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Abstract
The spatial distribution of beams with orbital angular momentum in the far field is known to be extremely sensitive to
angular aberrations, such as astigmatism, coma and trefoil. This poses a challenge for conventional beam optimization
strategies when a homogeneous ring intensity is required for an application. We developed a novel approach for
estimating the Zernike coefficients of low-order angular aberrations in the near field based solely on the analysis of the
ring deformations in the far field. A fast, iterative reconstruction of the focal ring recreates the deformations and provides
insight into the wavefront deformations in the near field without relying on conventional phase retrieval approaches. The
output of our algorithm can be used to optimize the focal ring, as demonstrated experimentally at the 100 TW beamline
at the Extreme Light Infrastructure - Nuclear Physics facility.
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1. Introduction

The rapid advancement of laser technology makes it possible
to reach extremely high intensities in the laboratory[1], which
in turn provides new insights into physics processes that have
never been observed experimentally so far. Such a prospect
motivates curiosity-driven scientific programs worldwide,
complemented by a rapid transfer to industrial and societal
applications[2].

Reaching the highest intensities systematically requires the
concomitant maximization of the laser energy and minimiza-
tion of the laser pulse duration as well as the surface area
or laser spot size. This simple consideration has conditioned
the development of short pulse lasers of larger and larger
dimensions, from the original table-top solutions of the
1980s[3] to high-intensity lasers that fill buildings of the size
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of several sport halls[4]. Increasing the laser energy does
not only come at the cost of a larger footprint of the laser;
but also requires increasing the beam size to several tens
of centimeters to keep the laser intensity below the damage
threshold of its optical components. This renders large-scale
facilities particularly susceptible to aberrations up to the
point where active countermeasures have to be taken. For this
purpose, modern laser systems employ adaptive optics (AO),
yielding significant success in the optimization of the focal
spot intensity. During the last decades, however, interest in
experiments using tailored spatial intensity distributions in
the far field (FF) arose as structured light with ultrahigh
intensities grants access to a variety of experiments.

A sought-after beam profile is characterized by a central
optical vortex, generating orbital angular momentum (OAM)
in the beam, where an additional phase term in the form
of eiφl with the angle φ around the vortex center and the
quantum number l quantifies the OAM. The unique spa-
tial intensity distribution of this type of beam, commonly
referred to as a ‘donut-like’ pattern, has been shown in
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theoretical studies to possess desirable features for various
high-intensity laser applications. These include schemes
involving particle acceleration, OAM transfer, generation
of high-strength solenoidal magnetic fields in microscopic
regions and novel geometries in laser wakefield acceleration
in underdense plasmas[5–10].

However, the practical implementation and experimental
studies of such beams have encountered limitations, primar-
ily due to the degradation of the intensity pattern in the
FF[11]. Our investigations have shown that this degradation
is caused by the high sensitivity of Laguerre–Gaussian-like
beams to low-order angular wavefront (WF) aberrations, par-
ticularly when compared to regular beams without OAM[12].
Specifically, we have identified an increased sensitivity of the
focus towards astigmatism, coma and trefoil in the Zernike-
sense, which vary in angular direction.

Due to this high degree of sensitivity, conventional WF
measurements in the near-field (NF) or ‘equivalent target
plane’[13] approaches are hardly sufficient to optimize the
ring shape in the focal plane. The main challenge here lies
in the simultaneous action of non-common path aberrations
and an increased sensitivity to those. The only way to
circumnavigate this issue is to measure the phase directly in
the FF. While phase retrieval[14] is traditionally used to tackle
this issue, this approach is challenging to implement at high-
intensity laser facilities as it requires high standards of the
quality of the recorded data.

With the presence of OAM, however, the high sensitivity
of the ring itself can be used to infer knowledge about the
aberrations that are present in the NF. In this work, we
propose and experimentally demonstrate a routine called
Zernike-coefficient Extraction via Helical Beam Reconstruc-
tion for Optimization (ZEHBRO), which quickly retrieves
low-order aberration coefficients from recordings of the
FF fluence distribution to improve the control of beams
with OAM. ZEHBRO uses a straightforward approach to
retrieve quantitative information about the amplitude of the
astigmatism, coma and trefoil in the NF of the beam and can
thus aid the beam optimization in a more direct way than
regular WF diagnostics.

