denoting the energy of the fluctuations and Sa their entropy, suggesting that H
describes the Helmholtz free energy of the fluctuations and (3.8) the budget of this energy.
Indeed, on the right-hand side of this equation C reflects the increase in entropy due to
collisions, and D can be written as

D(k, t) = Re
∑

a

Ta

〈∫
gaδṘ

∗
a,k · ∇Fa0 d3v

〉

= −
∑

a

(
TaΓa

d ln pa

dψ
+ qa

d ln Ta

dψ

)
. (3.17)

Here

δṘa,k = iχ̄a,kb × k
B

(3.18)

describes the gyrocentre velocity perturbation due to the fluctuations, and the radial
particle and heat fluxes are

Γa(k, t) = Re
〈∫

δFa,k(δṘ
∗
a,k · ∇ψ) d3v

〉
,

qa(k, t) = Re
〈∫

δFa,k

(
mav

2

2
− 5Ta

2

)
(δṘ

∗
a,k · ∇ψ) d3v

〉
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.19)

The term in (3.17) involving Γa is thus suggestive of the thermodynamic work performed
by the particle flux against the pressure gradient, and the term involving qa relates to
entropy production due to a heat flux down the temperature gradient.

Thanks to the nonlinear term in the gyrokinetic equation, free energy can be transferred
between different wavenumbers and be ‘cascaded’ to small scales, where it is dissipated
by collisions, much like kinetic energy in Navier–Stokes turbulence. The way in which this
occurs and gives rise to a turbulent spectrum of fluctuations has been studied extensively
in the literature (Schekochihin et al. 2009; Tatsuno et al. 2009; Banon Navarro et al. 2011;
Stoltzfus-Dueck & Scott 2017). We shall use the free-energy budget (3.8) for a different
purpose, namely, to derive rigorous upper bounds on linear and nonlinear growth rates.
Outside the realm of gyrokinetics, this has earlier been accomplished for linear instabilities
by Fowler and co-workers (Fowler 1964, 1968; Brizard et al. 1991).

4. Cauchy–Schwarz inequalities

For simplicity, we restrict our considerations to low-beta plasmas, where fluctuations in
the magnetic-field strength can be neglected, δB‖ = 0. This approximation is common in
the literature but will be removed in the next publication in this series of papers.
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Energetic bounds on gyrokinetic instabilities. Part 1 7

Our basic mathematical tools are the triangle and Cauchy–Schwarz inequalities, which
limit the amplitude of field fluctuations that are possible given a certain entropy budget.
For instance, it follows from the field equation (2.12) that the electrostatic potential is
bounded by

∑
a

λa (1 − Γ0a) |δφk| ≤
∑

a

|ea|
(∫ |δFa,k|2

Fa0
d3v

∫
Fa0J2

0a d3v

)1/2

. (4.1)

Thus, if we measure the relative entropy perturbation at the scale k of each species a by
the dimensionless quantity

sa(k, t) = 1
na

∫ |δFak|2
Fa0

d3v, (4.2)

then it follows that the electrostatic potential is subject to the bound∑
a

λa (1 − Γ0a) |δφk| ≤
∑

a

na|ea|
√
Γ0asa. (4.3)

Analogously, it follows from Ampère’s law (2.8) that the magnetic potential is limited by

|δA‖k| ≤
∑

a

μ0|ea|
k2

⊥

(∫ |δFa,k|2
Fa0

d3v

∫
v2

‖Fa0J2
0a d3v

)1/2

, (4.4)

i.e.
k⊥|δA‖k|

B
≤

∑
a

βa

2k⊥ρa

√
Γ0asa � βe

2k⊥ρe

√
Γ0ese, (4.5)

where βa(l) = 2μ0naTa/B2. In the last, approximate equality, we have recognised the fact
that the sum is usually dominated by the contribution from the electrons thanks to their
small gyroradius. Because k⊥ρe is small for most instabilities of interest, the inequality
(4.5) is not very restrictive, but it is nevertheless valuable as it implies that gyrokinetic
instabilities are electrostatic in the limit βe → 0. Moreover, it is used in the following to
demonstrate that the growth rate remains bounded in the limit k⊥ρe → ∞.

