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1. Introduction

A near ring is a triple (/?, + , • ) such that (R, + ) is a group, (R, •) is a
semigroup, and • is left distributive over + ; i.e. w(x + z) = wx + wz for each
w, x, z in R. A normal subgroup K of a near ring R is an ideal if (i) (m + k)n — mn
is in K for all m, n in R and k in K, and (ii) RK £ J£. In particular, kernels of
near ring homomorphisms are ideals. For various other definitions and elemen-
tary facts about near rings, see [5,8]. For each x in a near ring R, let A(x)
= {y e R : xy = 0}. A survey on several recent papers on near rings [2,3,6,7,8]
shows that the concept of A(x) being an ideal was the main technique. The purpose
of this note is to initiate a study of near rings having the property that each A(x)
is an ideal.

A duo ring is a ring in which every one-sided ideal is two-sided. Clearly every
duo ring has the property that each A(x) is an ideal. However, the converse is not
true, as demonstrated by the non-commutative ring defined on the Klein group
K = {0, a, b, c} with the following multiplication: xO = 0, xa = x, xb = 0
xc = x for each x in K. Duo rings have been studied in [11] while application
of duo rings to commutativity theorems was given in [1]. This is another motiva-
tion for the study of near rings with the property that each A(x) is an ideal.

2. Main results

In this section we restrict our attention to near rings with d.c.c. on ^-sub-
groups. To facilitate the discussion, we begin with some definitions.

DEFINITION 2.1. The near ring R is said to have property p if A(x) is an
ideal of R for each x in R.

DEFINITION 2.2. An ideal I of a near ring is called trivial if xy = Ofor each
x, y in I.

LEMMA 2.3. Let R be a near ring with property p. If e2 = e, then exy = exey
for all x,y in R and the set K = {er — r:reR} is an ideal of R.
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PROOF. If e is a left identity, then conclustion is trivial. If e is not a left iden-
tity, then A(e) is an ideal. Thus ex(ey — y) = 0 implies that exy = exey. Now
define the map F: R -»• eR by rF = er. Then F is an onto near ring homomorphism
and the kernel of F is precisely K.

Before we proceed further, a definiton is needed.

DEFINITION 2.4. Let R be a near ring. If xR = Rfor each x in R or OR = 0
and xR = Rfor each x # 0 in R, then R is said to be of type I. If xR = Rfor
some x in R and yR = 0 for some y ± 0 in R, then R is said to be of type II.

The following theorem, though quite technical in nature, has many interesting
corollaries.

THEOREM 2.5. Let R be a near ring with d.c.c. on R-subgroups and having
property p. If each minimal ideal of R is nontrivial, then R is a direct sum of
ideals each of which is of either type I or type II.

PROOF. If R is simple, then R has no nonzero divisors of zero and for each
x in R, there is an integer n such that x"R = x"+1R. Let y be in R. Then there is
a t in R such that x"y = xn+it. Hence y = xt and this implies that xR = R.
Thus R is of type /.

If R is not simple, let J be a minimal ideal. Since J is nontrivial, there are
elements x,y in J such that xy # 0. Since A{x) is an ideal of R, it follows that
A(x) n J = 0. Since xJ is an .R-subgroup, we see that xJ = J. Thus there is an
element e in J such that e2 = e. Now eJ £ eR £ J implies that eR = J. By
Lemma 2.3, it is easy to show that R = J © K, where K = {er — r:reR}. Let
y be in J. Then A(y) n J = 0 or ^(y) O J = J. At any rate J is either of type
I or II. Now since K is an ideal of R, and any ideal of K is an ideal of R, we see
that K inherits the properties of R. Thus our decomposition continues and the
conclusion follows.

We begin with a corollary which is immediate.

COROLLARY 2.6. Let R be a near ring with d.c.c. on R-subgroups and having
property p. Then R is a direct sum of near rings Rt where Rt is either of type
I or II or every minimal ideal of Rt is trivial.

