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Approximation via Hausdorff operators

Alberto Debernardi and Elijah Liflyand

Abstract. Truncating the Fourier transform averaged by means of a generalized Hausdorff operator,

we approximate functions and the adjoint to that Hausdorff operator of the given function. We find

estimates for the rate of approximation in various metrics in terms of the parameter of truncation

and the components of the Hausdorff operator. Explicit rates of approximation of functions and

comparison with approximate identities are given in the case of continuous functions from the class

Lip α.

1 Introduction

�e classical Hausdorff operator is defined, by means of a kernel φ, as

(Hφ f )(x) = ∫
R

φ(t)
∣t∣ f (x

t
) dt,(1.1)

and, as is shown first in [11] (see also [17] or [13]), such an operator is bounded in
L1(R) whenever φ ∈ L1(R).

In the last two decades, various problems related to Hausdorff operators have
attracted a lot of attention. �e number of publications is growing considerably; to
add some of the most notable, we mention [1, 8, 12, 15, 16, 18]. �ere are two survey
papers: [6] and [13]. In the latter, as well as in [14], numerous open problems are given.

�e Hausdorff operator (1.1) is expected to have better Fourier analytic properties
than f. For example, in general, the inversion formula

f (x) = 1

2π
∫
R

f̂ (y)e ix y dy
does not hold for f ∈ L1(R); in order to “repair” this, one can consider some trans-
formation of the function f or of its Fourier transform. In relation to the Hausdorff
operator, we will consider integrals of the form

∫
R

(Hφ f̂ )(y)e ix y dy.(1.2)
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Approximation via Hausdorff operators 513

Here we analyze not this Hausdorff operator but a more general one, apparently
first considered in [9] (see also [10]). Given an odd function a such that ∣a(t)∣ is
decreasing, positive, and bijective on (0,∞) (so that both ∣a∣ and 1/∣a∣ possess inverse
functions in such an interval), we define

(H f )(x) = (Hφ ,a f )(x) = ∫
R

φ(t)∣a(t)∣ f (a(t)x) dt .(1.3)

It is clear that (1.1) corresponds to (1.3) with a(t) = t−1, and one can easily derive
the corresponding results from the general ones. Moreover, we consider some such
particular cases as examples.

�ere is one more reason for considering general Hausdorff operators: they pro-
vide a proper basis for future multidimensional extensions (see, for instance, [3] and
[12], where those operators were introduced independently). Such multidimensional
operators have been extensively studied in Lebesgue and Hardy spaces. We refer the
reader to [12, 15, 16] for further details.

�e consideration of these “alternative” transformations such as (1.2) requires the
development of a parallel theory to Fourier integrals. In this paper, we address three
basic issues of approximation theory applied to (generalized) Hausdorff operators.

(i) To find the operator T such that the integrals of the type

∫
N

−N
(Hφ ,a f̂ )(y)e ix y dy(1.4)

approximate T f as N →∞ (in the Lp norm), for reasonable choices of φ (here

some assumptions on f and φ are needed in order for (Hφ ,a f̂ )(y) to be well
defined; see the discussion at the beginning of Section 2). As we will see, the
operator T is by no means the identity operator, but the dual operator of H,
denoted byH∗, and formally defined by the relation

∫
R

H f (x)g(x) dx = ∫
R

f (x)H∗g(x) dx .
(ii) To study the rate of convergence toH∗ f of the partial integrals

∫
N

−N
(Hφ ,a f̂ )(y)e ix y dy,(1.5)

as N →∞ in the Lp norm, where 1 ≤ p ≤∞.
(iii) Tomodify (1.5) in a way that allows us to to derive a method for approximating

f in the Lp norm (rather than approximatingH∗ f , as in (i) and (ii)).

In particular, the problem of exploiting Hausdorff operators in approximation is
raised. Indeed, application of analytic results in approximation seems to be the most
convincing proof of their usefulness.�is work is the first attempt to understand what
kind of approximation problemsmay appear in the theory of Hausdorff operators and
to solve some of them. �e results obtained will open new lines in both the theory
of Hausdorff operators itself and approximation theory. �e difference between
Hausdorff means and more typical multiplier (convolution) means, which comes
from the difference between dilation invariance for the former and shi� invariance
for the latter, leads not only to new results but also to novelties in the methods.
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514 A. Debernardi and E. Liflyand

�e structure of the paper is as follows. In the next section, we being with
certain preliminaries, we formulate the main results. In Section 3, we prove the main
results. Section 4 is devoted to presenting some examples of operators and their
approximation estimates. A�er several works on the boundedness of the Hausdorff
operators on various function spaces, this paper is the first application of Hausdorff
operators to the problems of constructive approximation. In particular, we compare
the obtained results with their traditional counterparts (approximate identities given
by convolution type operators). Finally, in Section 5, we give concluding remarks, and
in particular, we show that some regularity of the kernel φ is needed in order to obtain
good approximation estimates.

We denote by

ω( f ; δ)p = sup
∣h∣≤δ

∥ f (⋅ + h) − f (⋅)∥Lp(R)

the modulus of continuity in the Lp norm, where 1 ≤ p ≤∞. If p =∞, then
ω( f ; δ)∞ = ω( f ; δ) is the usual modulus of continuity.

We will also write A ≲ B to denote A ≤ C ⋅ B for some constant C that does
not depend on essential quantities. �e symbol A ≍ B means that A ≲ B and B ≲ A
simultaneously.

