FIVE DIMENSIONAL NON-LATTICE SPHERE PACKINGS
John Leech

(received March 1, 1967)

1. The densest lattice packings of spheres in Euclidean
spaces En of n dimensions are known for n< 8 (for full

references see [6]). However, itis not known for any n> 3
whether there can be any non-lattice sphere packing with density
exceeding that of the corresponding densest lattice packing.
Barlow's description [1] of a non-lattice packing in E3 with the

same density as the densest lattice packing serves to show that
the possibility of a denser non-lattice packing is not absurd

prima facie. In this note I show that in E5 , as in E3 , non-
lattice packings are possible with the same density as the densest
lattice packings. The construction gives three distinct non-
lattice arrangements, with quite different symmetry groups, the
symmetries being transitive on the spheres in each case. A
remarkable feature is that the configuration of 40 spheres touching
any one is the same in all these arrangements, although they are
different over larger regions.

My earlier announcements [3, p.60; 4, p.658] of the exis-
tence of non-lattice packings in E5 are somewhat inaccurate,

and are superseded and corrected by the present account.

2. The centres of the spheres in the densest lattice packings

in E , for n=3, 4, 5, are vertices of the honeycomb hé§ s
n n+1

whose vertices are alternate vertices of the regular cubic honey-

comb 8 1 (for notation see [2]). The cells of the honeycomb
hé niq 2TE of two kinds. Each omitted vertex of the cubic honey-
comb 6n+1 is the centre of a cross polytope 6n whose vertices

are those of the cubic honeycomb adjacent to the omitted vertex.
Alternate vertices of each cube Y, of the cubic honeycomb form
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a cell hyn concentric with the cube. As there is a cell hyn
concentric with every cube of the honeycomb, but the cells Bn

are concentric with the alternate vertices of the honeycomb, we
see that the cells hyn are on the average twice as numerous

as the cells g .
n

For n=3 we have hy3 = o, , and the honeycomb is the

3
familiar one of tetrahedra and octahedra. For n =4 we have
hy4 = ﬁ4 , and in this case every cell is a 54 and the honeycomb

is the regular honeycomb {3, 3, 4, 3} . For n> 4 hyn is

only semiregular.

3. We remark in passing on coordinates for the regular
honeycomb {3, 3, 4, 3} in E4 . We consider the following four

sets of points, namely those whose coordinates are either all
even or all odd, and which have their sum either a multiple of 4
or twice an odd number, in all four combinations. Then any one
of these sets form vertices of a honeycomb {3, 3, 4, 3} , and
the points of the other three sets are all centres of the cells of
the honeycomb. Also if all four sets of points are taken together,
they form vertices of another honeycomb {3, 3, 4, 3} , differ-

1/2

ently oriented and of size 2 times that of the former honey-
combs. From this we see that the four sets of points are all
exactly equivalent and are completely symmetrically related to
each other. Thus, for example, all six pairs of sets from the
four are also exactly equivalent, being mutually transformable by
symmetry operations on the smaller honeycomb.

4, In E5 I take the coordinates of the vertices of the

honeycomb h§ to be pentads (XO, X , X x ) of even in-

6 17 727 73 T4
tegers whose sum is a multiple of 4; this avoids the subsequent
introduction of fractions. Then the centres of the ;35 cells have

X

their coordinates all even with their sum twice an odd number,
and the centres of the hys cells have their coordinates all odd

with no restriction on their sum.

We may divide the honeycomb h§,6 into layers separated

6

by flats x = 2m for integer m . Each such flat cuts the
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honeycomb h§, in a regular honeycomb h65 = {3, 3, 4, 3} whose

6

cells are all cross polytopes [34 . Any cell hyS is contained

exactly between two adjacent flats, each of which contains a face
64 of the cell. Each cell BS is exactly bisected by a flat into

two ﬁ4 -pyramids whose common base is a [34 of the flat. One
third of the cells 54 of the flat, those whose centres have their

coordinates all even with their sum twice an odd number, are
bases of pairs of pyramids, while two thirds, those whose centres
have their last four coordinates all odd, are faces of contact of
pairs of hys cells.

