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ADMISSIBLE SIGNIFICANCE TESTS
IN SIMULTANEOUS EQUATION

MODELS

THEODORE W. ANDERSON
Stanford University

Consider testing the null hypothesis that a single structural equation has specified
coefficients. The alternative hypothesis is that the relevant part of the reduced form
matrix has proper rank, that is, that the equation is identified. The usual linear
model with normal disturbances is invariant with respect to linear transformations of
the endogenous and of the exogenous variables. When the disturbance covariance
matrix is known, it can be set to the identity, and the invariance of the endoge-
nous variables is with respect to orthogonal transformations. The likelihood ratio
test is invariant with respect to these transformations and is the best invariant test.
Furthermore it is admissible in the class of all tests. Any other test has lower power
and/or higher significance level. In particular, this likelihood ratio test dominates a
test based on the Two-Stage Least Squares estimator.

1. INTRODUCTION

There is a considerable literature on statistical inference concerning a single struc-
tural equation in a simultaneous equation model. Much of the literature con-
cerns estimation of the coefficients of the single equation. Anderson and Rubin
(1949) developed the Limited Information Maximum Likelihood (LIML) estima-
tor on the basis of normality of the disturbances. When the disturbance covariance
matrix is known, the corresponding estimator is known as LIMLK. Anderson,
Stein, and Zaman (1985) showed that the LIMLK estimator is admissible for a
suitable loss function in a model corresponding to two simultaneous equations.
They showed that the LIMLK estimator was the best estimator invariant under
linear transformations that leave the model and loss function invariant. It follows
that the LIMLK estimator is admissible in the class of all estimators including
randomized estimators.

Anderson and Rubin (1949) also suggested a test of the null hypothesis, say, H0,
that the vector of coefficients of the endogenous variables, say, β, is a specified
vector, say, β0; the alternative hypothesis, say H2, is that β is unrestricted. The
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test is admissible if the equation is just identified, but not if the equation is over-
identified. Anderson and Kunitomo (2007) derived an alternative test by testing
H0 against H1: the equation is identified. This likelihood ratio criterion is the ratio
of the likelihood ratio criterion for testing H0 vs H2 to the likelihood ratio criterion
for testing H1 vs H2. (These two likelihood ratio criteria were given in Anderson
and Rubin, 1949; see also Anderson and Kunitomo, 2009.)

Anderson (1976, 1984) pointed out that a structural equation in a simultaneous
equation model is the same as a linear functional relationship in the statistical
literature. Creasy (1956) derived the likelihood ratio test of the slope parameter in
this model. Moreira (2003) derived the test in more generality; he called the test
the conditional likelihood ratio test.

The current paper treats the testing problem when the disturbance covariance
matrix is known and the number of endogenous variables in the single equa-
tion is two. It is anticipated that the theorems are valid when the disturbance
covariance matrix is estimated by the usual sample covariance matrix of residuals
and when the number of endogeneous variables in the equation is arbitrary. The
admissibility in general is anticipated, but has yet to be proved.

When the disturbance covariance matrix is known, a sufficient statistic is the
sample regression of the dependent variables on the independent variables, say P,
and the sample covariance of the independent variables, say A. The likelihood
ratio criterion is a function of P′AP, the distribution of which depends only on a
noncentrality parameter, say λ . It is shown that the likelihood ratio test is identical
to a Bayes test of H0 vs H1 conditional on this parameter λ . Thus for each λ this
conditional test of H0 vs H1 is the uniformly most powerful invariant test; that
is, the (conditional) test is admissible among tests for a specific noncentrality
parameter λ . Since this comparison does not depend on the value of λ , it holds
for every λ .

Now consider the class of all tests of H0 vs H1, not necessarily invariant, but
including randomized tests. By a version of the “Hunt–Stein theorem” the like-
lihood ratio test is admissible among all tests. This means that there is no test
with better significance level and/or better power. In particular, Two-Stage Least
Squares is inferior as an estimator and yields an inferior test procedure.

It should be noted that the admissibility properties in this paper are “exact,”
that is, the results are not asymptotic or approximate. However, the admissibility
property is a comparison of tests; it does not establish a distribution or significance
point.

2. A SIMULTANEOUS EQUATION MODEL

The observed data consist of a T ×G matrix of endogenous or dependent or non-
stochastic variables Y and a T ×K matrix of exogenous or independent variables
Z (G < K). A linear model (the reduced form) is

Y = ZΠ+V, (2.1)
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where Π is a K×G matrix of parameters and V is a T ×G matrix of unobservable
disturbances. The rows of V are assumed independent; each row has a normal
distribution N(0,Ω).