We can also apply the triangle and Cauchy–Schwarz inequalities to the free-energy
production rate (3.9):

D(k, t) ≤
∑

a

|ea||nasa|1/2
〈∫

Fa0(ω
T
∗a)

2J2
0

(|δφk|2 + v2
‖|δA‖k|2

)
d3v

〉1/2

=
∑

a

na|eaω∗a||sa|1/2
〈
M(ηa, ba)|δφk|2 + N(ηa, ba)

Ta|δA‖k|2
ma

〉1/2

, (4.6)

where the functions

M(ηa, ba) = 1
na

∫ [
1 + ηa

(
mav

2

2Ta
− 3

2

)]2

Fa0J2
0a d3v, (4.7)

N(ηa, ba) = 1
na

∫ mav
2
‖

Ta

[
1 + ηa

(
mav

2

2Ta
− 3

2

)]2

Fa0J2
0a d3v (4.8)
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8 P. Helander and G.G. Plunk

can be expressed in terms of modified Bessel functions as

M(η, b) =
(

1 + 3η2

2
− 2η(1 + η)b + 2η2b2

)
Γ0(b)+ ηb (2 + η − 2ηb) Γ1(b), (4.9)

N(η, b) =
(

1 + 2η + 7η2

2
− 2η(1 + 2η)b + 2η2b2

)
Γ0(b)+ ηb (2 + 3η − 2ηb) Γ1(b),

(4.10)

using integrals given in appendix A. In the limits of very small and very large wavelength,
respectively, the asymptotic forms of these functions are

M(η, b) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + 3η2

2
, b → 0

1 − η + 5η2

4√
2πb

, b → ∞,

(4.11)

N(η, b) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + 2η + 7η2

2
, b → 0

1 + η + 9η2

4√
2πb

, b → ∞.

(4.12)

5. Upper bounds on linear growth rates

In this section, we temporarily consider linear instabilities and thus focus on a single
pair of wavenumbers (kψ, kα). Thanks to Boltzmann’s H-theorem, the quantity C(k, t) is
always negative and the relation (3.8) thus implies an upper bound on the linear growth
rate

γ (k) ≤ D(k, t)
H(k, t)

. (5.1)

As we have already bounded D from above, we merely need to find a suitable bound on

H(k, t) =
∑

a

〈
naTasa + λa (1 − Γ0a) |δφk|2

〉 + 〈 |k⊥δA‖k|2
μ0

〉
(5.2)

from below to derive an upper bound on γ (k). Some care is needed to construct reasonably
tight bounds, but all results are largely independent of the geometry of the magnetic field
because the second and third terms from (2.3) do not contribute to the free-energy balance
equation (3.8). The bound (5.1) therefore only depends on the magnetic geometry through
the two quantities B(l) and k⊥(l) = |kψ∇ψ + kα∇α|.

5.1. Adiabatic electrons
We begin by considering the simplest case of a hydrogen plasma with a
Boltzmann-distributed, or so-called ‘adiabatic’, electron response, where ge is taken
to vanish. This is the traditionally simplest gyrokinetic model of ITG and trapped-ion
instabilities, which account for a substantial fraction of the turbulence and transport
in tokamaks and stellarators, and therefore has been the subject of hundreds, if not
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Energetic bounds on gyrokinetic instabilities. Part 1 9

thousands, of publications. As ge vanishes and there are no magnetic fluctuations [in the
approximation used in (4.5)], the free energy becomes

H = nTi

〈
si + (1 + τ − Γ0i)

∣∣∣∣eδφk

Ti

∣∣∣∣
2
〉
. (5.3)

where n = ni = ne and τ = Ti/Te. Furthermore, the quasineutrality condition (2.12)
reduces to

(1 + τ − Γ0i)
eδφk

Ti
= 1

n

∫
δFiJ0i d3v, (5.4)

and the bound (4.3) is thus replaced by the more stringent condition

(1 + τ − Γ0i)
e|δφk|

Ti
≤

√
Γ0isi. (5.5)

Thanks to this inequality, the free energy satisfies

H ≥
〈

1 + τ

Γ0i
(1 + τ − Γ0i)

∣∣∣∣eδφk

Ti

∣∣∣∣
2
〉
. (5.6)

The free-energy production term can be simplified somewhat because the
quasineutrality condition (5.4) in the case of adiabatic electrons implies that there is no
particle flux. Indeed, the flux from (3.19),

Γi(k, t) = −Re
〈

iδφ∗
k(b × k) · ∇ψ

B

∫
δFi,kJ0i d3v

〉
, (5.7)

vanishes because of (2.12), and D thus becomes

D(k, t) = Im ηiω∗i

〈
eδφ∗

k

∫
gik

(
miv

2

2Ti
− 3

2

)
J0i d3v

〉
. (5.8)