2 Main Results

First of all, let us discuss some boundedness properties of the Hausdorff operator
in Lebesgue spaces, in order for H∗( f ) (and also the Hausdorff operator in (1.5))

to be well defined. We will always assume that f ∈ L1(R), so that f̂ is well defined,

and f̂ ∈ L∞(R). On the other hand, a sufficient condition for the operator H∗ to be
bounded on Lp(R) is

∫
R

∣φ(t)∣∣a(t)∣1/p dt <∞,(2.1)

(moreover, if φ ≥ 0 almost everywhere, then such a condition is also necessary; see
the recent paper [4] and also [2]). Similarly, a sufficient condition (and necessary
whenever φ ≥ 0 a.e.) for the Hausdorff operator to be bounded on Lp(R) is that

∫
R

∣φ(t)∣∣a(t)∣1/p′ dt <∞,
1

p
+

1

p′
= 1.(2.2)

Summarizing, for f ∈ L1(R) ∩ Lp(R) ( 1 ≤ p ≤∞), we have f̂ ∈ L∞(R) ∩ Lmax{2,p′}

(R) (by the usual mapping properties of the Fourier transform), and, moreover, if
condition (2.1) holds, then we haveH∗ f ∈ Lp(R). Finally, by (2.2), if

∫
R

∣φ(t)∣max{∣a(t)∣1/p , ∣a(t)∣1/2} dt <∞,(2.3)

then Hφ ,a f̂ is well defined as a function from Lmax{2,p′}(R). �us, we will always
assume that f ∈ L1(R) ∩ Lp(R) and that (2.3) holds. For further results on bound-
edness (and also Pitt-type inequalities) of Hausdorff operators, we refer the reader
to [7].
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We give somemore observations before stating our main results. It is easy to check
by substitution that

H
∗ f (x) = ∫

R

φ(t) f ( x

a(t)) dt.(2.4)

Moreover, since

∫
R

sin s
t

s
ds = π, t ∈ R/{0}(2.5)

we have

H
∗ f (x) = 1

π
∫
R

φ(t)∫
R

f ( x

a(t)s)
sin a(t)

s
ds dt.(2.6)

Let us now define the partial integrals

(HN f̂ )̌ (x) = 1

π
∫

N

−N
H f̂ (u)e iux du

= 1

π
∫

N

−N
∫
R

φ(t)∣a(t)∣∫
R

f (s)e−i a(t)su ds dte iux du
= 1

π
∫
R

φ(t)∣a(t)∣∫
R

f (s) sinN(x − a(t)s)
x − a(t)s ds dt.

By substitution, it is easy to see that

(HN f̂ )̌ (x) = 1

π
∫
R

φ(t)∫
R

f
⎛
⎝

x

a(t) −
s

N

⎞
⎠
sin(a(t)s)

s
ds dt.(2.7)

�ese observations make clear that (HN f̂ )̌ is a good candidate to approximateH∗ f
(informally, letting N →∞ in (2.7) we obtain (2.6)). We will prove that this is actually
the case, at least in the Lp setting.

Our main results concerning approximation of adjoint Hausdorff operators read
as follows.

�eorem 2.1 For 1 ≤ p ≤∞, if f ∈ L1(R) ∩ Lp(R) and (2.3) holds, we have
∥H∗ f − (HN f̂ )̌∥Lp(R) ≤ Cp ∫

R

∣φ(t)∣∣a(t)∣1/pω( f ; 1

∣a(t)∣N )
p

dt

+
Cp

2
∫
R

ω( f ; ∣s∣
N
)p

∣s∣ ∫
∣a−1(1/s)∣≤∣t∣

∣φ(t)∣∣a(t)∣1/p dt ds,(2.8)

where we take the convention 1/p = 0 if p =∞, and furthermore,

Cp =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2, if p = 1,
4, if 1 < p <∞,

2/π, if p =∞.
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�e fact that the adjoint Hausdorff operator of a function is approximated may
be unsatisfactory in principle, as one would rather approximate the function itself.
However, approximating a function instead of its adjoint Hausdorff operator is also
possible as a consequence of the following observation. For φ ∈ L1(R) and a(t) as in
the introduction, one has

H
∗
φ ,a f (0) = ∫

R

φ(t) f ( 0

a(t)) dt = f (0)∫
R

φ(t) dt.
If we denote by τy f (x) = f (x + y) the translation of f by y ∈ R and assume that

∫R φ(t) dt = 1, then
H
∗
φ ,a[τy f ](0) = f (y).

�is gives a natural way of approximating f through Hausdorff operators by using

the approximant FN(y) = (HN τ̂y f )̌ (0) = (HN[e i yx f̂ (x)] )̌ (0). More precisely, we
have the following theorem.

�eorem 2.2 Assume φ ∈ L1(R) and ∫R φ(t) dt = 1. For 1 ≤ p ≤∞, if f ∈ L1(R) ∩
Lp(R) and (2.3) holds, we have

∥ f − FN∥Lp(R) ≤ Cp ∫
R

∣φ(t)∣ω( f ; 1

N ∣a(t)∣)
p

dt

+
Cp

2
∫
R

ω( f ; ∣s∣
N
)p

∣s∣ ∫
∣a−1(1/s)∣≤∣t∣

∣φ(t)∣ dt ds,(2.9)

where

FN(y) = (HN τ̂y f )̌ (0) = (HN[e i yx f̂ (x)] )̌ (0), y ∈ R,(2.10)

and

Cp =
⎧⎪⎪⎨⎪⎪⎩
2/π, if p = 1,∞,

4/π, if 1 < p <∞.

Remark 2.3 In order for the right-hand sides of (2.8) and (2.9) to be finite, one
should assume that φ vanishes at a fast enough rate as ∣t∣→∞, or even more, that it
has compact support.�e latter is the case for the Cesàro operator (where φ = χ(0,1)),
which we discuss in more detail in Section 4, along with other examples.

