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1. I n t r o d u c t i o n . Let / i , . . . ,fk be linearly independent real functions 
on a space X, such t ha t the range R of (/i, . . . ,fk) is a compact set in k-
dimensional Euclidean space. (This will happen, for example, if the ft are 
continuous and X is a compact topological space.) Let 5 be any Borel field 
of subsets of X which includes X and all sets which consist of a finite number 
of points, and let C = {£} be any class of probabili ty measures on 5 which 
includes all probabili ty measures with finite support ( tha t is, which assign 
probabili ty one to a set consisting of a finite number of points), and which 
are such tha t 

Wii fâ = I fz(x)fj(x)^(dx) i,j = 1, . . . , k 

is defined. In all t ha t follows we consider only probabili ty measures £ which 
are in C. Wri te M(g) for the k X k matr ix | | m u ( £ ) | | . When Af(f) is non-
singular, write [M(£)]~l = | |w° ' | | . (We shall not always exhibit dependence 
on £.) Let t ing f(x) denote the column vector with components fi(x), and 
letting primes denote transposes, we define 

rf(x;|) = /(*)'[Jtf(É) ]-'/(*) 

whenever M{j£) is non-singular. 
We consider two extremum problems. The first is to choose £ so tha t 

(1) f maximizes det Af (f). 

The second is to choose £ so t h a t 

(2) £ minimizes max d(x\ £). 
X 

We also note t ha t the integral with respect to £ of d(x; £) is k; hence, 
m a x ^ ( x ; £) > k, and thus a sufficient condition for £ to satisfy (2) is 

(3) maxd(x; £) = k. 
X 

The result of this note is t ha t (1), (2), and (3) are equivalent. This result, 
which seems to have interest per se, also s trengthens and extends results of 
the authors (1) on the opt imum design of regression experiments. A brief 
description of the connection with the design of such experiments is given 
below. The proof of the theorem is elementary and brief. 
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2. The theorem. For every £ consider M(Ç) as a point in Euclidean 
&2-space, let T be the totality of such points for all £ in C, and let T be the 
convex closure of T. It is clear that every extreme point of T can be achieved 
by a £ which assigns probability one to a single point. Since C contains every 
£ with finite support, it follows that T = T. The class C need not, of course, 
be convex. However, since our argument will be concerned only with the 
Af (£), we may argue below as if C were convex. Thus, if £1 and £2 are in C and 

2 

is not, we may still discuss 

because there exists a £ in C with finite support, say £3, such that 

M(fc) = M ( ^ P ) . 

Moreover, if H — 1 is the dimension of the linear space spanned by the 
functions fjj, i < j , any M(£) is equal to an M{£) where the support of 
£' consists of at most H points. This can often be impoved, as in the case 
where X is the unit interval and fi(x) = x1"1. 

Call a subset D of C linear if the following condition holds: For every a, 
0 < a < 1, and every pair £1, £2 in D, a£i + (1 — a)£2 is in £) whenever 
it is in C Thus, if C is convex, D is also convex. 

We shall prove the following: 

THEOREM. Conditions (1), (2), and (3) are equivalent. The set B of all £ 
satisfying these conditions is linear, and M(£) is the same for all % in B. 

This result has a function space corollary which may be of interest. Suppose 
£ satisfies (3) and that Q is a real k X k matrix such that QM{Ç)Q' is the 
identity. Then g = Qf is a vector of orthonormal functions with respect to 
£, and g(x)rg(x) = d{x\£). Thus we have 

COROLLARY. Iffi, . . . , / * a^e linearly independent, continuous, real functions 
on a compact space X, then there is a probability measure % on X and a linear 
transformation gt = Y^jaijfj such that g\, . . . , gk are orthonormal with respect 
to £ and 

Jc 

m a x X) g2*(x) = k. 
x i=l 

The set of all such £ is the set B of the theorem. 
Proof of the theorem. We shall say that £ is a local solution of (1) if 

det M(£) > 0 and if, for every £', 
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(4) ya log det M([l - a]? + a?') |a=0+ < 0. 