As a result, in the inequality (4.6), the function M(η, b) can be replaced by

M̃(η, b) = η2

[(
3
2

− 2b + 2b2

)
Γ0(b)+ b (1 − 2b) Γ1(b)

]
, (5.9)

and the bound (5.1) becomes

γ

ω∗i
≤

〈
M̃(ηi, bi)|δφk|2

〉1/2

〈
(1 + τ)[(1 + τ)Γ −1

0i − 1]|δφk|2
〉1/2 . (5.10)

Here, M̃(ηi, bi) is a decreasing function of bi, and the denominator is an increasing
function of the same quantity. The right-hand side is thus maximised by choosing
|δφk(l)|2 = δ(l − l0), where l0 is the position along the field line where bi(l) = k2

⊥ρ
2
i ∝

(k⊥/B)2 is minimised. We thus obtain

γ

ω∗i
≤

√
M̃(ηi, bmin)

(1 + τ)
[
(1 + τ)Γ −1

0 (bmin)− 1
] , (5.11)

where bmin = bi(l0). The result is plotted in figure 1. Note that all dependence on the
geometry of the magnetic field has disappeared: our limit on the growth rate is spatially
local in nature and only depends on the minimum value of k⊥ρi.
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FIGURE 1. (a) Upper bound (5.11) on the growth rate normalised to ηiω∗i/(k⊥ρi) of gyrokinetic
instabilities for kψ = 0 and three different values of τ = Ti/Te in a hydrogen plasma with
adiabatic electrons as a function of the smallest value of k⊥ρi along the magnetic field. (b) The
best possible bound (6.20) for free-energy growth, which is about a factor of two lower.

This bound, which applies to all local gyrokinetic instabilities in a plasma with adiabatic
electrons, is not optimal and can be improved by a factor of approximately two, as we
show in the next section. Nevertheless, it displays scalings that have been seen in many
publications and numerical simulations over the years. For long wavelengths, bi → 0, it
reduces to

γ ≤ |ηiω∗i|
√

3
2τ(1 + τ)

. (5.12)

Note that all dependence on the magnetic geometry has disappeared, and because ω∗i ∝ kα
the growth rate is proportional to kα in this limit. For short wavelengths, k⊥ρi � 1, the
bound remains finite,

γ ≤ |ηiω∗i|
1 + τ

√
5

8πbmin
, (5.13)

because

bmin = min
l

[(
k2
ψ |∇ψ |2 + 2kψkα∇ψ · ∇α + k2

α|∇α|2) Ti

miΩ
2
i

]
(5.14)

is a positive-definite quadratic form in kψ and kα. Indeed, γ (kψ, kα) approaches a finite
constant in the limit kα → ∞ and vanishes if kψ → ∞ at fixed kα. Moreover, at constant
ion temperature, the bound (5.11) increases with the electron temperature through the
scaling with τ , which is a well-known feature of numerical simulations and analytical
dispersion relations in explicitly tractable limits (Biglari, Diamond & Rosenbluth 1989;
Romanelli 1989; Plunk et al. 2014; Zocco et al. 2018). This unfortunate scaling is thought
to degrade energy confinement in electron-heated tokamaks and stellarators.

5.2. Electromagnetic instabilities
We now turn to the more general case of an arbitrary number of kinetic species, but still
restrict our attention to instabilities with δB‖ = 0. No attempt will be made to make the
bound as low as possible. Our main concern is to show that an upper bound exists and
that it is itself bounded as a function of k, so that there is a universal upper bound on the
growth rate at any wavelength. This result will be of crucial importance when we consider
nonlinear growth in a subsequent section. In the next publication of this series, we show
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how to extend the calculation to include fluctuations of the magnetic field strength and
how to compute the lowest possible bounds in this context.

