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Introduction

The functions

(1)

where ? > 0, are essentially Fourier convolutions of Gaussian and Cauchy
type distributions, and have thus found application in many fields. In
reactor theory, and no doubt elsewhere, the need has arisen to analyse
complicated integrals and functional equations involving y> and <f>, the so-
called Voigt profiles.

Recently Keane and Clancy [1] pointed out the advantage of extending
the definition of the function

to the complex domain. They define a function (in the present notation)

as a solution of the differential equation

2 dr

By developing asymptotic expansions of %(z, f) in specified ranges, Keane
and Clancy have evaluated a number of integrals involving y>(x, £)+i<f>(x, I)
over the real axis by taking the functional of x{z> S) around an infinite semi-
circle in the upper half-plane and using the calculus of residues. These
authors also drew attention to the work of Buckler and Pull [2] who in-
troduced the function

(3) G(w) = \
Jo

e-"'wdu

0 »•+»«
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where w is complex, and G(w) is proportional to y-\-i<f> when w — Jf (1— ix).
There are many ways in which the extension of definition to the complex
domain can be accomplished. In this paper a method which involves the
use of Cauchy integrals is proposed. Although this method has features in
common with both the above, it also involves a generalization of a function
considered by Faddeyeva and Terent'ev [3], and leads to helpful definitions
of yi(z, | ) and </>(z, f) as functions of a complex variable.

The integrals discussed by Keane and Clancy are special cases of some
convolution integrals which are currently important in attempts to solve
problems associated with resonance overlap in reactor systems. The Cauchy
integral method is used here to evaluate some of these integrals and to derive
further properties of the Voigt profiles.

The function y>{x, f) in particular has been extensively tabulated; in
two volumes by Rose et al. [4] and slightly more accurately by Bell et al. [5].
There are many short tables scattered throughout the literature of several
fields; two efforts by Australians are mentioned, Posener [6], and Cook
and Elliot [7], which also contains a table of <f>(x, f). A very rapid method
of evaluating the functions is given as a special case of formulae derived
in the sequel.

Cauchy integrals

It can be readily shown that

. 00

y>(x, f) = e-r-p'IS' Cos px dp

(4) J o

<f>(x, | ) = e-'-vVP s m px dp
Jo

so that

ip(x, £)+i<f>(x, f) = e-v-'H e'"" dp

(5) J o

= liml e*1 e-*'*'dp

where z = x-\-iy,

= lim —— I e~te'''dt I g-w-** dp
V-l ZV^J-co Jo

= lim _ , . .
t—z
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We therefore consider the Cauchy integral

(7) F{z) = —
•\/MJ_oo t—Z

where a = | | . F(z) is holomorphic in the upper and lower half planes
but not on the real axis, where there is a line of discontinuity. F(z) is,
however, continuous from the left and the right of the real axis. A formal
re-arrangement of equation (7) shows that

2a
(8) F{z) = - F ( - z ) = - — C(»«)

where G(w) is the function considered by Buckler and Pull, [2], equation (3).
The function considered by Faddeyeva and Terent'ev, [3], is essentially
equation (7) with a = 1.

Convolution integrals

The Cauchy integral technique is first illustrated by a trivial generaliza-
tion of a result given without detail by Keane and Clancy, [1], (equation
(14)).

Consider a contour C consisting of a rectangle of unit height, standing
in the upper half plane, on the segment —R,R of the real axis. When
z = x+i, F(z) = yi(x, H)-\-i</>(x, f).

1. Consider, for real a,

(9) <£ (z-i+a)m{F(z)}ndz
J c

r.
and let the contour integral be denoted by §cG(z)dz.

If m < n, the integrals on (0, 1), when z = R+iy, —R+iy, vanish
as R -»• oo.

If we consider the partial fractions of the proper rational function
G(z), we find that the residue at z = tk say, is (—1) times

If w < «—1, this rational function in <* is proper and its partial fractions
in tk will reproduce all the other residues with opposite sign.

If m = n—1, the function can be rearranged as
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' ' It t \ • • • It / \(t / \ • • • (f / \
VI lkl Vk-l ck) Vk+l lk) Vn lk)

The new rational function is proper in tk and its partial fractions in tk will
cancel all other residues as before.

Thus
—ni(— I )"-1 if m = n—\£ c <«H:; if m < n— 1.