Now, if det M (?) > 0, A is such that 4 M ( f ) 4 ' is the identity, and AM{g)A' 
is diagonal with diagonal elements bit then det M ([I — a]? + a?') = det^4~2 

Tli[l — a + aôf], from which we easily compute that — log det M([l — a]? 
+ a?') is convex in a(0 < a < 1) and is strictly convex unless all bt = 1 
(that is, unless M{£) = M(?'))• Hence, if det M(£') > det M"(?), equation (4) 
cannot hold for that ?''. We conlcude that local solutions of (1) are actual 
solutions of (1), and of course the converse is true. Moreover, if det M (?) 
= det Af (?') = h > 0, we have det Af (?/2 + ?'/2) > A unless I f (?) = ilf (?'), 
so that ? and ?' cannot both satisfy (1) unless M (?) = -M(?')« It follows from 
this and the linearity in ? of M (?) that, if ? and ?' both satisfy (1), then so 
does a? + (1 — a)?7, whenever it is in C 

It now suffices to prove that det M (?) > 0 and ? satisfies (4) for all ?', if 
and only if ? satisfies (2), and only if it satisfies (3). First suppose ? satisfies 
(4) and that det ikf (?) > 0. Performing the differentiation in (4), and denoting 
by Mtj the cofactor of mih we have 

(5) 0 > [det M © ] " 1 £ I d e t M a ^ a i ^ ^ + ^ n 
itj o fHij da 

= [det Jlftt)]-1 S ( ^ £ 7 Z «««Af*)[»»«(*') - ««(*)] 

= [detM(f)]-1 Z M„(Ç) [» 0 a ' ) - «*>(€)] = E ">"(?)»«(?) - *• 

Letting ?' give measure one to the point x, we obtain 

(6) UWMW-Wx) < k 

for all x. Thus, (3) is satisfied and, as we have remarked, this implies (2). 
Finally, if (2) is satisfied, we must have (6) for all x, since we have just 

seen that there always exist ?'s satisfying (3). Hence, for any ?' with finite 
support, we obtain Ylijmij(%)mij(¥) < k. Hence this inequality is valid for 
all ?', and (5) is satisfied. This completes the proof of the theorem. 

3. Extensions and applications. We remark that it is easy to see that, 
if R is bounded but not compact, and if {?*} is a sequence of measures on S, 
then lim^det M(^i) is a maximum if and only if lim* sup^ d{x\ ?*) is a minimum, 
and if and only if lim* supx d(x; ?<) = k. Similarly, the first part of the corollary 
holds with the replacement supx J^igi2(x) < k + e, for any e > 0. 

We now describe briefly the statistical applications of the results. An 
integer N is given, and the statistician must choose N points Xi, . . . , xN (not 
necessarily distinct) corresponding to which he obtains observations on un-
correlated random variables Yt (1 < i < N) with common variance a2 (per­
haps unknown) and with expectation Y^kj=$jf Axi), where the Oj are unknown 
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real parameters. If £(x) denotes the proportion of x / s which are equal to x, 
we find that the covariance matrix of best linear estimators of 0i, . . . , 6k is 
2\T-1cr2[M(£)]-1. The function | is called the experiment or the experimental 
design. A criterion often adopted for choosing a design is to minimize the 
determinant of the above covariance matrix (the "generalized variance"). 
Another possible criterion is to minimize the maximum over x of the variance 
N~la2d(x\ £) of the "best linear estimator," given £, of the "regression func­
tion" ^jOjfjix). If we consider not merely the class CN of probability measures 
£ which take on only integral multiples of N~l as values, but rather all prob­
ability measures £ in C, then our result is that the two optimality criteria 
are equivalent. Moreover, for any £ with support on H points which satisfies 
(1), (2), and (3), there is clearly a £' in CN which achieves (1), (2), and (3) 
to within a multiplicative factor 1 + 0(iV_1), and is easy to write down 
from £. Since the exactly optimum designs are often difficult to obtain, depend 
on N, and differ for the two criteria, we see the practical importance of our 
considerations. 

It is very helpful to use the interplay of the two criteria (1) and (2) in 
obtaining a solution. For example, one can sometimes guess that a solution 
exists which is a member of a class of £ which depend on several parameters. 
One may use (1) as the more convenient initial approach, maximize det M{£) 
over the parametric class, and then verify whether the maximum just obtained 
is indeed a maximum over all £ (which may be difficult in terms of (1)) by 
verifying (3). It is useful to note that, if £ has a set consisting of k points 
as its support, then it gives equal measure to each of these points. (This 
is part of Theorem 5 of (1).) Examples which make use of such methods 
will appear elsewhere, as will generalizations such as one concerned with the 
minimization of the determinant of a principal minor of M(£)-1. 
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