The ZEHBRO method operates in two steps based on
an intuitive approach that analyzes beam inhomogeneities
and distortions. First, it extracts the ring intensity from the
focus and obtains relevant descriptors using a fast Fourier
transform (FFT). Second, it employs an iterative simulation
process to find the Zernike coefficients that recreate these
descriptors. This unique methodology relies solely on single
FF measurements, eliminating the complications associated
with non-common path aberrations commonly encountered
in traditional WF sensing techniques, while still being sig-
nificantly easier and faster than classical phase retrieval
approaches. In the following, we first describe the beam
characterization routine in detail. Afterwards, we present the
findings of a numerical study in Section 3, which aimed

at assessing the precision and robustness of this approach.
Furthermore, we lay out some considerations that are rele-
vant to the application of ZEHBRO in practice in Section 4.
Lastly, we demonstrate the applicability of ZEHBRO in a
real-world application, namely at the 100 TW beamline of
the Extreme Light Infrastructure - Nuclear Physics (ELI-NP)
high-intensity laser facility in Măgurele, Romania, and we
discuss the limitations and advantages of this characteriza-
tion method.

2. Zernike-coefficient extraction via helical beam recon-
struction for optimization

In a previous work, we characterized the impact of low-order
Zernike aberrations in top-hat circular beams with an OAM
of l = 1 onto the shape of the ring focus in the FF[12]. It
became apparent that the focal spot is extremely sensitive
to aberrations, which vary in angular direction, namely the
coma, astigmatism and trefoil.

Regular approaches to WF optimization, for example,
closed-loop AO with a wavefront sensor (WFS) in the NF,
are only of limited use when these aberrations shall be
eliminated in the FF with sufficient precision to maintain a
homogeneous ring structure. This is mostly due to the pres-
ence of spatially varying optical path differences between the
main and diagnostics arms, which is especially problematic
for lasers with large beams that need downsizing in order to
match the aperture of the WFS.

For this reason, we figured that the shape of the ring focus
itself, and more specifically its uniformity, usually serve
best as a reference for optimization. We decided to quantify
this approach and develop a technique to directly extract a
selection of Zernike aberrations from the FF of these beams
without the necessity to implement a phase retrieval algo-
rithm or the significant effort to set up a machine-learning-
based AO loop[15], which are both much harder to do.

Specifically, we consider the Zernike aberrations with a
Noll-index[16] from 5 to 10. This excludes the first four
polynomials, as the piston and tip/tilt (indices 1–3) do
not change the shape of the distribution, while defocusing
(index 4) cannot be detected by the algorithm we are about
to describe. Due to the self-similar diffraction of Laguerre–
Gaussian beams, the latter does not deteriorate the ring
shape and can thus be treated with regular optimization
strategies. Throughout this paper, we will therefore write the
corresponding coefficients for each WF in vectorial form:

�z =

⎛
⎜⎜⎜⎜⎜⎜⎝

z5 → Astigmatism Oblique
z6 → Astigmatism Vertical
z7 → Coma Vertical
z8 → Coma Horizontal
z9 → Trefoil Vertical
z10 → Trefoil Oblique

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1)
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In the following, we describe our extraction technique,
which we call ZEHBRO. It mainly consists of two steps:

(1) an analysis routine that extracts characteristic, scalar
descriptors from an FF image;

(2) an iterative routine which simulates an FF that recre-
ates the extracted descriptors as closely as possible in
order to retrieve the Zernike coefficients of low-order,
angular aberrations.

2.1. Descriptor extraction

The first of the two core concepts of ZEHBRO is the
extraction of a set of descriptors from a recording of the
FF fluence. Ideally, each descriptor varies strongly with only
one of the investigated aberrations and only weakly with the
others. In this way, a quasi-diagonal transfer matrix between
the descriptors and the Zernike base can be formulated,
which greatly contributes to a fast convergence of the FF
recreation, which we describe later.

In our previous work[12], we considered the ring intensity,
that is, the intensity curve along the cusp of the ring focus,
and described an algorithm to obtain it from real or simulated
data (briefly summarized, this works by generating radial
lineouts from the ring center and using bilinear interpolation
to obtain the intensity at each peak position). In doing so,
we found that the ring intensity varies periodically when
pure angular aberrations are introduced. This is depicted in
Figure 1 for astigmatism, coma and trefoil.

The FFT of the normalized ring intensity reflects this
behavior, where the amplitude and phase of these oscil-
lations can be found in the first three non-zero-frequency
coefficients. When split into the real and imaginary parts
and reordered appropriately (see the bottom of Figure 1), we
obtain a descriptor vector

�dᵀ = (d5 d6 d7 d8 d9 d10) .

where the subscript of each element corresponds to the
Noll-index of the associated Zernike aberration. It therefore
matches the notation of the Zernike coefficients (Equa-
tion (1)), which we use throughout this publication.