In addition, the integral on the real axis, from — oo to + ° ° vanishes in
the sense of Cauchy principal value, and so, finally,

rc'""1 for m = n— 1
for m < »—1.

f+co I n
(10) (x+a)m[y,(x, «+**(*, £)]«& =

J— oo V «

Similarly, by considering §c {F(z)}nl(z—i-\-a)mdz, m = 1, 2, • • • we find

t\"]n / \\m~^7li dm~
(11)

J— ex

2. The extension of the present method to include integrals of F(z)
or powers of F(z) multiplied by functions with poles either inside or outside
C is obvious. The most striking of these are the following.

Consider, for real a,

(fi F(z)F(a-z+2i)dz
Jc

I a. \ 2 H-°° |.+°° _ j p fa

~~ Witi) J-oo J_«, C ' ' tx 7 C {t1-z)[t2-(a-z+2i)]'
Now

Jc {h-*

—ni
z)[tt-{a-x+2i)]

Also,

Hence

_ f+ 0°

(
„ \ 2 f+oo »+oo .—«!((J+(J) ̂  ^

—-.I ?—5-.

Let M+V = ^1( «—» = /2, and so
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VVW J-co J-oo « -

Consideration of the special case a = 0, together with the fact that,
from equation (10) when » = 2, m = 0,

« + OO ff+OO

y2^a; = I <£2*fe, etc. ,
J —00 v —oo

suggests

(13) f
J

(14) f

and

(15) f y(«, f )# («- A i)dx =
J— oo

f
— oo

We thus have an interesting group-like property. This result can be easily
generalized to the four parameter situation in reactor theory when resonances
of two nuclear species overlap due to Doppler broadening. There is an
analogue in spectral analysis. We have

rU+i' .

In the above, *' is a measure of separation of resonance centres and K is
a ratio of resonance widths.

Thus

(17)

(18)
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When £ -»• oo,

and
*(!••)

•(!••)
Kx

These are the "natural" profiles. The above equations then give a variety
of convolution formulae, e.g.

(20)

and so on.
Many others may be obtained by differentiation under the integral

sign with respect to the parameters x' or K, and using the differential
equations

(22) * _ ! _ , _ * * .

Convolutions with Gaussians may also be obtained by considering

<£ e-"**-*** F{z'-z+2i)dz.
Jcc

We find

f

which may be decomposed as before.

Series expansions

For

F(*) = - £

we have, on differentiating under the integral sign and integrating by parts,

(24) F'(z)+2afzF{x) =

https://doi.org/10.1017/S1446788700025313 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025313


482 A. Reichel [7]

The special case a = 1 has been considered essentially by Faddeyeva and
Terent'ev [3].

From equation (5) we find

(25) F(0) = ay/n,

if z -> 0 from the upper half-plane.
Also, by successive differentiation of equation (24),

B-i!»z = 0, » ^ 2.

Towards obtaining a Maclaurin expansion, we have

F(0) = xy/nt, -F'(O) = 2oc«t,
and

F2™>(0) = ( -2)" > (2w-l ) (2w-3) • • • 1 • (a2)M.F(0)

2 • (a2)mF'(0).

The coefficient of z2m in the Maclaurin expansion is (itm«.tm+1'\/n)lml
and the coefficient of 22m+1 is (i2m+laim+W)lr(w+i)'- ^ ^ t h e coefficient
of 2" is (»"*"+V*)/(i»)! and so

(26) i '

and

(27) v{Xl

Towards obtaining an asymptotic development we find

Only even powers of * are relevant and we find

(28)

This result has also been given by Buckler and Puu [1], in view oi equation
(3) and equation (8). Putting z = x+i and separating real and imaginary
parts we obtain the well-known asymptotic developments of y{x, I) and
<f>(x, | ) . In particular, as f-> oo,

and
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Definitions of ip(z, £) and <p(z, §)

A simple mapping gives

y>(x, £)-\-i<f>(x, | ) = lim W(z)
V-.0

where

(29) W{z) = - £

W(z) has a line of discontinuity at y = — 1. For y > — 1, we have, on
separating real and imaginary parts,

(31) ^ , , ) = J ^ _
Clearly, on y = 0, we recover the Voigt profiles. The functions u(x, y)

and v(x, y) have been tabulated by Faddeyeva and Terent'ev [3] in the
special case a = 1, \/n replaced by n and {y+l) replaced by y. This would
seem to be an unnecessary tabulation since a simple change of variable
gives

(32) «(*•*)

(33) v(,

so that for y > — 1

(34) W(z) = - L .

