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Equationally complete varieties
of generalized groups

W.F. Page

In previous work, Page and Butson [Algebra Universalie 3 (1973),
112-126] characterized all equationally complete classes (atoms)
of m-semigroups (universal algebras with one m-ary associative
operation), and hence m-groups, in the commutative case. The
further characterization of the non-commutative m-group atoms
was thought to hinge upon a conjecture by Page [PhD thesis,
University of Miami, 1973] that a weaker form of commutativity
held true. In this paper that conjecture is proved and then used
to study the special case m = L4 . Two additional infinite sets
of atoms are thereby determined, although it is not proved that

these examples exhaust the remaining atoms for m =L .,

1. Notation and preliminaries

For the remainder of this paper, the single m-ary operation on the

set A will be denoted by juxtaposition; that is, xlx2 cee Z for x;
in A . The associative law is written
(zl ... “%Jxm+l e Ty ) ST e xi(zi+1 e B i) Tmeien t Tomel
for all Lys ey Ty s in 4 and T =1, ..., m=1 .
The idempotent law is written
£...x=z'=zx forall z in A4 .

The symbol Lm will denote the lattice of equational classes (varieties)
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of m-semigroups, m an integer. Elements of this lattice will be denoted
by script letters, and the terms "atom" and "equationally complete class"
will be used interchangeably. Throughout the rest of the paper, the symbol
p will stand for an arbitrary prime integer, and congruences will be
written in the form z = y (mod t) . All other notation follows the

conventions set forth in [5].

As previously remarked, the commutative atoms of m-semigroups have
all been characterized, so that this paper deals exclusively with non-
commutative equational classes; that is, those in which the following full

abelian law does not hold;

By e &y =Ty e Ty for all permutations o of {1, ..., m} .

In addition, it was shown [5] that the remaining atoms are actually
m-groups in addition to being m-semigroups. The search for equationally
complete classes of m-semigroups has therefore been narrowed to special
classes of non-abelian m-groups. The reader may consult [2], [3], and [4]
for further information on m-groups; although the remaining classes are
recognized as m-groups, no use of their formal "group" properties will be
made in this paper. The definition of m-group is included here only for

the sake of completeness.

DEFINITION. An m-semigroup 4 is an m-group if, and only if, if in

the expression xl .'x:m = xm+1 any m symbols are fixed as elements of 4 ,

then the remaining symbol is an element of A , and is uniquely determined.

2. The semi-abelian law
The original definition of semiabelian was given by DSrnte as

=2 x ...x _x for m>2 .

By&p voe T 1%m = Tu m-1"1

12

Post, [6], generalized this definition to what he called u-semi-abelian,

as follows

T L, .en for u-lim-1 .

1%, u—lxll = xuxz oo u-lxl

If uy =2 then this is the usual abelian law. It should be noted also

that if py < m , this expression does not itself define a product, but one
merely needs to add the necessary m - p elements to each side to evaluate
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it. Post further defined formal "types" of semi~abelianism in a more
general context, where a formal type of semi-abelianism is given by a set

of expressions of the form

LALy eee Ty = :co(l) xo(k) .

where O is a permutation of {1, ..., k} .

Once again, if all the permutation of {1, ..., m} are included, then this

is the full abelian law; otherwise it is a weaker form. For each z, one

may compute the displacement of that letter namely |o(Z)-Z] . The
following result is due to Post [6].

LEMA 1 (Post). Every formal type of semi-abelianism, for m
fized, is equivalent to u-semi-abelian with W -1 = ged(m-1, 1.} , where

the Zi are the non-zero displacements of the letters in the formal type
of semi-abelianism.

It should be noted here that if an m~group satisfies any formal type
of semi-abelianism, then it is at least (m-1)-semi-abelian. The above
lemma, together with the following lemma due to Page and Butson [5], will
yield the proof of the main theorem.

LEMMA 2 (Page and Butson). Let V be a non-commutative idempotent
equational class of Lm « Then V either containe Zr’ ZZ sor PI, or

else it satisfies the identity :cm_ly =y = yxm_l s in which case V is a

variety of m-groups.

Since neither ZZ nor Pl are m-groups, any non-commtative

r’
variety of m-groups must necessarily satisfy the identity

xm_ly =y = ymm'l . Moreover it is also known that any non-idempotent

equational class of m-groups will contain an equationally complete class
of fully commutative m-groups (this is an adaptation of Theorem 5.1 of

[5]). The combination of these results will provide a proof of Theorem 1.
If V , a variety of m-groups, is non-idempotent or commutative, then it
contains a commutative atom. If it is idempotent and non-commutative then

Lemma 2 says that it satisfies mm'ly =y = yxm_l . But this last identity

is a formal type of semi-abelianism where the displacement of x = x is
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m -1, and hence V is (m-1)-semi-abelian by Lemma 1. The following

theorem has been proved.