In order to judge if these descriptors are suitable, that
is, one descriptor reflects the amplitude of the associated
Zernike aberration as purely as possible, we extracted the
descriptors for simulated focal rings under varying amounts
of pure Zernike aberrations. Figure 2 shows the results for
the considered aberrations. The coefficients correspond to
the normalization where

∫ 2π

0

∫ 1
0 r ·Z(i)(r,θ)2drdθ = π . In this

depiction, two things become apparent:

• First, each descriptor varies approximately proportional
to the associated aberration around the aberration free
case, while there is no proportionality for any of the
other descriptors.

Figure 1. Simulated examples for the ring characterization in ZEHBRO
for a Zernike coefficient of λ/20 (according to the Zernike normalization
mentioned in the text) of astigmatism (left), coma (center) and trefoil
(right). The WF map is shown in the top row and the corresponding FF
below. The black line indicates the position for the ring intensity extraction,
which is shown in the third row. The last row shows the absolute values of
the first four FFT coefficients of the ring intensity, which can be rearranged
to the descriptor vector (bottom).

• Second, the linear behavior only exists very close to the
aberration free case. Beyond that, nonlinear behavior or
mixing with different descriptors occurs.

This already indicates that a linear transfer from the
descriptor space to the Zernike space cannot be done. Fur-
thermore, nonlinear mixing between the descriptors may
occur when more than one Zernike aberration is present,
occluding the real composition of the aberrations in the NF.
Therefore, a more advanced approach is necessary to extract
the coefficients from the FF.

2.2. Iterative FF reproduction

A straightforward approach for this step is to simulate focal
rings with a measured intensity distribution in the NF and
an assumption for the Zernike coefficients (e.g., all zero)
and change the coefficients in an iterative manner until the
descriptors of the simulated focal spot match the descriptors
of the recorded focal spot. Here, the new estimation of each
iteration can be done using the knowledge of the descriptor
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Figure 2. The descriptor values for simulated donut foci under a varying
amount of each of the six pure Zernike aberrations considered by ZEHBRO.
The gray dashed line shows the slope in the origin, belonging to the
descriptor associated with the aberration whose amplitude varies along the
X-axis.

slopes around the origin, as depicted in Figure 2 with dashed
lines. Using a vector of the reciprocal of these gradients

�γ ᵀ = (
γ5 γ6 γ7 γ8 γ9 γ10

)
with

1
γi

:= δdi

δzi

∣∣∣∣
Origin

,

the Zernike coefficients �z(n+1) for a successive iteration can
be estimated. The iteration formula is

�z(n+1) = �z(n) +
[(�d(meas) − �d(n)

)
◦ �γ

]
,

where �d(meas) and �d(n) are the descriptor vectors of the mea-
sured data and a simulated FF using the Zernike coefficients
�z(n), respectively, while ◦ denotes the Hadamard product, that
is, element-wise multiplication. The Zernike-vectors �z are
written according to the notation given in Equation (1).

While the convergence of this algorithm is not guaranteed
in general due to the nonlinear properties of this problem, it
usually takes only a few iterations to converge as long as the
ring shape of the focal spot is clearly visible.

3. Robustness

One of the essential aspects of the proposed method is its
ability to converge as long as a ‘ring’ can be identified
upon visual inspection of the FF. In order to judge the

robustness of ZEHBRO, we simulated different scenarios
and compared the output with the known input aberrations.
For each scenario, we simulated a circular top-hat beam
with an OAM of l = 1, added a random composition of
the aberrations considered by ZEHBRO with a known root
mean square (RMS), written as RMS(�z), and of the random
higher order aberrations with the RMS written as RMSres.
For the latter, we generated a random phase map where
the amplitude of the spatial frequencies dropped with 1/n2

and removed all Zernike portions that correspond to the
ones already added prior to this step in order to maintain
comparability with the input parameters. (The exponent in
the power law reflects the relation between the amplitudes
of the spatial frequencies and may vary from case to case.
We chose 2 for our simulation as it matches data from our
laboratory.) Tip, tilt and defocus were set to zero in the
total WF.

Afterwards, we propagated the wave field to the FF using
an FFT and emulated measurements with different experi-
mental setups by moving and scaling the fluence distribution
to a random position and size via interpolation. Furthermore,
we added Poisson noise to the image to approximate different
signal-to-noise ratios (SNRs), and converted the array to an
8-bit image, normalized to the maximum value.