The coefficient matrix Π can be estimated by the sample regression

P = (Z′Z)−1Z′Y. (2.2)

The covariance matrix Ω can be estimated by (1/T )H, where

H = (Y −ZP)′(Y −ZP) = Y′Y−P′AP (2.3)

and A = Z′Z. The matrices P and H constitute sufficient statistics for the model.
A structural or behavioral equation may involve a T ×G1 subset of the endoge-

nous variables Y1, a T ×K1 subset of the exogenous variables Z1, and a T ×G1

subset of disturbances V1. The structural equation of interest is

Y1β1 = Z1γ1 +u, (2.4)

where u = V1β1 and V = (V1,V2). A component of u has the normal distribution
N(0,σ2), where σ2 = β′

1Ω11β1 and Ω11 is the G1 ×G1 upper-left submatrix of

Ω=

[
Ω11 Ω12

Ω21 Ω22

]
(2.5)

When Y, Z, V, and Π are partitioned similarly, the reduced form (2.1) can be
written

(Y1,Y2) = (Z1,Z2)

[
Π11 Π12

Π21 Π22

]
+(V1,V2) , (2.6)

where (Y1,Y2) is a T × (G1 +G2) matrix. The relation between the reduced form
and the structural equation is[
γ1

0

]
=

[
Π11 Π12

Π21 Π22

][
β1

0

]
=

[
Π11β1

Π21β1

]
. (2.7)

The second submatrix of (2.7),

Π21β1 = 0, (2.8)

defines β1 except for a multiplicative constant if and only if the rank of Π21 is
G1 − 1 (G1 < K1). In that case the structural equation is said to be identified.

In this paper we derive the likelihood ratio test of the null hypothesis

H0 : β1 = β0

against the alternative
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H1 : β1 is identified.

The goal of this paper is to show that this test is admissible. See Section 6.
Roughly speaking, it means that there is no other test that can have better power
everywhere. In developing this thesis it will be convenient to carry out the details
when γ1 is vacuous, that is, K1 = 0. Furthermore, we set G2 = 0 so that G = G1.
Then the reduced form and structural equation are

Y = ZΠ+V, Yβ = u. (2.9)

3. INVARIANCE AND NORMALIZATION

Exogenous Variables. The model (2.1) and H0 :β=β0 are invariant with respect
to linear transformations of the exogenous variables

Z+ = ZC, Π+ = C−1Π (3.1)

for C being nonsingular. Then

Z+Π+ = ZΠ, A+ = C′AC, P+ = C−1P, (3.2)

and

G+ = P+′A+P+ = P′AP = G, H+ = Y′Y−P+′A+P+ = H. (3.3)

Endogenous Variables. If the rank of Π is G− 1 (≤ K), the equation Πβ = 0
determines β except for a multiplicative constant. The “natural normalization” is

β′Ωβ = 1, (3.4)

which determines the constant except for sign. The model Y = ZΠ+V, Πβ = 0,
and (3.4) is invariant with respect to transformations

Y∗ = YΦ, Π∗ =ΠΦ, β∗ =Φ−1β, V∗ = VΦ, (3.5)

and

Ω∗ =Φ′ΩΦ, β0∗ =Φ−1β0, (3.6)

where Φ is nonsingular. Then

P∗ = PΦ, G∗ = P∗′AP∗ =Φ′P′APΦ=Φ′GΦ, (3.7)

and

H∗ =Φ′HΦ, Π∗β∗ =Πβ = 0, β∗′Ω∗β∗ = 1. (3.8)
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Now we consider the model (2.1) and Πβ = 0 when Ω (the covariance matrix
of a row of V) is known. In this case we can make a transformation (3.5) and (3.6)
so Ω= I. Then the first equation in (3.6) is

I = O′O, (3.9)

that is, the invariance with respect to transformations (3.7) and (3.8) is with re-
spect to orthogonal transformations. We shall use O to indicate an orthogonal
matrix. We can write (3.5) and (3.6) as

Y∗ = YO, Π∗ =ΠO, β∗ = O′β, V∗ = VO,

β0∗ = O′β0, β∗′β∗ = β′β = 1.
(3.10)

P∗ = PO, H∗ = O′HO,

P∗′AP∗ = O′P′APO.
(3.11)

The null hypothesis is β = β0.
The reader’s intuition can be helped by thinking of the case G = 2. A row of Y

is a point on a two-dimensional graph, say a map. The rotation by O corresponds
to rotating the map, that is, looking at the map from a different point of view. In
this study there is no preferred coordinate system.