REMARK 2.7. From the introduction we see that there are rings which have
property p and every minimal ideal is trivial, furthermore, they are indecompos-
able.

COROLLARY 2.8. Let R be a near ring with no nonzero nilpotent elements
and Ox = 0 for each x in R. If R has d.c.c. on R-subgroups, then R is a direct
sum of ideals Rf where each Rt is one of the follow ings: (1) Rt is a near field,
(2) Ri is a near integral domain and (3) each element is a left identity in Rt.

PROOF. It is easily shown that R has property p and every minimal ideal of
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R is nontrivial. Thus by Theorem 2.5, each Rt is of type /, that is, xR; ~ Rt for
all x # 0 in Rt. If R{ has a nonzero right distributive element, by [4, Theorem
2.3] Rt is a near field. If R, has a nontrivial multiplication, then Rt is a near integral
domain [9], If Rt is neither one of the above, then every element is a left identity.

Since every element of a ring is right distributive, the following result is
immediate.

COROLLARY 2.9. Let Rbe a ring with no nonzero nilpotent elements. If d.c.c.
for right ideals holds in R, then R is a direct sum of division rings. In particular,
ifR is finite, then R is commutative and is a direct sum of ideals.

COROLLARY 2.10. Let R be a ring with d.c.c. on right ideals. Then the

following are equivalent:

(1) R has no nonzero nilpotent elements
(2) R is a direct sum of division rings
(3) R has property p and every minimal ideal is nontrivial.

PROOF. In view of Corollary 2.9, we need to show only (3) implies (2). Sup-
pose R satisfies (3). If R is simple, then R has no nonzero zero divisors. Thus for
each x # 0 in R, xR = R implies that R is a division ring. If R is not simple
then by Theorem 2.5, R is a direct sum of ideals Jn each of which is of type / or
type II. We wish to show that Jn are of type I. Suppose J is a minimal ideal and
there is a y ^ 0 in J such that yJ = 0. Now consider L(J) = {jeJ:jx = 0
for all xeJ}. It can be verified easily that L(J) is an ideal of R. Thus L(J) n J
= J or L(J) n J = 0. Since yJ = 0 it follows that L(J) CiJ^J. But this
implies that J is trivial, a contradiction. Hence xJ = J for each x # 0 in J and
thus J is a division ring.

It was shown in [9] that the additive group of a finite near integral domain
is nilpotent. The following is immediate from Corollary 2.8.

COROLLARY 2.11. Let R be a finite near ring with no nonzero nilpotent
elements and Ox = 0 for each x in R. If every homomorphic image of R has a
nontrivial multiplication (i.e. not every element is a left identity), then R is a
direct sum of near integral domains and hence (R, + ) is nilpotent. In particular,
if R has an identity, then R is a direct sum of near fields.

There are many more interesting results concerning near rings with identities
and d.g. near rings with d.c.c. and finite near rings which can be obtained from
Theorem 2.5 easily, but it is not necessary to state them all explicitely here. We
conclude this section with the following result which follows easily from Theorem
2.5.

COROLLARY 2.12. Let R be a regular near ring with d.c.c. on R-subgroups
and idempotents are central. Then R is a direct sum of near fields.
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3. Remarks

DEFINITION 3.1. A near ring R is said to have property q if every homomor-

phic image R' of R satisfies: A(x) is an ideal for each x in R'.
We now state a structure theorem for near rings with property q.

THEOREM 3.2. A near ring R with property q is isomorpic to a subdirect

sum of near rings Rt where each Rt is one of the following types:

A. each element is a left identity,

B. OJC = Ofor all x in Rt and Rt has no nonzero divisors of zero,

C. the intersection of all proper ideals has no nonzero idempotents,

D. if there is e2 = e in the intersection I of all proper ideals, then I = A(0).

It can be shown now many of the results in [2,3,5,6,7,8,10] are corollaries

of the above theorem.
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