Every data point of the graphs given in this section
corresponds to the average RMS error, named RMS(�zerr), of
the considered aberrations of 1000 simulated focal spots. In
the following, we discuss the main findings.

3.1. SNR

First, we investigated the robustness of ZEHBRO against
camera noise (i.e., the aggregate of photon noise, readout
noise, etc.). We define the SNR as follows:

SNR = Smax

μ
,

with P(k) = μk · exp (−μ)

k!

being the Poisson distribution of the noise and Smax the max-
imum of the noise-free signal in the FF. We used the Poisson
noise as a rough approximation for all types of noise (photon
noise, readout noise, . . .) that can be accounted for in real
cameras, as it can easily be generated and does not produce
negative values.

The result of this study is shown in Figure 3. Obviously,
the impact of the SNR remains small above an SNR of
approximately 20, with no significant impact of higher SNRs
for any of the considered aberration amplitudes. This is
expected, as the spatially uncorrelated nature of Poisson
noise primarily contributes to high spatial frequencies in the
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Figure 3. RMS(�zerr) for different SNR values, considered at three different
input aberration amplitudes. The ring diameter was set to 15 pixels and
RMSres to 0.0125λ.

Figure 4. RMS (�zerr) over the ring diameter in pixels for scenarios featur-
ing different amounts of disturbance defined by combinations of varying
SNRs and RMSres values.

ring intensity, while ZEHBRO only considers the first three
frequency components.

However, ZEHBRO abruptly fails at lower SNRs, gener-
ating large errors. This behavior originates in the algorithm
for the ring-center determination, which fails due to thresh-
olding that is inadequate for high noise levels. A more elab-
orated approach, for example, using a correlation function,
could potentially work even in lower SNR scenarios.

3.2. Ring diameter

Furthermore, we investigated the impact of the ring diameter
in relation to the sample size of the sensor. For this test, we
generated the FFs with fixed ring diameters for each data
point and calculated the mean error for different amounts
of disturbance in terms of the SNR and RMSres value. The
result is shown in Figure 4.

Surprisingly, the ring diameter has only a small impact
on the precision of ZEHBRO. Compared to the impact of
the other disturbance, we could not identify any significant
trend, even for the smallest considered ring diameter of only
6 pixels. We therefore conclude that ZEHBRO is feasible for
any setup that images a decently resolved FF.

However, a strong correlation between the amplitude of
the higher order aberrations and the error becomes apparent
when considering the base level of the three curves.

Figure 5. RMS(�zerr) for different total input aberration amplitudes
RMS (�z) under the presence of a varying RMSres of random higher order
aberrations.

3.3. Aberration amplitude and higher order aberrations

Therefore, we investigated the interplay between the
amplitude RMS(�z) of the considered aberrations and the
amplitude RMSres of the higher order aberrations. For this,
we kept the ring size variable between 15 and 18 pixels and
fixed the SNR to a value of 60, as these parameters roughly
mimic experimental conditions that we have encountered
in the past. For a selection of RMS(�z), we varied RMSres

continuously and calculated the mean output error for 1000
samples. The result is shown in Figure 5.

Considering this graph, the range of application of
ZEHBRO becomes more pronounced: first of all, the
nonlinear properties of the problem, that is, the Fourier
transform being a nonlinear transfer from the NF to the FF,
limiting the quasi-linear and unique relation between the
descriptors and the Zernike coefficients of the aberrations
to a small amplitude range, become already apparent when
only considering the case of RMSres = 0. Here, the errors of
the cases with an RMS(�z) of 0.06λ or more feature errors
that cannot be neglected any longer. This is due to the
cases where the iterative replication of the FF converges
to a false local minimum, where the descriptors match
the ones of the measured FF, even though the aberration
composition is different. The frequency at which these cases
occur within a test case rises with the aberration amplitude,
which outlines that ZEHBRO is only applicable for beams
close to the diffraction limit with low amounts of aberration.

The second observation is that the error rises with
increasing numbers of high-order aberrations RMSres. This
is expected, as the selection of the descriptors does not
scale exclusively with the considered low-order aberrations
in the presence of higher order terms. More important,
however, is the sensitivity to higher order aberrations, which
is significantly stronger for the cases with higher RMS(�z).
Again, this interplay can be attributed to the increasing
frequency of cases where ZEHBRO converges to a false
optimum.
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While the demand for precision may be driven by the
application, we can still formulate a rule of thumb for
the range in which ZEHBRO can be applied for regular
optimization tasks:

• aberrations RMS(�z) should be less than 0.1λ, if only
minor numbers of high-order aberrations are present;

• high-order aberrations RMSres should also be less than
0.1λ, if only minor numbers of considered aberrations
are present.