THEOREM 1. Every equationally complete m-growp, m arbitrary, is
u-semi-abelian, where u-l|m-1 .

REMARKS. This theorem is Conjecture 8.1 of [4]. Notice in the
special case m = 2 , this result states that all group atoms are fully

abelian.

3. The use of the semi-abelian law in the case m = 4

In this section the semi-abelian law is specialized to the case
m=1.4 , and is used to help determine two infinite familjes of equationally
complete U-groups. The remaining work on determining the atoms will

depend upon the following theorem, which is stated in its general setting.

THEQREM 2. Let V be an equational class of algebras of type T ,
and let I be the set of identities satisfied by some equational subclass.
If a non-trivial relatively free I-algebra on n = 2 generators has no
non~trivial homomorphic images, then it gemerates an equationally complete

class.
Let Fn(I) be the relatively free I-algebra on n generators.
Because n 2 2 , Fn(I) itself is non-trivial. The class generated by I

contains an equationally complete class T , and that class contains the

algebra Fn(T) , Which is non-trivial. Because the class generated by I
contains the class T , and Fn(I) and Fn(T) are relatively free, any
map of the generators of Fn(I) onto the generators of Fn(T) can be

extended to a homomorphism. But there were no non-trivial homomorphisms of
Fn(I) by hypothesis. Hence, Fn(I) = Fn(T) ,and I =7 is equationally
complete.

In the remainder of this section the setting will be the Ul-group 4 ,

generated by elements a and b , where A satisfies the identities

xsy =y = y:c3 and xyzt = tyzx (Lb-semi-abelian). Thus any word of 4 is
a product of the letters a and b to the Oth, 1st or 2nd power.

LEMMA 3. FEvery word in A +is equal to one of the form a-w , where
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the length 1(w) of the term w <is congruent to zero modulo three.

If a word begins with the letter b , replace it by a3b .

LEMMA 4. 17 Os denotes the smallest congruence relating s and

t

t ]

t , then any congruence in A of the form © i8 equivalent to one
@, sa,

of the form oa,aw .

-1

Multiplying both sides of aw, = aw, (mod ©) on the right by w)

1

gives a = aw L (mod O) where wl is defined as follows:

271 1
i i - 3-1, 3—
if wl = al N an then wl = an cee al for ai =a

or b, and ik € {0, 1, 2} (mod 3)

LEMMA 5., BEvery term w with 1(w) = 0 (mod@ 3) can be written in

the form ankcm , where a=aab, b=aba, C =baa . The exponents
Js k, and m are non-negative integers and the terms a, b, and ¢ are

triads.

Because x3y =y , the triads aaa and bbb act as "identity triads"

and may be inserted or deleted without changing any product. The
remaining triads are bba = cb , bab = ca , and abb = ba . By using the
semiabelian law, the order of the triads may be arranged to group all the

a's together, all the b's together, and all the C's together.

REMARK, It is now clear that every word in A can be written in the

form a-ankcn . In the remainder of this section this word will be

denoted by alg, k, n)
The term abc = cba = (baa)(aba){aab) acts as an identity.

Therefore, since all the triads commute with each other, whenever abc
occurs in a product it may be deleted. Hence the following lemma holds.
LEMMA 6. Every word a(j, k, n) <s equal to one of the forms

alf ,k ,0 , alj , 0, k) or alo,d , k) .
LEMMA 7. The following congruences are equivalent: Oa,a(j,k,n) s
Oa

y 2 and 0

salk,n,g a,a(n,j,k) *

https://doi.org/10.1017/50004972700024266 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700024266

80 W.F. Page

Let a = a(g, k, n) = a~a‘7bkcn . Multiply both sides of this

congruence by a on the left and a2 on the right and reassociate triads.

This gives a aCJakbn = a(k, n, j) . The equivalence of the remaining

congruence is obtained similarly by multiplying both sides by a2 on the
left and a on the right.

LEMMA 8. If n|k, then Oa,a(o,o,n) implies ea,a(0,0,k) . If

nli, nlk, and G, k # 0, then 0O

,a(0,0,7) implies ©

a,a(0,4,k) *
To prove the first implication, let k = gn and a = ac™ . Then

k n n n n . n . n _
ac = acc® ... = (@M ...z (a) ... P, since ac” 2 a .