3 Proofs

First of all, we give pointwise estimates for

∣H∗ f (x) − (HN f̂ )̌ (x)∣ and ∣ f (x) − FN(x)∣,
which will be the starting points for all subsequent estimates.
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Lemma 3.1 For any x ∈ R,
π∣H∗ f (x) − (HN f̂ )̌ (x)∣

≤ ∫
R

∣φ(t)a(t)∣∫
∣s∣≤1/∣a(t)∣

∣ f ( x

a(t) −
s

N
) − f ( x

a(t)) ∣ ds dt
+∫

R

1

∣s∣ ∫∣a−1(1/s)∣≤∣t∣ ∣φ(t)∣∣ f (
x

a(t) −
s

N
) − f ( x

a(t)) ∣ dt ds.(3.1)

Proof To prove (3.1), we apply rather straightforward estimates. Indeed,

π∣H∗ f (x) − (HN f̂ )̌ (x)∣
= ∣∫

R

φ(t)∫
R

( f ( x

a(t) −
s

N
) − f ( x

a(t)))
sin(a(t)s)

s
ds dt∣

≤ ∣∫
R

φ(t)∫
∣s∣≤1/∣a(t)∣

( f ( x

a(t) −
s

N
) − f ( x

a(t)))
sin(a(t)s)

s
ds dt∣

+ ∣∫
R

φ(t)∫
∣s∣≥1/∣a(t)∣

( f ( x

a(t) −
s

N
) − f ( x

a(t)))
sin(a(t)s)

s
ds dt∣

≤ ∫
R

∣φ(t)a(t)∣∫
∣s∣≤1/∣a(t)∣

∣ f ( x

a(t) −
s

N
) − f ( x

a(t)) ∣ ds dt
+∫

R

1

∣s∣ ∫∣a−1(1/s)∣≤∣t∣ ∣φ(t)∣∣ f (
x

a(t) −
s

N
) − f ( x

a(t)) ∣ dt ds,
as desired. In the last inequality we use that 1/∣a∣ possesses an inverse on (0,∞) (and
therefore also on (−∞, 0), since it is an odd function), and moreover, (1/∣a∣)−1(t) =∣a(1/t)∣−1 on (0,∞). ∎

Note that by (2.7),

FN(x) = (HN τ̂x f )̌ (0) = ∫
R

φ(t)∫
R

f (x − s

N
) sin(a(t)s)

s
ds dt.(3.2)

Also, by (2.5), we can write, for any φ ∈ L1(R) with ∫R φ(t) dt = 1,
f (x) = 1

π
∫
R

φ(t)∫
R

f (x) sin a(t)s
s

ds dt.(3.3)

Lemma 3.2 For any x ∈ R,

π∣ f (x) − FN(x)∣ ≤ ∫
R

∣φ(t)a(t)∣∫
∣s∣≤1/∣a(t)∣

∣ f (x − s

N
) − f (x)∣ ds dt

+∫
R

1

∣s∣ ∫∣a−1(1/s)∣≤∣t∣ ∣φ(t)∣∣ f (x −
s

N
) − f (x)∣ dt ds.

Proof By (3.2) and (3.3), we have the equality

f (x) − FN(x) = 1

π
∫
R

φ(t)∫
R

( f (x − s

N
) − f (x)) sin a(t)s

s
ds dt.
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�e proof now follows the same lines as that of Lemma 3.1, with the only difference
being that in the above integral the term, ( f (x − s

N
) − f (x)) is replaced by the term

( f ( x

a(t) −
s

N
) − f ( x

a(t)))
in Lemma 3.1. ∎

We now proceed to the proofs of the main theorems.

Proof of�eorem 2.1 We treat the cases 1 ≤ p <∞ and p =∞ separately. For the
case p =∞, it suffices to estimate the two terms on the right-hand side of (3.1) in the
L∞ norm. For the first one, we have

∫
R

∣φ(t)a(t)∣∫
∣s∣≤1/∣a(t)∣

∣ f ( x

a(t) −
s

N
) − f ( x

a(t)) ∣ ds dt
≤ ∫

R

∣φ(t)a(t)∣∫
∣s∣≤1/∣a(t)∣

ω( f ; ∣s∣
N
) ds dt,

and since ω( f ; δ) is nondecreasing in δ, we obtain

∫
R

∣φ(t)a(t)∣∫
∣s∣≤1/∣a(t)∣

ω( f ; ∣s∣
N
) ds dt ≤ 2∫

R

∣φ(t)∣ω( f ; 1

N ∣a(t)∣) dt.(3.4)

As for the second term on the right-hand side of (3.1), we have

∫
R

1

∣s∣ ∫∣a−1(1/s)∣≤∣t∣ ∣φ(t)∣∣ f (
x

a(t) −
s

N
) − f ( x

a(t)) ∣ dt ds
≤∫

R

1

∣s∣ ∫∣a−1(1/s)∣≤∣t∣ ∣φ(t)∣ω( f ;
∣s∣
N
) dt ds

=∫
R

ω( f ; ∣s∣
N
)

∣s∣ ∫
∣a−1(1/s)∣≤∣t∣

∣φ(t)∣ dt ds.
Collecting all the estimates, we get

π∣H∗ f (x) − (HN f̂ )̌ (x)∣ ≤ 2∫
R

∣φ(t)∣ω( f ; 1

N ∣a(t)∣) dt

+∫
R

ω( f ; ∣s∣
N
)

∣s∣ ∫
∣a−1(1/s)∣≤∣t∣

∣φ(t)∣ dt ds,
where the right-hand side is uniform in x.

Let us now prove the case 1 ≤ p <∞. Using (3.1), we get

1

2
(∫

R

∣H∗ f (x) − (HN f̂ )̌ (x)∣p dx)
1/p

≤ (∫
R

(∫
R

∣φ(t)a(t)∣∫
∣s∣≤1/∣a(t)∣

∣ f ( x

a(t) −
s

N
) − f ( x

a(t)) ∣ ds dt)
p

dx)
1/p
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+ (∫
R

(∫
R

1

∣s∣ ∫∣a−1(1/s)∣≤∣t∣ ∣φ(t)∣∣ f (
x

a(t) −
s

N
) − f ( x

a(t)) ∣ dt ds)
p

dx)
1/p

.

Note that if p = 1, the factor 1
2
on the le�-hand side can be taken to be 1 (in fact, such

a factor appears due to the inequality (a + b)p ≤ 2p(ap
+ bp), for a, b ≥ 0 and p > 1).