In a real-life scenario, however, it may be hard to dis-
tinguish between RMS(�z) and RMSres in the FF. This is
especially true if the WFS is placed after a dedicated optical
arm where unknown aberrations will likely be added to the
beam, occluding the actual composition of the aberrations
that are actually present in the beam. However, as the WF
components of these two are orthogonal, we can summarize
these statements in the more general rule of thumb, stating
that the total RMS of the WF should be below 0.1λ for
ZEHBRO to deliver reliable results.

4. Zernike-base transfer

Aside from the general range of validity for ZEHBRO, there
is another issue that has to be addressed in order to use
the output for optimization of the FF, which we discuss in
this section. This is because ZEHBRO estimates a set of six
Zernike coefficients from an image of an FF only, which
is only possible due to several underlying assumptions, for
example, the intensity profile in the NF and the orientation
of the Zernike base in the NF, which is assumed to align with
the orientation of the FF camera.

While the NF intensity can be set by using an actual
recording of the beam profile, the orientation, as well as the
Zernike-normalization method used by ZEHBRO, may differ
from other base definitions in the system, for example, the
one used for modal control of a deformable mirror (DM).
For this reason, it may be useful to experimentally record
a transfer matrix R from the ZEHBRO base ZZB to the
DM base ZDM. Sticking to the ordering convention given in
Equation (1), R can be written as a block matrix:

R =
⎛
⎝ A MCA MTA

MAC C MTC

MAT MCT T

⎞
⎠, (2)

where R ·�zZB = �zDM −�zDM,0.
Here, A, C and T are 2 × 2 transfer matrices for astig-

matism, coma and trefoil, respectively, representing rotation,
mirroring and scaling in amplitude between ZZB and ZDM.
The non-diagonal blocks Mii are mixing matrices, which are
able to link between the different types of aberration. This

can be useful if the pupil area of, say, the DM does not
overlap with the one assumed by ZEHBRO perfectly. In this
case, the Zernike polynomials in one base are not orthogonal
in the other one any longer. As an example, the coma could
partially spill into the astigmatism coefficients, if one of the
bases features a laterally displaced pupil.

On the other hand, these mixing matrices should be zero
if a good overlap between the pupil definitions is given. In
fact, we recommend enforcing these terms to be zero if the
recording of reference points for the calculation of R suffers
from random beam fluctuations. This is due to the low SNR
of the Mii terms, which tends to decrease the robustness of
the base transfer if not treated with care.

5. Experimental validation

The experimental validation of the beam optimization
method ZEHBRO took place at the ELI-NP facility, more
precisely on the 100-TW arm, as depicted in Figure 6. There,
a diagnostic bank is installed directly after the compressor
in the main laser hall, before the beam transports to the
100-TW experimental area E4. Among other things, the
diagnostic bank features a Shack–Hartmann WFS (M PLQ
HASO4 FIRST 0919 by Imagine Optic) and FF camera
(acA1300-60gm by Basler, delivering 8-bit images), which
aid the control of the DM (ILAO Star by Imagine Optic,
30 mm pupil, 25 actuators) and inspect the beam focus
quality, respectively. At this location, the beam line features
a nominal beam diameter of 55 mm, a repetition rate of
10 Hz and a pulse energy of up to 2.3 J within 24 fs at a
central wavelength of 808 nm and a bandwidth of 57 nm.

The first step towards the validation at the ELI-NP facility
was to have an implementation of ZEHBRO that could be
used in the laboratory environment, meaning being able to
interface quickly to the cameras used for the beam diagnos-
tics. For this, we used the Wavefront Optics Measurement
and Beam Analysis Tool (WOMBAT)[17], our open source
modular vision and laser metrology software. (The com-
munity edition of WOMBAT is available on the GSI Git-
lab repository: https://git.gsi.de/phelix/lv/wombat_ce. At the
time of writing, the ZEHBRO module was not yet part
of the community edition, but will likely be migrated in

Figure 6. Experimental setup at the ELI-NP facility for the validation of
ZEHBRO.
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Figure 7. Screenshot of the ZEHBRO module in WOMBAT: (a) camera
view (live) with overlays indicating the sampling positions; (b) extracted
ring intensity; (c) reproduced FF view; (d) retrieved Zernike coefficients.

the future. Until then, we will provide the code of the
current development branch upon request.) Based on the
Actor Framework in NI LabVIEW, WOMBAT could easily
be extended with a new module that receives images of an
already implemented camera module, evaluates them using
ZEHBRO, displays status data and results in real time and
logs all the data for post-processing. A screenshot of the
graphical user interface of this module is shown in Figure 7.