We begin by seeking lower bounds on H under the constraints (4.3) and (4.5), which lead
us to a simple quadratic minimisation problem treated in appendix B, where the minimum

min
x1,x2,...

f (x1, x2, . . .) =
∑

a

qax2
a (5.15)

subject to the constraint ∑
a

paxa ≥ c, (5.16)

is found for the case that qa and pa are positive real numbers. In terms of this notation, we
first choose xa = √

sa, pa = na|ea|
√
Γ0a, qa = naTa and

c =
∑

a

λa (1 − Γ0a) |δφk|, (5.17)

and then obtain

∑
a

naTasa ≥
[∑

a

λa (1 − Γ0a) |δφk|
]2/∑

c

λcΓ0c. (5.18)

As a result of this inequality, we conclude from (5.2) that H ≥ 〈
L|δφk|2

〉
with

L(l) =
(∑

a

λa

)(∑
b

λb(1 − Γ0b)

)/(∑
c

λcΓ0c

)
. (5.19)

Similarly, by instead choosing c = |k⊥δA‖k|/μ0 and

pa = na|ea|
k⊥

√
TaΓ0a

ma
, (5.20)

we find

∑
a

naTasa ≥ |k⊥δA‖k|2
μ0

/∑
a

βaΓ0a

2ba
, (5.21)

where βa = 2μ0naTa/B2. Because the gyroradius of the electrons is usually much smaller
than that of any ion species and Γa0 = Γ0(ba) is a decreasing function of particle mass,
only the electrons need to be kept in the sum over species, and we conclude that H is
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bounded from below by

H(k, t) ≥
〈 |k⊥δA‖k|2

μ0

(
1 + 2be

βeΓ0e

)〉
= ne2

me

〈
K|δA‖k|2

〉
, (5.22)

with

K(l) = 2be

βe

(
1 + 2be

βeΓ0e

)
. (5.23)

We are now ready to apply our basic upper bound (5.1), where we use (4.6) and

H ≥ 〈naTasa〉1/2 〈
L|δφk|2

〉1/2
, (5.24)

H ≥ 〈naTasa〉1/2
〈

ne2

me
K|δA‖k|2

〉1/2

, (5.25)

to conclude that

γ ≤
∑

a

|ω∗a|
√〈
λaM(ηa, ba)|δφk|2

〉
〈
L|δφk|2

〉 + |ω∗e|
√〈

N(ηe, be)|δA‖k|2
〉

〈
K|δA‖k|2

〉 (5.26)

where the contribution from ions to the electromagnetic term in D has been neglected,
being a factor of order me/mi smaller than the electron contribution. As L is an increasing
function of the quantities ba, which are all proportional to (k⊥/B)2, the first term on the
right is maximised if |δφk(l)|2 is chosen to be a delta function in the point l0 where
the function k⊥(l)/B(l) attains its minimum. Similarly, the second term is maximised by
choosing |δA‖k(l)|2 ∝ δ(l − l1) where l1 is the point where K(l)/N(l) is minimised. We
thus arrive at the result

γ (k) ≤ γbound(k) =
∑

a

|ω∗a|
√
λaM(ηa, ba(l0))

L(l0)
+ |ω∗e|

√
N(ηe, be(l1))

K(l1)
. (5.27)

Apart from the neglect of terms of order me/mi and fluctuations in the magnetic-field
strength, δB‖, this upper bound on the growth rate is completely general and applies
to any local gyrokinetic instability. It applies to ITG and electron-temperature-gradient
modes, kinetic and resistive ballooning modes, trapped-ion and trapped-electron modes
and microtearing modes, as well as to the so-called universal and ubiquitous instabilities.

A particularly simple and important case is that of a hydrogen plasma without other ions
and k⊥ρe � 1. Noting that ω∗i = −τω∗e and using the asymptotic forms (4.11) and (4.12),
we find

γ

|ω∗e| ≤
√

τ(Γ0i + τ)

(1 + τ)(1 − Γ0i)

(√
τM(ηi, bi)+

√
1 + 3η2

e

2

)
+ βe

√
1 + 2ηa + 7η2

e/2
2be (βe + 2be)

,

(5.28)
where the first term on the right is evaluated at l = l0 and the second term (which is
proportional to βe) at l = l1. Both terms give an upper bound on γ that remains finite in

https://doi.org/10.1017/S0022377822000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000277


Energetic bounds on gyrokinetic instabilities. Part 1 13

the long-wavelength limit because ω∗e is proportional to kα and

1 − Γ0i � bi = (k⊥ρi)
2, (5.29)

in the limit bi � 1. Furthermore, as long as k⊥ρe � 1, the growth rate is subject to a
bound equal to

γ < C0
(
1 + τ−1/2) vTi

L⊥
+ C1βe√

βe + 2be

vTe

L⊥
, (5.30)

where C0 and C1 are numbers of order unity, vTi denotes the ion thermal speed and L⊥ the
length scale of the equilibrium density and temperature gradients. In the opposite limit,
k⊥ρe � 1, the term proportional to βe can be neglected and we instead obtain

γ ≤ τ |ω∗e|
1 + τ

√
1 − ηe + 5η2

e/4
2πbe(l0)

= C2vTe

(1 + τ−1)L⊥
, (5.31)

where vTe denotes the electron thermal speed and C2 is a number of order unity.