On one hand, applying Minkowski’s inequality twice, we get

(∫
R

(∫
R

∣φ(t)a(t)∣∫
∣s∣≤1/∣a(t)∣

∣ f ( x

a(t) −
s

N
) − f ( x

a(t)) ∣ ds dt)
p

dx)
1/p

≤ ∫
R

∣φ(t)a(t)∣(∫
R

(∫
∣s∣≤1/∣a(t)∣

∣ f ( x

a(t) −
s

N
) − f ( x

a(t)) ∣ ds)
p

dx)
1/p

dt

≤ ∫
R

∣φ(t)a(t)∣∫
∣s∣≤1/∣a(t)∣

(∫
R

∣ f ( x

a(t) −
s

N
) − f ( x

a(t)) ∣
p

dx)
1/p

ds dt

= ∫
R

∣φ(t)∣∣a(t)∣1+1/p ∫
∣s∣≤1/∣a(t)∣

(∫
R

∣ f (x − s

N
) − f (x)∣

p

dx)
1/p

ds dt

≤ ∫
R

∣φ(t)∣∣a(t)∣1+1/p ∫
∣s∣≤1/∣a(t)∣

ω( f ; ∣s∣
N
)
p

ds dt.

Since ω( f ; δ)p is nondecreasing in δ, we have

∫
R

∣φ(t)∣∣a(t)∣1+1/p ∫
∣s∣≤1/∣a(t)∣

ω( f ; ∣s∣
N
)
p

ds dt

≤ 2∫
R

∣φ(t)∣∣a(t)∣1/pω( f ; 1

∣a(t)∣N )
p

dt.

On the other hand, applying Minkowski’s inequality again, we obtain

(∫
R

(∫
R

1

∣s∣ ∫∣a−1(1/s)∣≤∣t∣ ∣φ(t)∣∣ f (
x

a(t) −
s

N
) − f ( x

a(t)) ∣ dt ds)
p

dx)
1/p

≤ ∫
R

1

∣s∣ (∫R (∫∣a−1(1/s)∣≤∣t∣ ∣φ(t)∣∣ f (
x

a(t) −
s

N
) − f ( x

a(t)) ∣ dt)
p

dx)
1/p

ds

≤ ∫
R

1

∣s∣ ∫∣a−1(1/s)∣≤∣t∣ ∣φ(t)∣(∫R ∣ f (
x

a(t) −
s

N
) − f ( x

a(t)) ∣
p

dx)
1/p

dt ds

= ∫
R

1

∣s∣ ∫∣a−1(1/s)∣≤∣t∣ ∣φ(t)∣∣a(t)∣1/p(∫R ∣ f (x −
s

N
) − f (x)∣

p

dx)
1/p

dt ds

≤ ∫
R

ω( f ; ∣s∣
N
)p

∣s∣ ∫
∣a−1(1/s)∣≤∣t∣

∣φ(t)∣∣a(t)∣1/p dt ds.
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Collecting all the estimates, we derive

1

2
∥H∗ f − (HN f̂ )̌∥Lp(R) ≤ 2∫

R

∣φ(t)∣∣a(t)∣1/pω( f ; 1

∣a(t)∣N )
p

dt

+∫
R

ω( f ; ∣s∣
N
)p

∣s∣ ∫
∣a−1(1/s)∣≤∣t∣

∣φ(t)∣∣a(t)∣1/p dt ds,
where the factor 1/2 on the le�-hand side is omitted in the case where p = 1.�e proof
is complete. ∎

Proof of�eorem 2.2 First of all, note that the case p =∞ follows trivially from
�eorem 2.1 and the fact that ω( f ; δ) = ω(τy f ; δ) for every y ∈ R.

We now show the case 1 ≤ p <∞. By Lemma 3.2,

π

2
(∫

R

∣ f (y) − FN(y)∣p dy)
1/p

≤ π(∫
R

(∫
R

∣φ(t)a(t)∣∫
∣s∣≤1/∣a(t)∣

∣ f (y − s

N
) − f (y)∣ ds dt)

p

dy)
1/p

+ π(∫
R

(∫
R

1

∣s∣ ∫∣a−1(1/s)∣≤∣t∣ ∣φ(t)∣∣ f (y −
s

N
) − f (y)∣ dt ds)

p

dy)
1/p

.

If p = 1, the factor 1
2
on the le�-hand side can be omitted, similarly as in the proof

of �eorem 2.1. Now, applying Minkowski’s inequality twice, we estimate

(∫
R

(∫
R

∣φ(t)a(t)∣∫
∣s∣≤1/∣a(t)∣

∣ f (y − s

N
) − f (y)∣ ds dt)

p

dy)
1/p

≤ ∫
R

∣φ(t)a(t)∣(∫
R

(∫
∣s∣≤1/∣a(t)∣

∣ f (y − s

N
) − f (y)∣ ds)

p

dy)
1/p

dt

≤ ∫
R

∣φ(t)a(t)∣∫
∣s∣≤1/∣a(t)∣

(∫
R

∣ f (y − s

N
) − f (y)∣p dy)

1/p

ds dt

≤ ∫
R

∣φ(t)a(t)∣∫
∣s∣≤1/∣a(t)∣

ω( f ; ∣s∣
N
)
p

ds dt ≤ 2∫
R

∣φ(t)∣ω( f ; 1

∣a(t)∣N )
p

dt,

where the last inequality follows from the fact that ω( f ; δ)p is increasing in δ. On the
other hand, applying Minkowski’s inequality again, we obtain

(∫
R

(∫
R

1

∣s∣ ∫∣a−1(1/s)∣≤∣t∣ ∣φ(t)∣∣ f (y −
s

N
) − f (y)∣ dt ds)

p

dy)
1/p

≤ ∫
R

1

∣s∣ (∫R (∫∣a−1(1/s)∣≤∣t∣ ∣φ(t)∣∣ f (y −
s

N
) − f (y)∣ dt)

p

dy)
1/p

ds
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≤ ∫
R

1

∣s∣ ∫∣a−1(1/s)∣≤∣t∣ ∣φ(t)∣(∫R ∣ f (y −
s

N
) − f (y)∣p dy)

1/p

dt ds

≤ ∫
R

ω( f ; ∣s∣
N
)
p

∣s∣ ∫
∣a−1(1/s)∣≤∣t∣

∣φ(t)∣ dt ds.
Putting all the estimates together, we finally obtain (2.9). ∎

4 Examples

We now obtain approximations of functions by means of certain specific Haus-
dorff operators. We shall give bounds for the approximation error explicitly in Lp ,
1 ≤ p ≤∞, in each case, which will follow from�eorem 2.2.