4. A CANONICAL FORM FOR G = 2 AND POLAR COORDINATES

The main part of this paper concerns the model for Ω= σ2I2 and

G1 = G = 2, G2 = 0, K1 = 0, K2 = K ≥ 2. (4.1)

Then the vector β with natural parameterization satisfies

Πβ = 0, β′β = 1. (4.2)

We can parameterize β as

β =

[
cosθ
sinθ

]
, −π ≤ θ ≤ π . (4.3)

This is the polar or angular representation of the coefficient vector.
When the K × 2 matrix Π has rank 1, it can be parameterized as

Π= γα′, (4.4)

where γ is a K × 1 vector and

α=

[
−sinθ
cosθ

]
. (4.5)
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Note that

(β,α) =

[
cosθ −sinθ
sinθ cosθ

]
= O (4.6)

is an orthogonal matrix. The model is identified when γ �= 0. Since Ω is known,
a sufficient statistic in the model is P.

Now make a transformation (3.1) so A+ = C′AC = IK ; define Q = P+ = C−1P
and W = C′Z′V,

Π+ = να′, P′AP = Q′Q, ν = C−1γ, (4.7)

and α′α= 1. The model is

Q = να′+W. (4.8)

Here W = (w1,w2), E (W) = 0,

E (w1w′
1) = E (w2w′

2) = σ2IK , E (w1w′
2) = 0. (4.9)

The hypothesis β = β0 is equivalent to the hypothesis θ = θ 0 when
β = (cosθ ,sinθ )′ and is equivalent to the hypothesis α = α0 when α =
(−sinθ ,cosθ )′ and θ = θ 0.

Define λ by ν ′ν = λ 2. Then ν = λη, where η′η = 1. We call λ 2 =
trE QE Q′ = trνα′αν ′ = trνν ′ = ν ′ν the noncentrality parameter.

The density of Q is

1
(2πσ2)K e−

1
2 trW′W/σ 2

=
1

(2πσ2)K e−
1
2 tr (Q−να′)′(Q−να′)/σ 2

=
1

(2πσ2)K e−
1
2 tr (Q−ληα′)′(Q−ληα′)/σ 2

=
1

(2πσ2)K e(−
1
2 trQ′Q− 1

2 λ 2+λη′Qα)/σ 2
(4.10)

since λ 2tr(αη′ηα′) = λ 2 and λ tr(αη′Q) = λη′Qα.

5. THE LIKELIHOOD RATIO TEST

In this section we derive the likelihood ratio test of H0 :α=α0 vs H1 : E Q= να′
when Q has the likelihood defined by (4.10). The derivative of the logarithm of
(4.10) with respect to ν set equal to 0 gives

Qα= ν. (5.1)

Then

ν ′Qα= ν ′ν =α′Q′Qα=α′Gα, (5.2)
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where G = Q′Q. The logarithm of the likelihood maximized with respect to ν is
−K log(2π) plus

−1
2

[
trG−α′Gα

]
=−1

2
trG+

1
2
α′Gα. (5.3)

Let G = OtRO′
t , where

R =

[
r1 0

0 r2

]
, Ot =

[
cost −sin t

sin t cost

]
= (βt ,αt); (5.4)

that is, r1 ≤ r2 are the eigenvalues of G and (cos t,sint)′ and (−sin t,cost)′ are
the corresponding eigenvectors of G. Under H1 the likelihood is maximized by
α = (−sin t,cost)′ and (5.3) is − 1

2 r1. Under H0 the likelihood is maximized by
α=α0 = (−sinθ0,cosθ0)

′. Then

α0′Gα0 =α0′OtRO′
tα

0

= r1 sin2(t −θ0)+ r2 cos2(t −θ0)

= (r1 − r2)sin2(t −θ0)+ r2. (5.5)

The likelihood ratio criterion for testing θ = θ0 in the model (4.10) is

e−
1
2 (r2−r1)sin2(t−θ0). (5.6)

Note that the problem is invariant with respect to the group of transformations

α−→ Oaα, α0 −→ Oaα
0, η −→ Obη,

θ −→ θ + a, θ0 −→ θ0 + a.
(5.7)

The parameters that are invariant are the noncentrality parameter λ 2 and the dif-
ference in angles θ −θ0. We shall consider testing H0 : θ = θ0 for each fixed λ .
We want to separate the effect of the testing procedure from the effect of the non-
centrality parameter.