5. To form non-lattice arrangements, we take layers as
obtained in §4 and fit them together so that the 64 cells in
their bounding flats correspond but the 54 cells of the different
types identified in §4 do not. Thus one third of the B4 cells in

the flat bounding a layer, those which are bases of pyramids in
that layer, are fitted on to faces of hyS cells of the adjacent

layer, while, of the two thirds which are faces of h\/5 cells of

the layer, half are fitted on to pyramids of the adjacent layer and
half on to hy5 cells. There is a choice at each stage of building

up a space filling, namely to which half of the h\{s cells of each

layer we fit the pyramids of the next layer, but the pairs of layers
which may be so formed are congruent (this follows from the
equivalence of sets of centres of [34 cells in the packing in the

flat as given in §3).

There are, however, two different ways of fitting any
three layers together. At any flat, half of the hys cells on one
side fit on to hy5 cells on the other and half fit on to pyramids.
The middle of three layers may be of two types. Either the hyS

cells which fit on to pyramids on one side fit on to pyramids on
the other, and those which fit on to hy5 cells on one side fit on

to hy5 cells on the other; call such a layer type S (Same or
Similar). Or each hys cell of the middle layer fits on to a

pyramid on one side and a hy5 cell on the other; call such a
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layer type D (Different or Dissimilar). Note that the layers
themselves are identical, as are pairs of layers; it is not until

we consider a layer and both those adjacent to it that any difference
emerges,

There are three possible ways of stacking the layers so
that uniform packings of spheres result. The centres of the
spheres lie in the flats, and the two layers meeting in each flat
must be equivalent to the two layers meeting in any other flat.
Thus the layers must be all of type S, or all of type D, or of
types S and D alternately. We consider these cases in turn.

6. Each centre is at the apex of a pair of pyramids, one
in each layer meeting in the flat containing the centre. If every
layer is of type S, then each pyramid fits on to a hys cell whose

opposite face fits on to another pyramid whose apex is another
centre. Thus the positions of the centres repeat exactly in every
third flat. To assign coordinates, we take the first two flats

(xo = 0, 2) and the layer between from the lattice packing; thus

in these two flats the coordinates of the centres are all even with
their sum (including xo) a multiple of 4. In the third flat the

centres have their last four coordinates odd. We may choose
whether their sum is to be twice an odd or even number; let us
choose arbitrarily to make the sum divisible by 4. From the
fourth flat onwards, the last four coordinates repeat those of the
third previous flat, and we have the following coordinates.

If =0 2 4 (mod 6)

%
il

=0 0 1 (mod 2)

then X =T X_ =T X_ =

b
I

=0 2 0 (mod 4) .

»
+
b
+
gl
+
b
1

and

7. If every layer is of type D , then each pyramid fits
on to a hys cell whose opposite face fits on to a hyS cell whose

opposite face fits on to a pyramid. Thus the positions of the
centres repeat exactly in every fourth flat. To assign coordinates,
we take the first three flats as in § 6. The centres in the fourth
flat (xO = 6) do not match those in any of the first three flats, so

they have their last four coordinates odd with their sum (including
X, = 6) divisible by 4 . From the fifth flat onwards, the last

four coordinates repeat those of the fourth previous flat, and we
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have the following coordinates.

If X, = 0 2 4 6 (modS38)
th = = = =
en x1_x2_x3_x4_0 01 1 (mod?2)
d = .
an x1+x2+x3+x4_0 2 0 2 (mod4)
8. The situation is more complex in the third case. Con-

sider first a pyramid in a layer of type D . This fits onto a
hy5 in a layer of type S which fits on to another pyramid. Thus

the centres in each flat repeat exactly in the flat three away on
the side of the flat on which is the layer of type D bounded by it.
Now consider a pyramid in a layer of type S . This fits on to a
hy5 in a layer of type D which fits on to a hys in a layer of

type S which fits on to a hy5 in a layer of type D which fits

on to a pyramid. Thus the centres in each flat repeat exactly in
the flat five away on the side of the flat on which is the layer of
type S bounded by it. Since each centre is in a flat which is the
boundary of layers one of each type, this means that, in any line
of centres perpendicular to the flats, the centres have alternate
intervals of three and five layers. Thus if we take the first
layer, between xO =0 and XO =2, tobe of type D, we obtain

the following coordinates.