In the first place, we consider a general Hausdorff operator under some assump-
tions on the kernel φ (besides the assumptions from �eorem 2.2). We suppose
without loss of generality that a(t) > 0 for t ∈ (0,∞), that φ is compactly supported,
say on [−T , T], and φ ∈ L∞(R) (note that the Cesàro operator, given by a(t) = 1/t
and φ = χ(0,1), satisfies these conditions). �en, on one hand,

∫
R

∣φ(t)∣ω( f ; 1

∣a(t)∣N )
p

dt ≤ 2T∥φ∥L∞(R)∫ T

0
ω( f ; 1

a(t)N )
p

dt.

On the other hand,

∫
R

ω( f ; ∣s∣
N
)
p

∣s∣ ∫
∣a−1(1/s)∣≤∣t∣

∣φ(t)∣ dt ds = ∫
R

ω( f ; ∣s∣
N
)
p

∣s∣ ∫
∣a−1(1/s)∣≤∣t∣≤T

∣φ(t)∣ dt ds

≤ 2T∥φ∥L∞(R)∫
0≤a−1(1/s)≤T

ω( f ; s
N
)
p

s
ds.

Now, the substitution s → 1/a(t) yields

∫
0≤a−1(1/s)≤T

ω( f ; s
N
)
p

s
ds = ∫

T

0

ω( f ; 1
a(t)N

)
p

a(t) ∣a′(t)∣ dt,
so we conclude that for any 1 ≤ p ≤∞,

∥ f − FN∥Lp(R)

≤ 2T∥φ∥L∞(R)(∫ T

0
ω( f ; 1

a(t)N )
p

dt +∫
T

0

ω( f ; 1
a(t)N

)
p

a(t) ∣a′(t)∣ dt)

≤ 4T∥φ∥L∞(R)max{∫ T

0
ω( f ; 1

a(t)N )
p

dt,∫
T

0

ω( f ; 1
a(t)N

)
p

a(t) ∣a′(t)∣ dt},
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by�eorem 2.2 (recall that ω( f ; δ)∞ = ω( f ; δ)). If, furthermore, a(t) = 1/t, then for
1 ≤ p ≤∞,

∥ f − FN∥Lp(R) = ∥ f (x) −∫
R

φ(t)∫
R

f (x − s

N
) sin s

t

s
ds dt∥

Lp(R)

≤ 4T2 ∫
T

0

ω( f ; t
N
)
p

t
dt,(4.1)

(recall also that in the case p = 1, the estimate on the right-hand side can bemultiplied
by the factor 1/2). To the best of our knowledge, no approach through Hausdorff
operators has been considered in approximation problems so far, and therefore even
the basic estimate (4.1) is new in this respect.

4.1 Approximation via the Cesàro Operator

�eCesàro operatorC given by a(t) = 1/t and φ(t) = χ(0,1)(t) [13, 17] is the prototype
Hausdorff operatorHφ ,a . In this case, its adjoint operator is

C
∗ f (x) = ∫ 1

0
f (tx) dt = 1

x
∫

x

0
f (t) dt,

also referred to as the Hardy operator. We have

(CN f̂ )̌ (x) ∶= (HN f̂ )̌ (x) = 1

π
∫

1

0

1

t
∫
R

f (s) sinN(x − s/t)
x − s/t ds dt

= 1

π
∫

1

0
∫
R

f (tx − s

N
) sin s

t

s
ds dt.

It readily follows from (4.1) that

∥ f − FN∥L1(R) ≤ 2∫
1

0

ω( f ; t
N
)
1

t
dt,

∥ f − FN∥Lp(R) ≤ 4∫
1

0

ω( f ; t
N
)
p

t
dt,

and in the case p =∞, we obtain a Dini-type estimate

∥ f − FN∥L∞(R) ≤ 4∫ 1

0

ω( f ; t
N
)

t
dt.

Note also that for p = 1, condition (2.3) does not hold, so we have to restrict ourselves
to the case 1 < p ≤∞. In particular, we can conclude the following corollary.

Corollary 4.1 Let f ∈ L1(R) ∩ Lp(R) (1 < p ≤∞). Let a(t) = 1/t and φ(t) =
χ[0,1](t).
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(i) If 1 < p <∞ and ∫ 1

0

ω( f ;t)p
t

dt <∞, then FN converges to f in Lp(R) as N →∞.
In particular,

∥ f − FN∥Lp(R) = ∥ f (x) −∫ 1

0
∫
R

f (x − s

N
) sin s

t

s
ds dt∥

Lp(R)

≤ 4∫
1

0

ω( f ; t
N
)
p

t
dt.

(ii) If f is continuous and ∫ 1

0
ω( f ;t)

t
dt <∞, then FN converges uniformly to f on R as

N →∞. In particular,

∥ f − FN∥L∞(R) = ∥ f (x) −∫ 1

0
∫
R

f (x − s

N
) sin s

t

s
ds dt∥

Lp(R)

≤ 4∫
1

0

ω( f ; t
N
)

t
dt.

Remark 4.2 For 0 < q ≤∞, 1 ≤ p ≤∞, and 0 ≤ s < 1, the Besov seminorm (defined
via the modulus of continuity) is

∥ f ∥Bs
p,q(R)

= (∫ 1

0
(t−sω( f ; t)p)q dt

t
)
1/q

.