6. DEFINITION OF ADMISSIBILITY OF TESTS

Consider a family of densities f (y|ω) defined over a sample space Y and a
parameter space Ω. The parameter space is partitioned into two disjoint sets Ω0

representing the null hypothesis and Ω1 representing the alternative. A set A in
the sample space represents the acceptance of the null hypothesis.

DEFINITION 6.1. A test A is as good as B if

Pr(A |ω)≥ Pr(B|ω), ω ∈Ω0, (6.1)

Pr(A |ω)≤ Pr(B|ω), ω ∈Ω1. (6.2)
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DEFINITION 6.2. A is better than B if the equations above hold with strict
inequality for at least one ω .

DEFINITION 6.3. A is admissible if there is no B better than A.

See, for example, Anderson (2003, Def. 5.6.3) or Lehmann (1986, Sect. 1.8).
Admissibility of a likelihood ratio test asserts that

Pr{Accept H0|H0, LR} ≥ Pr{Accept H0|H0, competing test}, (6.3)

Pr{Accept H0|H1, LR, λ} ≤ Pr{Accept H0|H1, competing test, λ}. (6.4)

In the terminology of economics the LR test is Pareto-optimal.
The inequality (6.3) says that LR is at least as good as the competitor with

respect to significance level, that is, probability of acceptance of the null hypoth-
esis, at each parameter point ω in the null hypothesis. The inequality (6.4) says
that LR is at least as good as the competitor with respect to power. Note that the
comparison of the two tests is made for each parameter point ω . In the testing
problem considered in Sections 6 and 7, Q = ληα′+W, the invariant parameters
are essentially the noncentrality parameter λ and the difference between the null
hypothesis angle θ0 and the model value of θ . Thus ω = (λ ,θ −θ0). The model
is invariant with respect to transformations (5.7).

7. DENSITY OF G

The matrix G = Q′Q has the noncentral Wishart distribution with K degrees of
freedom, covariance σ2I2, and noncentrality matrix

(ληα′)′(ληα′) = λ 2αα′. (7.1)

See Anderson and Girshick (1944). The density or likelihood of G is

e−
1
2 λ 2− 1

2 trG|G| 1
2 (K−3)

2
1
2 K+1π

1
2 Γ

[
1
2(K − 1)

](λ 2α′Gα)−(K−2)/4I 1
2 (K−2)

(
λ
√
α′Gα

)
, (7.2)

where

I 1
2 (K−2)(z) =

(
1
2

z

) 1
2 (K−2) ∞

∑
j=0

(
z2

4

) j
1

j!Γ( 1
2 K + j)

(7.3)

is the modified Bessel function of order (K−2)/2 (Abramowitz and Stegun, 1972,
(9.6.10) on p. 375); see also Appendix B. The first factor in (7.2) is a constant
times the central Wishart density.

Transform G (2×2) to (r1,r2, t). The Jacobian of the transformation is r2 − r1;
see Appendix A. The density of r1,r2 and t (−π ≤ t ≤ π) is

(r2 − r1)e−
1
2 λ 2− 1

2 (r1+r2)(r1r2)
1
2 (K−3)

2
1
2 K+1π

1
2 Γ

[
1
2 (K − 1)

] I∗1
2 (K−2)

(λ 2c2), (7.4)
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where

c2 =α′OtRO′
tα

=α′
θ−tRαθ−t

= r1 sin2(t −θ )+ r2 cos2(t −θ )
= r2 − (r2 − r1)sin2(t −θ ), (7.5)

I∗1
2 (K−2)

(λ 2c2) =

(
λ c
2

)− 1
2 (K−2)

I 1
2 (K−2)(λ c)

=
∞

∑
j=0

(
λ 2c2

4

) j
1

j!Γ
(

1
2 K + j

) . (7.6)

Let

n(r1,r2) =
(r2 − r1)(r1r2)

1
2 (K−3)e−(r1+r2)/2

2
1
2 K+1π 1

2 Γ
[

1
2 (K − 1)

] . (7.7)

Then the density of r1,r2, and t is

h(r1,r2, t|θ ,λ ) = n(r1,r2)e
− 1

2 λ 2
I∗1

2 (K−2)
(λ 2c2). (7.8)

8. LIKELIHOOD RATIO CRITERION IN TERMS OF G

The density (i.e., likelihood) of r1, r2, and t given λ and

H0 : θ = θ0 (8.1)

is

max
H0

Lhd = n(r1,r2)e
−λ 2/2I∗1

2 (K−2)
(λ 2c2

0), (8.2)

where

c2
0 = r1 sin2(t −θ0)+ r2 cos2(t −θ0) = r2 − (r2 − r1)sin2(t −θ0). (8.3)