Let W+(*) denote the value of W(z) as j / -> — 1 from the upper half-plane,
and W~(x) the value of W(z) as y -»• — 1 from the lower half-plane. Then,
applying the Plemelj formulae for Cauchy integrals on the line of integration
we have

't—x

The integral is easily evaluated by the substitution u = t—x and dif-
ferentiation under the integral sign to form a differential equation, and
finally
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(35) W+ix) = \/n«.e~"-***+2txe~a'xl e*'dt
Jo

(36) W~(x) = -Vn*e-*'x'+2i«e-a'xt f fdt.
Jo

The integral JJ1 e'Vi has been tabulated by Dawson [10] and Terrill and
Sweeney [11].

Hence, a solution of the Hilbert problem

W+(x) — W-(x) = 2yfmu;-a'x' on y = - 1

is W(z). It can readily be shown to be the only solution.
On the imaginary axis, W(z) is real. From equations (34), (35), (36),

(37) W(iy) = - L - v(0, l(l+j/)), y > - 1

(38)

Equation (34) shows that W(z) takes the same values as Keane and
Clancy's, [1], function #(z) when y > — 1, but whereas ^(z) is an integral
function, continuous across y — —\ with an isolated essential singularity
at infinity, W(z) is a sectionally holomorphic function.

Since
° e~'u'dt

a f+o°

we have

m Thf l_.£

Equations (39) and (40) give asymptotic expansions in a form convenient
for computation, viz.:

v(x, I) = aH
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1 ' +(1201-*—
We define

where z = x-\-iy.
Clearly

Many of the convolution integrals follow simply from equations (43) and
(44) and the calculus of residues. For example, the Hilbert transform
property (Keane and Clancy, [1]) is readily proved by taking

where Cx is an infinite semi-circle in the upper half-plane. Since

dz ni 2jiiP dz ni

we have

r+°°y(x, f) _ «ta r+0° e-*H'(t-i)dt
} _ , x-a X ~ ~VriJ^ (t-i)*-a2

(46) = mV(a, S)-m[y(a, ()-

= -n<f>{a, f).

Both v(2, f) and <£(2, |) are analytic within and outside the strip — 1 <y< +1
but are discontinuous across y = —1, y = +1 . The values of v>(̂ , f) and
^(z, f) are readily given in terms of the values of ip and <f> on the real axis.
In fact,

for — I < y < + 1 ; and for y > +1
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(48) (i

Clearly the values on the imaginary axis are real and conjugate complex
values are taken on either side of the imaginary axis. This, together with
equation (45) gives the values everywhere from those in the first quadrant.

Similarly,

*<*•f»" s ^ ' ( I T ? «• +*>) + ^h * (if;-
(49)

for — l < « / < + l ; and for y > + 1 ,

(50)

On the imaginary axis, <f>{z, | ) is pure imaginary.

Expansions in Hermite polynomials and computation

Using the integral formula for the Hermite Polynomials, viz.

(51) Hm(x) = - ^ f °° (x+it)»e-*dt

we have, for real a,

Im(«) = j+Xe-xlHm(x){f(a-x), S)+i<f>{a-x, £)}dx

x/mVnJ-co J-co J-co x+t—(a+t)
/.+oo .-Kr*

(«+*)
„ om /•+<» /.+oo /.+oo .-Kr*/r o\m

where
/S = s—iv

and
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a2 P
(53) K = = —— •K ' 1+a2 4+f2

It is easily shown that

(54) /„(«) = 1

(55) /,(«) = -

A simple recurrence relation can be obtained by noting that the integral

OC 2 " /•+<» i»+oo p+oo g—Kr'/^, B)nBdf
Bn = ——; —- Kn+* e-Kt'*~"'Kt'dvds

( g 6 ) ^ V ^ V - ^J-coJ-oo J-co f " ( - + .)

and that the integral

»+OO ,.+00 »+00

'--/ J J e'K"
(57) J-ooJ-ooJ-oo

We obtain finally,

(58) Im(a) = (a+t)2iS: Jm_1-2iii:(»»-l)/m_1!, where m = 2, 3, • • •.

Equations (54), (55), (58), together with the normalization integral

(59) P e-''Hn(z)Hn(z)dz = «3mn2« • n! yfn

give expansions of the functions y>(a—x, f) and <f>(a—x, f) in Hermite
polynomials. The special case a = 0 gives an expansion of ip(x, f) in even
order Hermite polynomials and ^(a;, £) in odd order. We have then a very
rapid method for computing ip(x, f) and <f>{x, f). These expansions have
been used, together with equations (41), (42) when x > 7/f.
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