6. Optimal bounds

The bounds (5.11) and (5.27) are not optimal and can be improved. In this section, we
derive the best possible bound, in a sense that will be made precise, for the simplest case
of a hydrogen plasma with adiabatic electrons. If ϕ = eδφk/Ti and g = gik, we have

ϕ = 1
n(1 + τ)

∫
gJ0 d3v, (6.1)

H = nTi

〈
1
n

∫ |g|2
Fi0

d3v − (1 + τ)|ϕ|2
〉
, (6.2)

D = ηiω∗iTi

2i

〈∫
(ϕ∗g − ϕg∗) x2J0i d3v

〉
, (6.3)

where x2 = miv
2/2Ti. Here D and H are thus quadratic functionals of g, and the challenge

is to maximise the ratio D[g]/H[g] over all such functions.
In order to do so, we first note that D and ϕ only depend on two moments of g, namely,

Kj[g] = 1
n

∫
gx2jJ0i d3v, (6.4)

where j = 0 or 1. We can therefore begin by minimising H[g] over all functions with given
values of these two moments. Using Lagrange multipliers, c0 and c1, we are thus led to
minimise the functional

H[g] − 2c0K0[g] − 2c1K1[g], (6.5)

which gives
g = (

c0 + c1x2) J0iFi0. (6.6)

We have thus reduced our problem to that of finding the maximum value of D/H expressed
as a ratio of two quadratic forms in the coefficients cj. Note that conventional eigenmodes,
i.e. functions satisfying the linearised version of (2.3) are, in general, not of the form
(6.6). This equation describes modes of optimal free-energy growth, which are distinct
from eigenmodes and will be studied in greater detail in Part 2 of this series of papers.
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If we write

Gj(bi) = 1
n

∫
Fi0x2jJ2

0i d3v, (6.7)

so that

G0(bi) = Γ0(bi), (6.8)

G1(bi) =
(

3
2

− bi

)
Γ0(bi)+ biΓ1(bi), (6.9)

G2(bi) =
(

15
4

− 5bi + 2b2
i

)
Γ0(bi)+ (4 − 2bi) biΓ1(bi), (6.10)

then

D = nTiG(bi)

2i(1 + τ)

(
c∗

0c1 − c0c∗
1

)
, (6.11)

where

G(b) = G0(bi)G2(bi)− G2
1(bi) =

(
3
2

− 2bi + b2
i

)
Γ 2

0 (bi)+ biΓ0(bi)Γ1(bi)− b2
i Γ

2
1 (b

2
i ),

(6.12)
and

H = nTi

[
G0

(
1 − G0

1+τ
)

c0c∗
0+G1

(
1 − G0

1 + τ

) (
c∗

0c1 + c0c∗
1

) +
(

G2 − G2
1

1 + τ

)
c1c∗

1

]
.

(6.13)

In order to maximise the ratio and calculate

γ̂ = max
c0,c1

(
D
H

)
, (6.14)

we consider the variations

δD = nTiG
2i(1 + τ)

(
c1δc∗

0−c0δc∗
1

) + c.c., (6.15)

δH = nTi

[
G0

(
1 − G0

1 + τ

)
c0δc∗

0+G1

(
1 − G0

1 + τ

) (
c1δc∗

0+c0δc∗
1

)
(6.16)

+
(

G2 − G2
1

1 + τ

)
c1δc∗

1

]
+ c.c., (6.17)

where c.c. stands for the complex conjugate, and we note that the maximum is reached
when

δD = γ̂ δH, (6.18)

which gives a system of equations

2iγ̂
ηiω∗i

[
G0 (1 + τ − G0) G1 (1 + τ − G0)

G1 (1 + τ − G0) G2(1 + τ)− G2
1

] [
c0
c1

]
= G

[ −c1
c0

]
, (6.19)

https://doi.org/10.1017/S0022377822000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000277


Energetic bounds on gyrokinetic instabilities. Part 1 15

which has non-zero solutions if

γ̂ = |ηiω∗i|
2

√
G(bi)