The likelihood is maximized with respect to θ (given λ ) for

H1 : −π ≤ θ ≤ π (8.4)

at θ̂ = t. Then

max
H1

Lhd = n(r1,r2)e
−λ 2/2I∗1

2 (K−2)
(λ 2r2). (8.5)

The likelihood ratio criterion for testing H0 : θ = θ0 against the alternative H1 :
−π ≤ θ ≤ π given λ is
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LRC =
maxH0 Lhd
maxH1 Lhd

=
I∗1

2 (K−2)
(λ 2c2

0)

I∗1
2 (K−2)

(λ 2r2)

=
I∗1

2 (K−2)

{
λ 2

[
r2 − (r2 − r1)sin2(t −θ0)

]}
I∗1

2 (K−2)
(λ 2r2)

. (8.6)

The function I∗1
2 (K−2)

(λ 2c2
0) is an increasing function of λ 2c2

0, and c2
0 is an

increasing function of (r2 − r1)sin2(t −θ0), hence I∗1
2 (K−2)

(λ 2c2
0) is decreasing in

(r2 − r1)sin2(t − θ0). The acceptance region of the likelihood ratio test of H0 :
θ = θ0 given λ can be written in terms of

(r2 − r1)sin2(t −θ0)≤ function of r1, r2, and λ . (8.7)

Note that the likelihood ratio criterion (the left side of (8.7)) does not depend
on the parameter λ . However, the probability of acceptance does depend on λ .
When the null hypothesis is true, the distribution of the LRC does not depend on
θ0; that is, the distribution is invariant with respect to transformation (3.10). The
maximum likelihood estimator of θ is θ̂ = t; the maximum likelihood estimator
of β is β̂ = βθ̂ .

The likelihood ratio criterion when λ is considered as a parameter could be
derived from the model (4.10); that is equivalent to the hypothesis β= βθ0

, when
β′β = 1. The likelihood of (4.10) is maximized with respect to ν for fixed θ at
ν̂ = Qα yielding a maximized likelihood of

1
(2π)K e−

1
2 trQ′Q+ 1

2α
′Q′Qα =

1
(2π)K e−

1
2 (trG−α′Gα)

=
1

(2π)K e−
1
2 trR+ 1

2 c2
. (8.8)

Under the null hypothesis c2 is

c2
0 = r2 − (r2 − r1)sin2(t −θ0). (8.9)

Under the alternative H1 the maximum of the likelihood (8.8) occurs at θ = 0 and
c2 = r2. Then the likelihood ratio criterion for testing H0 vs H1 is

e−
1
2 (r2−r1)sin2(t−θ0). (8.10)

However, to carry out the admissibility argument requires explicit treatment for
each value of λ . See Anderson and Kunitomo (2009).

9. BAYES TEST

We now formulate the testing problem as a 2-decision problem: θ = θ0 vs θ �= θ0

with the loss function L(θ ,a), where the action a is accept H0 or reject H0.
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Action
L(θ ,a) Accept H0 Reject H0

Parameter θ = θ0 0 1
θ �= θ0 1 0

A test (or decision rule) is a function d(r1,r2, t) taking values a = accept H0

and a = reject H0. The risk of a test is the expected loss

R(θ ,λ ,d) =
∫ ∞

0

∫ r2

0

∫ π

−π
L [θ ,d(r1,r2, t)]h(r1,r2, t|θ ,λ )dt dr1 dr2 (9.1)

as a function of θ and λ . The average risk of a procedure with prior distribution
P(θ ) is

R∗ [P(·),λ ,d] =
∫ π

−π
R(θ ,λ ,d)dP(θ ). (9.2)

We suppose the distribution P(θ ) has a jump of Pr{θ = θ0} at θ0 and a density
[1−Pr{θ = θ0}]p(θ ) for θ �= θ0. Then

R∗ [P(·),λ ,d] = Pr{θ = θ0}Pr{rejectH0|θ0,λ}
+[1−Pr{θ = θ0}]

∫ π

−π
Pr{accept H0|θ ,λ}p(θ )dθ

= Pr{θ = θ0}
∫

R
h(r1,r2, t|θ0,λ )dr1 dr2 dt

+[1−Pr{θ = θ0}]
∫

A
h̄(r1,r2, t|λ )dr1 dr2 dt, (9.3)

where R is the rejection set of r1,r2, t and A is the corresponding acceptance set,
and

h̄(r1,r2, t|λ ) =
∫ π

−π
h(r1,r2, t|θ ,λ )p(θ )dθ (9.4)

is a density. The average risk can be written as

R∗ [P(·),λ ,d] = Pr{θ = θ0}+
∫

A

{
[1−Pr{θ = θ0}] h̄(r1,r2, t|λ )