Iterating the replacement of the factors acn by a yields, in & steps,

ack Za . Because aC' = q iff ab” = a (by Lemma 7), the second part

of the theorem can be proved similarly. One iterates the replacement of
ac” by a and the replacement of ab™ by a to obtain
a(0, 7, k) = ab¥cF = a .

Now consider A with the additional congruence This

e .
a,a(0,0,p)
is the relatively free Ul-group on two generators with respect to these

relations. This U-group, denoted by @ has the following p2

2 E]
p
elements:
a= a(0, 0,0 =a(l,1,1)= = a{p, p, p)
a(0, 0, 1) =a(1,1,2) = ... = alp, p, 1)
a(0, p-1, p-1) = = a(p-1, p-2, p-2)
Now & 5 is a relatively free algebra, and for certain values of p
p

it will have no homomorphic images that are non-trivial. To verify this,

one must look closely at the congruences on @
p

5 * It will be necessary

only to consider congruences of the form ea,a(o,j,k) .

LEMMA 9. The congruence 8

2,a(0,8,848) 5 equivalent to
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ea,a(o,s'rt,t) )

Let a = a(0, 8, s+t) , then

a = a(0, 28, 28+2t) , using Lemma 8,
= a(0, s, stt)(0, &, s+t) , rearranging triads,
= a(0, &, s+t)(s, s+t, 0) , Lemma T,

= a(s, 2s+t, s+t) = a(0, s+t, t) , Lemma 6.

implies ©

LEMMA 10. The congruence 5 5
a,a(0,0,4°-7k+k%)

ea,a(O,j,k)

Let J >k . From
(1) a = af0, 4, k)
it follows that

(ii) a = a(0, j-k, §) by using Lemma 9.

By Lemma 8, (i) yields a = a(0, jk, k2) , and (ii) yields

a[O, (j—k)z, (j-k)j) . These two results together give the relation

a =

- 2 . 2 .2 . 2 . . . .
a = a(O, J=gk+k™, JT-gk+k ) . This last relation and the identity
a = a(fP-5k+k®, §2-jk+k?, j2-jk+k?) yield the desired result that

a = a0, 0, F2-jk+k?) .
LEMMA 11. In order that the number p be represented by the

quadratic form z2 -xy + y2 » 1t 18 necessary and sufficient that
p=1(mod3) or p=3.

Theorem 7, Section 2 [1] gives the necessary and sufficient condition

for a form with discriminant D to represent the number p as

22 = -D (mod lp) .

But this is true iff p 1is a quadratic residue mod 3 ; that is,
Pp=1{mod 3) or p=3.

If p=1 (mod 3) or p = 3, then there are integers j and k

such that ©

a,a(O,j,k) Hence

implies © =0 .
a.a(0,0,/%-j1r?)  @(0:0P)

there is a non-trivial congruence of @ > and, because the order of any
p
m-subgroup divides the order of the m-group, this homomorphic image must
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have order p . Then Qp s the homomorphic image of @ o has no non-
p
trivial homomorphic images because it is of prime order, and will

consequently generate an atomn.
If p =2 (mod 3) the representation result used in Lemma 11 will

lead to the fact that (jz—jk+k2, p) =1 for all j, k relatively prime

. T i1l 0 . i
to p hen not only will no 2,a(0,7 k) imply Ga,a(o,o,p) , but
instead any Oa,a(O,j,k) added to Oa,a(o,o,p) will yield the trivial
congruence Oa b Then & > has no non-trivial homomorphic images
tH]
p

because the identification of any two elements would involve a congruence

of the form ea,a(o,j,k)

theorem has been established.

which in turn yields G)a b The following
?

THEOREM 3. The following kh-groups each generate equationally

complete classes:

= . 3 _ -3 . -
sz =(a, b) with zy =y = yx~ and ea,a(o,o,p) s ¢f p =2 {(mod 3),
Q =({a, b) with z3y=y=yx3 and © .
P ’ a,a(0,4,k) *
where §° -k + k2 =p , if p=1 (md3) or p=3.
REMARK. The variety generated by Q3 is the previously identified
A3 of [5].

4. Conclusion

Previous work by Page and Butson [5] and Post [6] is used to prove the
conjecture (Page [4]) that every equationally complete m-group is at least
weakly commtative; that is, u~semi-abelian, where u-l|m-l . Use is
then made of this new tool in the special case m = 4 , where two
additional infinite families of equationally complete m-groups are
determined. Future work in this area may now take advantage of the crucial
semi-abelian property, and the fundamental position occupied by the number
theoretic lemmas in the case m =L suggests that elementary properties

of congruences may underlie even more the work for m >k .
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