We refer the reader to [19, §5.2.3,�eorem 2] for the description of Besov seminorms
in terms of moduli of continuity. Note that in Corollary 4.1, the assumption that

∫
1

0

ω( f ; t)p
t

dt <∞, 1 ≤ p ≤∞,

is equivalent to saying that the Besov seminorm B0
p,1 of f is finite.

We shall now compare the approximation estimates from Corollary 4.1 with those
for approximate identities.

4.2 Comparison: Cesàro Operators and Approximate Identities

Since the Cesàro operator is the prototype example of Hausdorff operator, it is
instructive to compare the obtained approximations with the classical ones given by
approximate identities for convolutions. A family of functions {Cr}r>0 defined on R

is called an approximate identity if

(1) supr ∥Cr∥L1(R) <∞, and
(2) for every δ > 0,

∫
∣x ∣≥δ
∣Cr(x)∣ dx Ð→ 0 as r Ð→∞.

�e following is well known [5, �eorem 3.1.6].

https://doi.org/10.4153/S0008439520000612 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000612


524 A. Debernardi and E. Liflyand

�eorem A Let g ∈ Lp(R), with 1 ≤ p <∞. If {Cr}r>0 is an approximate identity
satisfying

∫
R

Cr(x) dx = 1, r > 0,(4.2)

then

∥Cr ∗ g − g∥Lp(R) Ð→ 0, as r Ð→∞.

As an example of an approximate identity satisfying (4.2), we have the family of
functions

Cr(x) = rC(rx), r > 0,
where C(x) is the Fejér kernel on the real line,

C(x) = 1

2π
( sin(x/2)

x/2 )
2

.

Fromnowon,we assume that the approximate identities we consider satisfy condition
(4.2).

Comparing �eorem A and Corollary 4.1, we readily see that the latter requires
further assumptions in order to guarantee Lp convergence (p <∞), namely that the
seminorm ∥ f ∥B0

p,1(R)
is finite (cf. Remark 4.2). However, when restricted to certain

classes of functions, the approximation rates become the same, or even better.
As classes of functions, we consider Lippα = Lippα(R) with 0 < α ≤ 1, and 1 ≤ p ≤

∞, which consists of the functions f satisfying

ω( f ; δ)p ≲ δα , δ > 0.
Note that Lip α = Lip∞α is the class of usual Lipschitz- α continuous functions onR,
i.e., those satisfying

∣ f (x) − f (y)∣ ≤ C∣x − y∣α , x , y ∈ R.
For f ∈ Lippα, 0 < α < 1, and 1 ≤ p ≤∞, it is known that any approximate identity

{Cr} yields the approximation rate

∥Cr ∗ f − f ∥Lp(R) ≲
1

rα
, r Ð→∞(4.3)

(see [5, Corollary 3.4.4]), while for α = 1, an additional logarithm appears:

∥Cr ∗ f − f ∥Lp(R) ≲
log r

r
, r Ð→∞,(4.4)

cf. [5, Problem 3.4.2]. Moreover, both estimates are sharp (see [5, Corollary 3.5.4] and
[5, Problem 3.4.2], respectively).

In the case of the Cesàro operator, Corollary 4.1 yields, for any 1 < p <∞ and f ∈
Lippα,

∥ f − FN∥Lp(R) ≲ ∫
1

0

ω( f ; t
N
)p

t
dt ≲ N−α ∫

1

0
tα−1 dt ≍ N−α , N Ð→∞,
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while for f ∈ Lip α,

∥ f − FN∥L∞(R) ≲ ∫ 1

0

ω( f ; t
N
)

t
dt ≲ N−α ∫

1

0
tα−1 dt ≍ N−α , N Ð→∞,

with all the estimates valid for the range 0 < α ≤ 1. Note that these approximation
rates are the same as those for approximate identities when restricted to functions
f ∈ Lippα with 0 < α < 1 (compare with (4.3)), and are actually better than their coun-
terparts in the case α = 1 (compare with (4.4)), in the sense that the extra logarithm
from (4.4) does not appear. �us, in the case α = 1, the “Hausdorff”approximation
improves the classical convolution approximations in the sense of rate of convergence.

4.3 Approximation via the Riemann–Liouville Integral

For α > 0, the Riemann–Liouville integral is defined as

I
α f (x) = 1

Ŵ(α) ∫
x

0
f (t)(x − t)α dt = xα

Ŵ(α) ∫
x

0
f (t) (1 − t

x
)α dt.

A rescaled version of this operator can be easily obtained as an adjoint Haus-
dorff operator. Indeed, for a(t) = 1/t and φα(t) = (α + 1)(1 − t)α χ(0,1)(t) (so that

∫R φα(t) dt = 1), we have
I
α( f )(x) ∶=H∗ f (x) = ∫ 1

0
f (tx)(1 − t)α dt = 1

x
∫

1

0
f (t) (1 − t

x
)α dt

= Ŵ(α)x−α−1I α f (x).
Note that if we formally consider α = 0 in the definition of Iα , we recover the Cesàro
operator.

Using�eorem 2.2, we approximate f (x) by
FN(x) = (IαN τ̂x f )̌ (0) ∶= (HN τ̂x f )̌ (0)

= (1 + α)∫ 1

0
(1 − t)α ∫

R

f (x − s

N
) sin(a(t)s)

s
ds dt;

cf. (3.2). Note that by the observation made in (4.1), we will obtain the same con-
vergence rates via the Riemann–Liouville integral as those we obtain via the Cesàro
operator. So, for continuous f, we have

∥ f − FN∥L∞(R) ≲ ∫ 1

0

ω( f ; t
N
)

t
dt,

while for f ∈ Lp(R)with 1 < p <∞ (note that for p = 1 condition (2.3) does not hold,
so we have to exclude such a case), we have

∥ f − FN∥Lp(R) ≲ ∫
1

0

ω( f ; t
N
)
p

t
dt

by Corollary 4.1 and (4.1).
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5 Final Remarks

We conclude with a couple of remarks: first, we show that one can use the same
approach to approximate the Hausdorff operator (instead of its adjoint) applied to
a function. Secondly, we show that we cannot expect any good approximations of
Hausdorff operators if the kernel φ does not decay fast enough at infinity.