−Pr{θ = θ0}h(r1,r2, t|θ0,λ )} dr1 dr2 dt. (9.5)

The average risk R∗[P(·),λ ,d] is minimized by the largest acceptance set A for
which

[1−Pr{θ = θ0}] h̄(r1,r2, t|λ )−Pr{θ = θ0}h(r1,r2, t|θ0,λ )≤ 0, (9.6)

that is, the largest set A for which

A :
h(r1,r2, t|θ0,λ )

h̄(r1,r2, t|λ )
≥ 1−Pr{θ = θ0}

Pr{θ = θ0} . (9.7)
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THEOREM 9.1. For each λ the Bayes test of H0 : θ = θ0 vs H1 : θ �= θ0 when
H0 has the prior probability [1−Pr{θ = θ0}] and H1 has the prior probability
Pr{θ = θ0} with density p(θ ) (θ �= θ0), has the acceptance set (9.7).

The Bayes test is essentially obtained by applying the Neyman–Pearson
Fundamental Lemma to h(r1,r2, t|θ0,λ ) and h̄(r1,r2, t|λ ).

When

p(θ ) =
1

2π
, −π ≤ θ ≤ π , (9.8)

the denominator of the left-hand side of (9.7) is

h̄(r1,r2,λ )

= n(r1,r2)e
− 1

2 λ 2 1
2π

∫ π

−π

∞

∑
j=0

(
λ 2

4

) j
1

j!Γ
[

1
2 K + j

] [r2 − (r2 − r1) sin2(t −θ)
] j

dθ

= n(r1,r2)e
− 1

2 λ 2
∞

∑
j=0

(
λ 2

4

) j
1

j!Γ
[

1
2 K + j

] 1
2π

∫ t+π

t−π

[
r2 − (r2 − r1) sin2 x

] j
dx

= n(r1,r2)e
− 1

2 λ 2
fK(r1,r2,λ ), (9.9)

where

fK(r1,r2,λ ) =
∞

∑
j=0

(
λ 2

4

) j
1

j!Γ
[

1
2 K + j

] 1
2π

∫ π

−π

[
r2 − (r2 − r1)sin2 x

] j
dx. (9.10)

The integrand in (9.10) is nonnegative and less than r j
2; hence, the sum converges

and fK(r1,r2,λ ) is well-defined. Then the left-hand side of (9.7) is

h(r1,r2, t|θ0,λ )
h̄(r1,r2, t|λ )

=
I∗1

2 (K−2)
(λ 2c2)

fK(r1,r2,λ )
. (9.11)

The numerator of the LRC and the left-hand side of (9.7) are the same.
The conclusion is that a LR test can be expressed as a Bayes test for a prior of

the uniform distribution for the parameter θ .

THEOREM 9.2. The likelihood ratio test for H0 : θ = θ0 vs H1 : θ �= θ0 is a
Bayes test for a prior density 1/(2π).

10. ADMISSIBILITY OF INVARIANT TESTS

See Section 5.6.2 of Anderson (2003), for example. If the sets A and B are
invariant with respect to a group of transformations, the test with acceptance set
A is known as an admissible invariant test.

THEOREM 10.1. The Bayes test with acceptance region (9.7) is an admissible
invariant test of H0 vs H1.
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Proof. Let the Bayes test for Pr{θ = θ0} and the density p(·) be given
by (9.7), resulting in the average risk R∗[p(·),λ ,dB]. If this test is not admissible,
then there is a test d∗ that is better than dB, that is,

R∗ [p(·),λ ,d∗]≤ R∗ [p(·),λ ,dB] (10.1)

for all θ and λ with strict inequality for some θ and λ . However, this assertion
contradicts the construction of the Bayes test dB. �

The conclusion is that the LR test is an admissible invariant test.
The invariance involved here is with respect to certain linear transformations.

This consideration is a generalization of the notion that the questions at issue do
not depend on the unit of measurement; for example, inches vs feet vs meters
or pounds vs kilograms or radians vs degrees. The linear transformations do not
affect the inference problems for which the model is used.

11. ADMISSIBILITY OVER ALL TESTS

11.1. General Theorem

Now we consider admissibility with respect to all tests. We assert that the best
invariant test of θ = θ0 is admissible within the class of all tests; in particular, a LR
test is admissible within the class of all tests. The idea is that a family of tests —
invariant or not — can be transformed to a family of randomized invariant tests;
if the original family of invariant tests is admissible within the class of invariant
tests, the transformed family is admissible within the class of all tests.