(1 + τ)[1 + τ − G0(bi)]
. (6.20)

This is the ‘optimal’ bound on the growth rate that can be obtained within our formalism
in the sense that no lower bound is possible. Indeed, growth of the free energy at this rate
is realised if no collisions are present and the distribution function is chosen as dictated by
(6.6) with c0 and c1 satisfying the eigenvalue problem (6.18). The bound (6.20) is shown
in figure 1 and is lower than our previous result (5.11) by a factor of 2 and

√
5 in the limits

of long and short wavelengths, respectively,

γ̂ →

⎧⎪⎪⎨
⎪⎪⎩

|ηiω∗i|
2

√
3

2τ(1 + τ)
, bi � 1

|ηiω∗i|
(1 + τ)

√
8πbi

, bi � 1.
(6.21)

7. Bounds on nonlinear growth

Our most general bound (5.27) is not optimal and will be improved substantially in our
next publication, but its most important implication follows already from this crude form.
The right-hand side is a bounded function of the mode numbers (kψ, kα), and the linear
growth rate can therefore never exceed the maximum

γmax = sup
k
γbound(k). (7.1)

As we now show, this conclusion also holds for nonlinear growth.
Consider the evolution of a set of fluctuations governed by the gyrokinetic system

of equations starting from some arbitrary initial condition, specified by the distribution
functions δFa of all species at t = 0. According to (3.8) the instantaneous growth of the
total free energy,

Htot(t) =
∑

k

H(k, t) (7.2)

is bounded by
dHtot

dt
≤ 2

∑
k

D(k, t), (7.3)

where each term is subject to the bound

D(k, t) ≤ γbound(k)H(k, t). (7.4)

The growth rate of the total free energy is therefore limited by twice the maximum linear
growth

d ln Htot

dt
≤ 2γmax. (7.5)

This bound holds for fluctuations of arbitrary amplitude within the gyrokinetic formalism.
In particular, it must hold in any gyrokinetic simulation of turbulence.

Moreover, if collisions are absent, then instantaneous growth of the free energy is
possible at any positive rate up to the ‘optimal’ one, which for the particularly simple
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case of adiabatic electrons was derived in the previous subsection. To see this, suppose the
bounds on the right-hand side of (7.1) are chosen optimally in the sense that

γbound(k) = sup
g

D[g,k]
H[g,k]

, (7.6)

where D and H are now considered to be quadratic functionals of the distribution functions
g = {ga} of all species. This means, then, that there is a choice of wavenumber and initial
data such that the free energy grows at a rate arbitrarily close to 2γmax. Conversely, there is
a similar limit on the rate at which the free energy can decay in the absence of collisions,

d ln Htot

dt
≥ −2γmax, (7.7)

as follows from the observation that D[g,k] is odd in the wavenumber k at fixed g whereas
H is even. The transformation k → −k thus changes the sign of the ratio D[g,k]/H[g,k]
if g is held constant.2 Any upper bound on this ratio therefore automatically implies a
similar lower bound when collisions are absent.

8. Conclusions

As we have shown, it is possible to derive rigorous upper bounds on the growth rate of
linear instabilities and on the nonlinear growth of free energy in gyrokinetics. Unlike most
other results in the field, these bounds are universal and hold in plasmas with any number
of particle species regardless of collisionality and magnetic-field geometry. For simplicity,
we have taken the plasma pressure (beta) to be sufficiently small that fluctuations in the
magnetic-field strength can be neglected, δB‖ = 0, but this restriction will be removed in
Part 2 in the present series of papers.

In the case of a plasma with a single kinetic ion species and ‘adiabatic’ electrons, the
bound is given by (6.20) and is of order

γbound ∼ k⊥ρi√
τ(1 + τ)

· vTi

L⊥
(8.1)

for k⊥ρi < 1 and

γbound ∼ vTi

(1 + τ)L⊥
(8.2)

for shorter wavelengths. The dependence on the parameter τ = Ti/Te reflects a
well-known unfavourable dependence of the ITG growth rate on electron temperature.

The bound (5.27) we found on instabilities with kinetic electrons is less restrictive
and remains finite in the limit k⊥ρi → 0. It is a sum of two distinct contributions: an
electrostatic term and an electromagnetic term that vanishes if βe → 0. As we shall show
in the next publication of this series, this result is not qualitatively affected by the inclusion
of parallel magnetic fluctuations.