Back to the beamline, a transmitting helical phase plate
with 16 discrete levels is inserted in the beam in order
to obtain the ‘donut’ beam, using a motorized translation
stage. The phase plate is manufactured from fused silica and
optimized for the central wavelength of the beam. Due to the
wavelength dependence of the material, the outer parts of
the spectrum experience a non-perfect helix. For example, at
the point where the spectrum hits 1/e2 of its maximum, the
phase jump deviates by approximately ±0.3 rad from 2π ,
which would lead to visible inhomogeneities when regarded
separately. However, the sum of all frequencies in the FF
displays deviations from the ideal case of less than 1%,
which is negligible in this context.

For obvious reasons, the phase plate must be installed
before the compressor to avoid nonlinear effects with the
temporally compressed pulse[18]. In addition, the maximum
allowed energy was reduced to 1 J to keep intensity modu-
lations, caused by the phase discontinuity of the phase plate,
below the damage threshold of the compressor gratings and
components in the following laser beamline.

The first step in the optimization process takes place with-
out the phase plate and deals with a standard optimization
between the DM and the WFS. This step is part of the
optimization routine of the laser, which is repeated at regular
intervals whenever a realignment of the laser chain needs to
be done. Its goal is to provide a nearly flat WF at the WFS
to start with, as we have shown that ZEHBRO can only take
over when the beam aberrations are already small. This step
was repeated by the ELI-NP operation team on the day of
the experiment. After this step, the FF intensity distribution
of the beam exhibited a good agreement with the calculated

Figure 8. FF distributions at the compressor sensor. The images were
created by centering and averaging 300 images, equal to 30 seconds of
operation: (a) the FF prior to the insertion of the spiral phase plate; (b) after
insertion of the phase plate; (c) after conventional manual optimization;
(d) after optimization using ZEHBRO.

Strehl ratio of the WFS, qualitatively. The corresponding FF
is shown in Figure 8(a).

For the second step, the phase plate was brought into the
beam. The image of the FF, shown in Figure 8(b), clearly
showed deformations in the intensity distribution that can
be attributed to several factors. First of all, the calibration
of the WFS was likely only accurate with respect to regular
beams, where the errors only became visible once OAM was
introduced to the beam, making the FF more sensitive to
aberrations. A second possible factor is the limited conver-
gence precision of the AO feedback loop due to calibration
errors and/or fluctuations in time. Third, we cannot rule out a
contribution from spatial phase distortion introduced by the
phase plate itself. In addition, the FF intensity distribution
showed a stronger level of fluctuation than without the phase
plate, showing again that small WF fluctuations can have
larger effects on beams with OAM than on beams without
OAM. This can be clearly seen in the single-shot samples of
the FF in different optimization steps in Figure 9, as well as
in the animated plots in the Supplementary Material.

After the phase plate insertion, we performed another
traditional, manual optimization of the Zernike coefficients
to test the limits of this approach. The optimization was
limited to single-term optimization on a trial-and-error basis,
which was inspired by the intuitive understanding of the
effect of low-order Zernike aberrations on the ring intensity.
However, this process was lengthy and not accurate due to
an unknown transfer matrix between the Zernike basis of
ZEHBRO and the DM at this point, as well as the strong
fluctuations in the ring intensity. Overall, the optimization
took more than 30 min and yielded the beam shown in
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Figure 9. The RMS of the deviation from an ideal, homogeneous ring
intensity, calculated using Equation (3), after manual optimization and
optimization using ZEHBRO, corresponding to Figures 8(c) and 8(d),
respectively. The intensity of the fluctuations becomes apparent both in the
RMS and the shape of the individual focal rings (pictures on the top).

Figure 10. Statistics of the ring intensity of the FF distributions as shown
in Figures 8(c) and 8(d).

Figure 8(c). Figure 10 (left) shows the quantitative analysis
of the ring intensity of this beam.

The third step was to have a full closed-loop with
ZEHBRO including the projection of the Zernike coeffi-
cients from ZEHBRO into the Zernike base of the DM
control matrix, as described in Section 4, via Equation (2).
After recording R, only two iterations were necessary
to reach the beam, whose characteristics are shown in
Figures 8(d) and 10 on the right-hand side. (Even though
deterministic, this process was still slow as we needed to
enter the Zernike coefficients manually into the proprietary
control software.)