We apply the so-called “Hunt–Stein theorem” to the effect that the best
invariant test is admissible in the class of all tests if the group of transformations
defining invariance is finite or compact. See Zaman (1996, Sect. 7.9) or Lehmann
(1986, Thm. 7 of Chap. 3). The proofs of such theorems are based on the argu-
ment that the randomization of the noninvariant tests yields an invariant test that
is as good as the noninvariant test.

In the model

Q = ληα′+W (11.1)

for fixed λ , each parameter vector η and α take values in closed sets η′η = 1
and α′α= 1, which are therefore compact and satisfy the Hunt–Stein conditions.

THEOREM 11.1. The LR test of θ = θ0 is admissible in the set of all tests.

11.2. An Example

To illustrate the Hunt–Stein theory, consider the model in which θ can take on a
finite number of values, say

θ = 0,
1
N

2π ,
2
N

2π , . . . ,
N − 1

N
2π . (11.2)

Note that α′ = (−sinθ ,cosθ ). Consider the group of transformations
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θ −→ θ +
j

N
2π , t −→ t +

j
N

2π , j = 0,1, . . . ,N − 1. (11.3)

Let these values of θ be labeled as θ ∗
0 ,θ

∗
1 , . . . ,θ

∗
N−1. Each of them corresponds to

a null hypothesis. Define a test of the hypothesis θ = θ ∗
k by the acceptance region

A∗
k = A∗

k(t,r1,r2) in the space of t,r1,r2. The set of tests is an invariant set if

A∗
k(t −θ ∗

k ,r1,r2) = A∗
j(t −θ ∗

j ,r1,r2) (11.4)

for k, j = 0,1, . . . ,N − 1.
The LR test of the hypothesis θ = θ ∗

i against the alternative θ = θ ∗
j for some

j = 0,1, . . . ,N − 1 is the Bayes solution for the hypothesis θ = θ ∗
i for prior

probabilities

Pr{θ = θ ∗
j }=

1
N
, j = 0,1, . . . ,N − 1. (11.5)

Suppose the set of tests are not necessarily invariant; that is, (11.4) does not
necessarily hold. We can randomize these N tests by defining an invariant ran-
domized test.

The acceptance region A∗
k(t,r1,r2) can be adapted to test θ = θ ∗

i by subtracting
θ ∗

k from A∗
k(t,r1,r2) and adding θ ∗

i , which is the region A∗
k(t − θ ∗

k + θ ∗
i ,r1,r2).

A randomized test for the null hypothesis θ = θ ∗
i has acceptance region

1
N

N−1

∑
k=0

A∗
k(t −θ ∗

k +θ ∗
i ,r1,r2). (11.6)

The set of such tests for θ ∗
i , i = 0,1, . . . ,N − 1, is an invariant set.

LEMMA 11.1. If a test with an invariant family of acceptance regions
A0,A1, . . . , AN−1 is admissible in the set of invariant tests, it is admissible in the
set of all tests.

Proof by Contradiction. Suppose Ā0, . . . , ĀN−1 is a family of better tests (not
necessarily invariant). Then the invariant randomized tests based on Ā0, . . . , ĀN−1

is better than the family of A0, . . . ,AN−1. But this contradicts the assumption that
A0, . . . ,AN−1 is admissible in the set of invariant tests. �

12. COMMENTS

12.1. Invariance with Respect to Linear Transformations of
Exogenous Variables

In the model (2.1) Y = ZΠ+V a linear transformation of Z and Π (Z+ = ZC
and Π+ = C−1Π) leaves ZΠ invariant and hence does not affect the model.

Similarly, the transformation does not affect the equation Πβ= 0, in particular
the null hypothesis Πβ0 = 0. This property is a generalization of the idea that the
model and the problem do not depend on the units of measurement. This property
implies that a test can be based on G = P′AP.
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12.2. Invariance with Respect to Orthogonal Transformations of
Endogenous Variables

When Ω = I is assumed, an orthogonal transformation of the disturbance
V → VO and a corresponding transformation of β, β → O′β and of the null
hypothesis β0 → O′β0 do not affect the equations, β = β0 and β′β = 1. In the
G−space this transformation is a rotation of coordinates.