5.1 Approximation of Non-adjoint Hausdorff Operators

One can also approximate the Hausdorff operator instead of its adjoint, if one
considers the adjoint Hausdorff averages in the approximant. More precisely, it is also
possible to approximateH f (x) by

(H∗N f̂ )̌(x) = 1

2π
∫

N

−N
H
∗ f̂ (u)e iux du

= 1

2π
∫

N

−N
∫
R

φ(t)∫
R

f (s)e−i su/a(t)ds dt e iuxdu
= 1

π
∫
R

φ(t)∫
R

f (s) sinN(x − s/a(t))
x − s/a(t) ds dt,

which, by substitution, is easily seen to equal

1

π
∫
R

φ(t)∣a(t)∣∫
R

f (a(t)x − s

N
) sin

s
a(t)

s
ds dt.

Since for any t ≠ 0, one has

∫
R

sin s
a(t)

s
ds = π,

then

H f (x) − (H∗N f̂ )̌(x)
= 1

π
∫
R

φ(t)∣a(t)∣∫
R

( f (a(t)x − s

N
) − f (a(t)x)) sin

s
a(t)

s
ds dt.

A similar estimate to that of Lemma 3.2 can now be proved.

Lemma 5.1 For any x ∈ R,

π∣H f (x) − (H∗N f̂ )̌(x)∣
≤ ∫

R

φ(t)∫
∣s∣≤∣a(t)∣

∣ f (a(t)x − s

N
) − f (a(t)x)∣ ds dt

+∫
R

1

s
∫
∣t∣≥∣a−1(s)∣

∣ f (a(t)x − s

N
) − f (a(t)x)∣φ(t)∣a(t)∣ dt ds.
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Proof �e proof is essentially the same as that of Lemma 3.2,

π∣H f (x) − (H∗N f̂ )̌(x)∣
= ∫

R

φ(t)∣a(t)∣∫
∣s∣≤∣a(t)∣

( f (a(t)x − s

N
) − f (a(t)x)) sin

s
a(t)

s
ds dt

+∫
R

φ(t)∣a(t)∣∫
∣s∣≥∣a(t)∣

( f (a(t)x − s

N
) − f (a(t)x)) sin

s
a(t)

s
ds dt

≤ ∫
R

φ(t)∫
∣s∣≤∣a(t)∣

∣ f (a(t)x − s

N
) − f (a(t)x)∣ ds dt

+∫
R

φ(t)∣a(t)∣∫
∣s∣≥∣a(t)∣

∣ f (a(t)x − s
N
) − f (a(t)x)∣
∣s∣ ds dt

≤ ∫
R

φ(t)∫
∣s∣≤∣a(t)∣

∣ f (a(t)x − s

N
) − f (a(t)x)∣ ds dt

+∫
R

1

s
∫
∣t∣≥∣a−1(s)∣

∣ f (a(t)x − s

N
) − f (a(t)x)∣φ(t)∣a(t)∣ dt ds,

as desired. ∎

By means of the pointwise estimate from Lemma 5.1, it is possible to obtain
approximation results analogous to�eorem 2.1, where theHausdorff operator, rather
than its adjoint, is approximated. �e details are essentially the same and are thus
omitted.

5.2 A Hausdorff Operator with Slowly Decaying φ: the Bellman Operator

Let us see what happens if we try to approximate an adjoint Hausdorff operator with
slowly decaying φ. We consider the particular example of the Bellman operator B
(which is nothingmore than the adjoint Cesàro operatorC∗). Its adjointB∗ is defined
by letting a(t) = 1/t and φ(t) = t−1 χ(1,∞)(t) in (2.4):

B
∗ f (x) = ∫ ∞

1

f (tx)
t

dt = 1

x
∫
∞

x

f (t)
t

dt.

It is clear that we cannot use the methods from Section 4 in order to approximate
functions, since the hypothesis φ ∈ L1(R) is not satisfied in this example. What is
more, not even the basic assumption (2.3) from �eorem 2.1 is satisfied for any 1 ≤
p ≤∞. Nevertheless, we now try to use the approximation estimates from �eorem
2.1 (heuristically, since the hypotheses of �eorem 2.1 are not met) just to illustrate
their bad behaviour for functions φ that do not decay fast enough. As the approximant
forB∗, we take

(BN f̂ )̌ (x) ∶= 1

π
∫
∞

1

1

t2
∫
R

f (s) sinN(x − s/t)
x − s/t ds dt.
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For 1 ≤ p <∞, the estimate from�eorem 2.1 yields

∥B∗ f − (BN f̂ )̌∥Lp(R)

≲ ∫
∞

1

ω( f ; t
N
)p

t1+1/p
dt +∫

R

ω( f ; ∣s∣
N
)p

∣s∣ ∫
∣s∣≤∣t∣

1

t1+1/p
χ(1,∞)(t) dt ds

≍ ∫
∞

0

ω( f ; ∣s∣
N
)p

∣s∣ ds,(5.1)

while in the case p =∞,

π∥B∗ f − (BN f̂ )̌∥L∞(R)
≲ ∫

∞

1

ω( f ; t
N
)

t
dt +∫

R

ω( f ; ∣s∣
N
)

∣s∣ ∫
∣s∣≤∣t∣

1

t
χ(1,∞)(t) dt ds =∞;

i.e., in this case we cannot guarantee any convergence on the Lp norm by using our
estimates, even for well-behaved functions f. As was pointed out in Remark 2.3, this
is because in order to obtain useful estimates from �eorem 2.1, one should assume
that φ is of compact support, or that it decays fast enough as ∣t∣→∞. For the adjoint
Cesàro operator, the functions φ has some decay, but it is not fast enough. Also note
that the estimate (5.1) is not good, as the right-hand side is infinite for nonconstant
functions.