As shown by the intensity distribution image in Figure 8
as well as in the Supplementary Material, the ring is qualita-
tively more homogeneous than what could be achieved after
30 min of manual optimization. The vertical astigmatism in
the beam was largely eliminated and both orientations of the

Figure 11. Statistics of the Zernike coefficients as returned by ZEHBRO
after the manual optimization and the optimization based on the output of
ZEHBRO, using the Zernike-projection technique. The dataset is identical
to the one used in Figures 8–10.

trefoil significantly reduced, while a small amount of coma
was still present (see Figure 11). With a more stable beam,
the residual Zernike aberrations could likely be eliminated
as well.

As a quantitative measurement of the quality improvement
of the ring, we calculated the normalized ring RMS:

�(I) =
√

1
2π

∫ 2π

0

(
I (θ)

〈I〉 −1
)2

dθ, (3)

where I (θ) is the ring intensity and 〈I〉 its mean value.
Here, a smaller value of � corresponds to less deviation
from a flat ring intensity and therefore to a focal ring closer
to the optimum. The results for �(I), corresponding to
each individual sample for the recording window for both
optimization schemes, are shown in Figure 9 on the bottom.
Obviously, the statistical fluctuations are comparable to the
mean value of �(I) (dashed horizontal lines in Figure 9).
Given that beam fluctuations predominantly result in a posi-
tive impact on �(I), although the deviations in I may cancel
out over time, relying on the temporal average of �(I) is
insufficient to assess the overall optimization improvement.
Instead, we computed �

(
I
)
, where I denotes the temporal

average of the ring intensity curve itself, shown as a solid red
line in Figure 10. In this way, statistical fluctuations rather
cancel out, giving a clearer view of the optimization result.

In doing so, we obtained a �
(
I
)

of 0.109 for the ring
prior to optimization (Figure 8(b)), 0.129 for the manual opti-
mization result (Figure 8(c)) and 0.095 for the optimization
using ZEHBRO (Figure 8(d)). Apparently, despite our best
efforts, we worsened the homogeneity of the ring by 18% by
performing manual optimization, while ZEHBRO obtained
an improvement of 15% over the beam prior to optimization.
This clearly shows that ZEHBRO provides a much more
reliable way to optimize the homogeneity of the focal ring.
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6. Discussion and outlook

In this work, we developed ZEHBRO, an intuitive and
super-sensitive low-order angular WF sensing technique for
beams with an OAM of l = 1 in the FF. ZEHBRO has
only minimal requirements on data acquisition, features fast
convergence and does not rely on any calibrations. Therefore,
this approach is well suited for the optimization and fine
tuning of the focal ring distributions in practice and can
easily be adapted by other laboratories that do not wish to
use our open source implementation.

However, there are limitations on the range of application.
First, our investigations showed that ZEHBRO only works
well on beams that are already well corrected in a traditional
sense (rule of thumb, WF-RMS ≤ 0.1λ) due to the nonlinear
nature of the measurement problem in the FF. Second,
radially varying aberrations, for example, defocusing and
spherical aberrations, cannot be detected using ZEHBRO
and will have a negative impact on the reliability of the
procedure. Third, the presence of spatio temporal couplings
(STCs) in the beam can quickly interfere with the procedure.
As an example, angular chirp is known to change the orienta-
tion of the donut in space[19] and thus to reduce the visibility
of the singularity in the projection onto the focal plane.
Furthermore, the extracted descriptors may not correlate
perfectly to the Zernike coefficients. As a countermeasure,
a spectral band-pass filter can be inserted in front of the
camera recording the FF.

It should also be noted that we did not investigate this
approach for beams with an OAM of l > 1, which is some-
thing to be done in the future. We tested our routine experi-
mentally at the compressor output of the 100 TW beamline
at the ELI-NP facility for the optimization of a ring focus.
Here, we were able to demonstrate a fast convergence and
better precision compared to traditional, manual optimiza-
tion. However, the precision was greatly limited due to
beam fluctuations caused by air turbulence in the system.
This is due to the large sensitivity of the donut to angular
aberrations, which reveals small disturbances in the other-
wise remarkably stable beam. With a more static WF and
the possibility to programmatically interface with the DM
control software, we expect a much greater precision in the
optimization routine.