Actual microinstability growth rates must lie below these bounds. For instance, toroidal
ITG modes with adiabatic electrons and k⊥ρi � 1 have growth rates

γ ∼
√
ηiω∗iωdi

τ
∼ k⊥ρi√

τ
· vTi√

RL⊥
(8.3)

in the strongly driven limit (Biglari et al. 1989; Romanelli 1989; Plunk et al. 2014; Zocco
et al. 2018), and trapped-ion modes have a similar growth rate (Biglari et al. 1989). Here

2Note that the functional D[g,k] is odd in k at fixed g, whereas in the sums over k taken earlier in the paper, g
depends on k. These sums therefore do not vanish in general.
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R denotes the radius of curvature of the magnetic field, so that ωdi ∼ (k⊥ρi)vTi/R. Due to
the assumption |ωdi/ω∗i| ∼ L⊥/R � 1 (corresponding to strong instability drive) made in
the derivation of this estimate, the growth rate is smaller than our upper bound. Similarly,
in the theory of kinetic ballooning modes, the assumption L⊥/R � 1 leads to growth rates
of order (Tang, Connor & Hastie 1980; Aleynikova et al. 2018)

γ ∼
√
ωdi [(1 + ηi)ω∗i − (1 + ηe)ω∗e]

k⊥ρi
. (8.4)

This growth rate never exceeds our bound (5.28) and scales as our estimate (5.30). In less
strongly driven cases, the growth rate is lower.

Although all our results are quite general, they do not encompass all instabilities of
interest. Kink modes and tearing modes sometimes need a gyrokinetic treatment in a
thin layer around a resonant magnetic surface, where magnetic reconnection may occur,
but take their energy from the exterior region and depend on the overall plasma current
profile (Hazeltine, Dobrott & Wang 1975; Drake & Lee 1977). Such instabilities cannot
adequately be described in the geometry of a magnetic flux tube (Connor et al. 2014, 2019)
and are not subject to the bounds derived in the present paper. Mathematically, they are
not covered by our treatment because the solution of the gyrokinetic equation involves
matching to the exterior region, whose destabilising influence is usually described by a
parameter Δ′, making these modes non-local in nature. However, microtearing modes
which are driven by local gradients are subject to our bound (5.27) on electromagnetic
instabilities.

As already remarked, instabilities driven by equilibrium flow shear would need an
additional term in the gyrokinetic equation. The parallel-velocity-gradient instability,
which could then be treated, is known to be capable of causing subcritical turbulence
below the linear stability threshold due to transiently growing modes (Barnes et al. 2011).
The latter would, however, be subject to bounds similar to those we have derived, because
these also apply to nonlinear growth and thus limit the possibility of subcritical turbulence
excitation.
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Appendix A. Gaussian integrals involving Bessel functions

The following integrals are used in several places

2
∫ ∞

0
J2

0

(
x
√

2b
)

e−x2
x dx = Γ0(b), (A1)

2
∫ ∞

0
J2

0

(
x
√

2b
)

e−x2
x3 dx = (1 − b)Γ0(b)+ bΓ1(b), (A2)

2
∫ ∞

0
J2

0

(
x
√

2b
)

e−x2
x5 dx = 2(1 − b)2Γ0(b)+ b(3 − 2b)Γ1(b), (A3)
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where Γn(b) = In(b)e−b and In denotes modified Bessel functions. These functions have
the asymptotic forms

Γ0(b) �
⎧⎨
⎩

1 − b, b → 0,
1√
2πb

(
1 + 1

8b
+ 9

128b2

)
, b → ∞,

(A4)

Γ1(b) �
⎧⎨
⎩

b, b → 0,
1√
2πb

(
1 − 3

8b
− 15

128b2

)
, b → ∞.

(A5)

Appendix B. A quadratic minimisation problem

Consider the problem of minimising

f (x) =
∑

a

qax2
a, (B1)

where x = (x1, x2, . . .) subject to the constraint∑
a

paxa ≥ c, (B2)

where qa and pa are positive real numbers. This problem is not difficult to solve by
considering the function

F(x, λ) = f (x)− λ
(∑

a

paxa − c

)
, (B3)

where λ is a Lagrange multiplier. The conditions

∂F
∂xa

= ∂F
∂λ

= 0 (B4)

lead to

xa = λpa

2qa
, (B5)

λ = 2c

/∑
a

p2
a

qa
, (B6)

and

min
x

f (x) = c2

/∑
a

p2
a

qa
. (B7)
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