Acknowledgment �e authors would like to thank the referee for the comments
and kind suggestions, which certainly improved the quality of this paper.

References

[1] K. Andersen, Boundedness of Hausdorff operators on Lp (Rn) ,H1 (Rn), and BMO (Rn). Acta Sci.
Math. (Szeged) 69(2003), 409–418.

[2] L. Aizenberg and E. Liflyand,Hardy spaces in Reinhardt domains, and Hausdorff operators. Illinois
J. Math. 53(2009), 1033–1049.

[3] G. Brown and F. Móricz,Multivariate Hausdorff operators on the spaces Lp (Rn), J. Math. Anal.
Appl. 271(2002), 443–454.

[4] V. Burenkov and E. Liflyand,Hausdorff operators on Morrey-type spaces. Kyoto J. Math. 60(2020),
93–106. http://dx.doi.org/10.1215/21562261-2019-0035

[5] P. L. Butzer and R. J. Nessel, Fourier analysis and approximation. Volume 1: One-dimensional
theory. Pure and Applied Mathematics, 40, Academic Press, New York-London, 1971.

[6] J. Chen, D. Fan, and S. Wang,Hausdorff operators on Euclidean spaces. Appl. Math. J. Chinese Univ.
(Ser. B) 28(2014), 548–564. http://dx.doi.org/10.1007/s11766-013-3228-1

[7] M. Dyachenko, E. Nursultanov, and S. Tikhonov,Hardy-Littlewood and Pitt’s inequalities for
Hausdorff operators. Bull. Sci. Math. 147(2018), 40–57.
http://dx.doi.org/10.1016/j.bulsci.2018.06.003

[8] Y. Kanjin,�eHausdorff operators on the real Hardy spacesH p (R). Studia Math. 148(2001), 37–45.
http://dx.doi.org/10.4064/sm148-1-4

[9] J. C. Kuang, Generalized Hausdorff operators on weighted Morrey-Herz spaces. Acta Math. Sinica
(Chin. Ser.) 55(2012), 895–902.

[10] J. C. Kuang, Generalized Hausdorff operators on weighted Herz spaces. Mat. Vesnik 66(2014), 19–32.
[11] C. Georgakis,�e Hausdorff mean of a Fourier-Stieltjes transform, Proc. Am. Math. Soc. 116(1992),

465–471. http://dx.doi.org/10.2307/2159753

[12] A. Lerner and E. Liflyand,Multidimensional Hausdorff operator on the real Hardy space. J. Austr.
Math. Soc. 83(2007), 79–86. http://dx.doi.org/10.1017/S1446788700036399

https://doi.org/10.4153/S0008439520000612 Published online by Cambridge University Press

http://dx.doi.org/10.1215/21562261-2019-0035
http://dx.doi.org/10.1007/s11766-013-3228-1
http://dx.doi.org/10.1016/j.bulsci.2018.06.003
http://dx.doi.org/10.4064/sm148-1-4
http://dx.doi.org/10.2307/2159753
http://dx.doi.org/10.1017/S1446788700036399
https://doi.org/10.4153/S0008439520000612


Approximation via Hausdorff operators 529

[13] E. Liflyand,Hausdorff operators on Hardy spaces. Eurasian Math. J. 4(2013), 101–141.
[14] E. Liflyand, Open problems on Hausdorff operators. In: Complex analysis and potential theory,

World. Sci. Publ., Hackensack, NJ, 2007, pp. 280–285.
http://dx.doi.org/10.1142/9789812778833_0030

[15] E. Liflyand and A. Miyachi, Boundedness of the Hausdorff operators in H pspaces, 0 < p < 1. Studia
Math. 194(2009), 279–292. http://dx.doi.org/10.4064/sm194-3-4

[16] E. Liflyand and A. Miyachi, Boundedness of multidimensional Hausdorff operators in H pspaces,
0 < p < 1, Trans. Amer. Math. Soc. 371(2019), 4793–4814. http://dx.doi.org/10.1090/tran/7572

[17] E. Liflyand and F. Móricz,�e Hausdorff operator is bounded on the real Hardy space H1 (R). Proc.
Am. Math. Soc. 128(2000), 1391–1396. http://dx.doi.org/10.1090/S0002-9939-99-05159-X

[18] A. R. Mirotin, Boundedness of Hausdorff operators on real Hardy spaces H1over locally compact
groups. J. Math. Anal. Appl. 473(2019), 519–533. http://dx.doi.org/10.1016/j.jmaa.2018.12.065

[19] H. Triebel,�eory of function spaces. Monographs in Mathematics, 78, Birkhäuser, Basel, 1983.
http://dx.doi.org/10.1007/978-3-0346-0416-1

Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel, 52900

e-mail: adebernardipinos@gmail.com

Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel, 52900

and

Regional Mathematical Center of Southern Federal University, Bolshaya Sadovaya Str. 105/42,

Rostov-on-Don, Russia, 344006

e-mail: liflyand@math.biu.ac.il

https://doi.org/10.4153/S0008439520000612 Published online by Cambridge University Press

http://dx.doi.org/10.1142/9789812778833_0030
http://dx.doi.org/10.4064/sm194-3-4
http://dx.doi.org/10.1090/S0002-9939-99-05159-X
http://dx.doi.org/10.1016/j.jmaa.2018.12.065
http://dx.doi.org/10.1007/978-3-0346-0416-1
mailto:adebernardipinos@gmail.com
mailto:liflyand@math.biu.ac.il
https://doi.org/10.4153/S0008439520000612

	1 Introduction
	2 Main Results
	3 Proofs
	4 Examples
	4.1 Approximation via the Cesàro Operator
	4.2 Comparison: Cesàro Operators and Approximate Identities
	4.3 Approximation via the Riemann–Liouville Integral

	5 Final Remarks
	5.1 Approximation of Non-adjoint Hausdorff Operators
	5.2 A Hausdorff Operator with Slowly Decaying φ: the Bellman Operator