If X 0 2 4 6 8 10 12 14 (mod 16)

1

then x =0 0 14 0 1 1 0 1 (mod 2)

"
"
]
¥
]
»

i

and x1+x2+x3+x4_0 2 0 0 2 0 2 2 (mod 4) .

9. In each of these arrangements, as in the lattice packing,
each sphere touches 40 others. Of these, 24 have their centres
in the same flat, these centres being the vertices of a regular
24-cell {3, 4, 3} , and eight have their centres in each of the
adjacent flats, these centres being vertices of the pyramids
whose common apex is the centre of the chosen sphere. In the
non-lattice arrangements, these last 16 spheres are not reflections
of each other in the central flat, as the layers were fitted in §5 to
avoid this. As all pairs of layers so fitted are equivalent, the
configuration of 40 spheres touching each one is the same which-
ever of the three arrangements we consider, despite their non-
identity over larger regions.
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The Dirichlet region for each sphere, which is the set of
points which are not closer to another centre than to the centre
of the chosen sphere, is a polytope which has one vertex in each
adjacent flat, at the centre of the base of each pyramid with apex
at the chosen centre. As this does not extend beyond the adjacent
flats, it is the same whichever of the three arrangements we con-
sider. We thus have the remarkable case of a convex space-
filling polytope which can be used to fill space in distinct discrete
arrangements (unlike, say, layers of cubes which can be slid one
on another), which have groups of symmetries which are transitive
on the polytopes but which are quite different from each other.

10. A description of the lattice and non-lattice packings
in E3 makes an instructive comparison. In the densest lattice

packing in E3 the centres of the spheres are vertices of the
honeycomb th4 of tetrahedra and octahedra. This honeycomb

may be divided into layers by planes which cut it in the regular
triangular tessellation {3, 6} . Each octahedron is exactly
contained between two of the planes, each of which contains a
face of it, and each tetrahedron is also contained between two
planes, with a face in one and the opposite vertex in the other.
Each triangle of the tessellation is the face of contact of a tetra-
hedron and an octahedron.

We can move the layers so that each triangle of the tessel-
lation is the face of contact either of two tetrahedra or of two
octahedra. There is no choice here, as half of the triangles in the
the plane bounding a layer are faces of tetrahedra of the layer
and half are faces of octahedra of the layer. In order that all
spheres should be surrounded equivalently, every plane has to
be the boundary of two layers fitted together in the same way;
this specifies the non-lattice packing uniquely, and we see that
its symmetries are transitive on the spheres.

In the lattice packing each octahedron fits on to tetrahedra
in both adjacent layers, and in the uniform non-lattice packing,
each octahedron fits on to octahedra in both adjacent layers. It
is possible to assemble the layers in such a way that each octa-
hedron fits on to an octahedron in one adjacent layer and a tetra-
hedron in the other, in an attempted analogy with the packings in
E5 . When this is done, it is found that the pairs of layers are
not equivalent, alternate planes separating layers fitted as in the
lattice and uniform non-lattice arrangements, and the symmetries
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are no longer transitive on all the spheres. This arrangement

is one of those considered by Melmore [5], in which the spheres
are divided into two sets, whose Dirichlet regions are rhombic
or trapezo-rhombic dodecahedra, with symmetries transitive on
the spheres of each set. There are several comparable arrange-
ments in E5 (about 12, depending on the precise conditions im-

posed), but these do not seem sufficiently interesting to be worth
discussing in detail.
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