12.3. Conclusions

Theorem 11.1 states that the LR test of H0 : α=α0 vs H1 : E Q = ληα′ (η′η= 1,
α′α= 1) is admissible in the class of all (randomized) tests. This implies that given
any test of H0 vs H1 in the model E Q = ληα′ there is an LR test that is better than
that test. Thus the statistician need only consider (randomized) LR tests.

Note that the comparison of a given test with respect to α holds for each spec-
ified λ . The theorem does not indicate how to establish the significance level for
a specific λ . The analysis assumes that the system is in equilibrium; that is, that
(4.8) holds for all T .
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APPENDIX A: Jacobian

The representation of G = OtRO′
t in components is[

g11 g12

g21 g22

]
=

[
r1 cos2 t + r2 sin2 t (r1 − r2)cos t sint

(r1 − r2)cos t sin t r1 sin2 t + r2 cos2 t

]
. (A.1)

The matrix of partial derivatives of g11,g22,g12 with respect to r1, r2 and t is⎡
⎢⎣

cos2 t sin2 t −2(r1 − r2)cos t sint

sin2 t cos2 t 2(r1 − r2)cos t sint

cos t sint −cos t sin t (r1 − r2)(cos2 t − sin2 t)

⎤
⎥⎦ . (A.2)

The Jacobian of the transformation is the absolute value of the determinant of (A.2) which
is r2 − r1.

APPENDIX B: The Noncentral Wishart Distribution

Let Q = ληα′+W, and

Q =

[
Q′

1

Q2

]
, η =

[
1

0

]
, α=

[
1

0

]
, W =

[
w′

1

W2

]
, (B.1)

where Q2 and W2 are (K − 1)×G, Q1 and w1 are G× 1, η is K × 1 and α is G× 1.
Note that η′η = 1 = α′α. The rows of W are independently normally distributed with
means 0 and covariance matrix IG. Then Q′

2Q2 = G2 has a (central) Wishart distribution
W (IG,K −1) with density

|G2| 1
2 (K−G−2)e−

1
2 trG2

2
1
2 (K−1)GπG(G−1)/4 ∏G

i=1Γ
[ 1

2 (K − i)
] (B.2)

(Anderson, 2003, Thm. 7.2.2). The vector q′1 = (q11,q′12) has the density

1

(2π)
1
2 G

e−
1
2 (q11−λ )2− 1

2 q′12q12 . (B.3)

The joint density of the matrix G2 and the vector q′1 is the product of (B.2) and (B.3). The
joint density of G = q1q′1 +G2 and q1 is

|G−q1q′1|
1
2 (K−G−2)e−

1
2 trG+λq11−λ 2/2

2
1
2 KGπG(G+1)/4 ∏G

i=1Γ
[ 1

2 (K − i)
]

=
|G| 1

2 (K−G−2)(1−q′1G−1q1)
1
2 (K−G−2)e−

1
2 trG+λq11−λ 2/2

2
1
2 KGπG(G+1)/4 ∏G

i=1Γ
[ 1

2 (K − i)
] . (B.4)

See Corollary A.3.1 of Anderson (2003), for example.

https://doi.org/10.1017/S0266466616000542 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000542


550 THEODORE W. ANDERSON

The noncentral Wishart density of G is the integral of (B.4) with respect to the vector
q′1 = (q11,q′12) over the range for which 1−q′1G−1q1 is positive. Anderson and Girshick
(1944) carried out the algebraic details of this integration.

THEOREM B.1. The density of G = Q′Q, where Q = ληα′ + W, η = (1,0)′, and
α = (1,0)′, is

e−(1/2)λ 2−(1/2)trG

2(1/2)KG−(1/2)(K−2)πG(G−1)/4 ∏G−1
i=1 Γ

[ 1
2 (K − i)

] |G| 1
2 (K−G−1)I∗1

2 (K−2)(λ
2g11) (B.5)

where

I∗1
2 (K−2)(z

2) =
∞

∑
j=0

(
z2

4

) j
1

j!Γ
(K

2 + j
) . (B.6)

APPENDIX C: Neyman–Pearson Fundamental Lemma

Let p0(x) and p1(x) be two densities defined for x in some (finite) Euclidean space.
Consider testing the null hypothesis that the density of x is p0(x) against the alternative
that the density is p1(x). The significance level of the test is defined as

α = Pr{rejecting H0|sampling p0(x)}.

The power of the test is defined as

Pr{rejecting H0|sampling p1(x)}.

The most powerful test of H0 given the significance level α is defined by the rejection
region

p0(x)
p1(x)

≤ k

for the minimum k. See Problem 6.4 of Anderson (2003), for example.

https://doi.org/10.1017/S0266466616000542 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000542