As there are other techniques that enable measuring the
NF phase in the FF for optimization, a brief comparison is
due. First, there is the family of genetic algorithms (GAs).
These rely on the definition of a fitness-function (e.g., the
Strehl ration) that is used to judge the quality of a batch of
guesses for the WF, called a generation. In each generation,
a selection of the best guesses is used to derive the next
generation. This approach is conceptually easy, does not
rely on any knowledge of the beam and has been proven to
be functional in a wide range of experimental conditions.
Recently, it has been successfully demonstrated that a GA

can also be used for the optimization of a beam carrying
OAM[20]. However, GAs are usually slow in convergence and
are thus sensitive to beam drifts and fluctuations.

Second, there is the ongoing research about phase retrieval
algorithms[14]. Here, several images around the focal region
are used to retrieve the NF phase in an iterative manner[21].
These approaches can retrieve aberrations up to large ampli-
tudes and spatial frequencies and are nowadays available in
commercial software. Due to the recording of the data in
a narrow time window, beam drifts are not a problem for
phase retrieval. However, phase retrieval algorithms tend to
be sensitive to the coherence of the recorded images and
can thus be easily impaired by fast beam fluctuations and
STCs. Furthermore, the retrieval of the phase requires a large
number of iterations compared to ZEHBRO, which renders
this type of measurement useless for real-time applications.

Third, there is the rising field of machine learning[22].
There are vastly different approaches here, but many of them
include the usage of phase masks that generate an extended
diffraction pattern in the FF in order to collect more data
about the phase[23], or even implement diffractive neural net-
works in front of the FF sensor[24]. Then, a model is trained
on a large collection of known data points in order to be
able to make single-shot estimations of the NF phase. These
approaches have been proven to be versatile, even granting
insight into STCs, and provide fast phase estimations once
the training has been successfully completed[23]. However,
the generation of such a model is challenging in many
aspects, including the loss of intuitive understanding about
the beam and the recording of a suitable and sufficiently
large dataset for training and verification. Furthermore, these
models do not (yet) generalize well to be used in a wider
range of experimental conditions.

This comparison emphasizes the use of ZEHBRO within
its own niche due to its simplicity, speed, sensitivity and
system-independent validity. In these terms, ZEHBRO is
ready to take the leap into the realm of real-world applica-
tions, while other methods still need either expert knowledge
or further research to be of practical use.

One of the primary advantages of optimization of the ring
focus using ZEHBRO compared to phase retrieval becomes
apparent when off-axis focusing is used, for example, using
an off-axis parabolic (OAP) mirror. Focusing like this has
an impact on the NF distribution prior to the propagation
towards the FF: one side of the NF is contracted, increasing
the flux and the WF gradients, while the other side dilates,
decreasing flux and WF gradients[25]. The result is that
the amount of deflection caused by the OAM is stronger
on one side of the beam compared to the other, leading
to a bias towards one side of the focal ring distribution.
This effect becomes worse with larger off-axis angles and
smaller F-numbers and is practically indistinguishable from
the impact of the coma on the FF (compare Figure 1, second
image of the second row). As such, this distribution can be
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counteracted by introducing a setup-dependent amount of
coma in the NF, generating a homogeneous ring once more.
This underlines the strength of ZEHBRO in optimizing the
ring intensity, as conventional approaches can only achieve
this via calculations based on other assumptions to get to this
point.

Looking towards the future, it is planned to integrate
ZEHBRO in the ELI-NP laser system for advanced beam
control. This means that the whole process has to be accel-
erated, where the goal is to automate the recording of
the Zernike-transfer matrix R and directly interface with
the mirror control software. Such a system could yield an
excellent ring intensity in a reliable fashion within seconds,
depending on the speed of the DM and data acquisition. By
doing so, the system could also be locked to the desired
beam shape via the real-time correction of its slow drifts
and aberration breathing, as long as the fluctuations are slow
compared to the convergence speed of the control loop. This
would also guarantee that the aberration amplitudes remain
within the working range of ZEHBRO.

Another possibility would be to replace the focal ring
recreation part of ZEHBRO with a direct interface to the
DM modes, which would greatly increase the speed of
ZEHBRO, remove the necessity for a Zernike transfer and
reduce the whole procedure to a linear feedback loop not
unlike a traditional AO loop. This would come at the cost
of not knowing the composition of the NF aberrations as a
whole, but would likely grant a better convergence towards a
homogeneous ring due to a smaller number of error sources
in the chain. Furthermore, a possible pathway would be to
apply machine learning to images of the FF in order to
gain insight into higher order aberrations. At the same time,
this could potentially alleviate the limitations due to the
nonlinearity of the problem and make machine-ZEHBRO
applicable in a larger range of aberration amplitudes while
still featuring the sensitivity gained from using helical beam.
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