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Twistor spaces of algebraic dimension two associated

to a connected sum of projective planes

Akira Fujiki

Abstract

For any integer m � 4 we construct twistor spaces of algebraic dimension a = 2 associ-
ated to some self-dual structures on mP 2, the connected sum of m complex projective
planes P 2. Together with previously known results this implies that for any m � 5 all the
possible values for algebraic dimension 0 � a � 3 are attained for some such twistor spaces.
Our method is to construct such twistor spaces by small deformations of Joyce twistor
spaces.

1. Introduction

Let m be a positive integer and M := mP 2 the smooth connected sum of m copies of the complex
projective plane P 2. Suppose that we are given a self-dual conformal class [g] on M . Assume that
[g] is of positive type in the sense that the conformal class [g] contains a Riemannian metric whose
scalar curvature is a positive constant. Let Z be the twistor space associated to this self-dual
manifold (M, [g]). Then Z is a three-dimensional compact complex manifold which fibers smoothly
over M with fiber isomorphic to the complex projective line P . We are interested in the algebraic
dimension a(Z) of Z, which is by definition the transcendence degree of the field of meromorphic
functions on Z, and which can take one of the values 0, 1, 2 or 3. As for the problem as to which
of these values can actually be attained for some twistor spaces as above, the following results are
known:

1) We have a(Z) = 3 if m � 3, and a(Z) � 1 if m = 4.

2) For each m � 1 LeBrun [LeB91] and Joyce [Joy95] have explicitly constructed families of
self-dual metrics on mP 2 whose twistor spaces turn out to be Moishezon, that is, a(Z) = 3
(cf. [LeB91, Joy95, Fuj00]).

3) For each m � 5 there exist twistor spaces Z with a(Z) = 0 (see [DF89, LP92, Cam91]), and
similarly for each m � 4 there exist twistor spaces Z with a(Z) = 1 (see [LP92, Cam94, Poo92,
Hon99]).

4) For m = 4 there exist twistor spaces Z with a(Z) = 2 (see [CK99]).

A natural problem thus arises as to whether there exists a twistor space Z with a(Z) = 2 in the
case m � 5. The purpose of this paper is to show that the answer to this problem is affirmative.
Namely we prove the following Main Theorem.

Main Theorem. For any m � 4 there exist twistor spaces Z associated to a self-dual conformal
class of positive type on mP 2 with a(Z) = 2.
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A. Fujiki

The examples in results 3 and 4 are all obtained as small deformations of a ‘general’ LeBrun
twistor space in [LeB91] and the main line of arguments here is basically the same, except that
we use small deformations of Joyce twistor spaces studied in detail in [Fuj00], which includes as
a special case the ‘degenerate’ case of the LeBrun twistor spaces. We note that if a(Z) = 2 for a
twistor space Z of a compact self-dual manifold (M, [g]) in general, then M is homeomorphic either
to mP 2 or to (S1 × S3)# mP 2 and [g] is of positive type (cf. [Fuj02] for more details).

After some preliminaries concerning symmetric toric surfaces in § 2, we construct in § 3 some
projective nonsingular rational surfaces with anti-Kodaira dimension one as a local deformation of
a symmetric toric surface. In § 4 we basically show that a twistor space is of algebraic dimension
two if it contains as a fundamental divisor one such rational surface. In § 5 we prove a general
unobstructedness result for local deformations of a pair consisting of a twistor space and a smooth
fundamental divisor on it. Finally in § 6 we consider a pair of a Joyce twistor space and a
smooth fundamental divisor on it which is a symmetric toric surface. We apply the result of the
previous section to such a pair and show that a certain deformation of the pair gives rise to a twistor
space which contains one of the rational surfaces in § 3 as a fundamental divisor. The Main Theorem
then follows.

Notations. For a line bundle L on a complex manifold X we denote by |L| the corresponding linear
system of divisors on X. For a vector bundle E on X we write hi(E) = hi(X,E) = dim H i(X,E)
and χ(X,E) =

∑
i(−1)ihi(E).

2. Preliminaries

2.1 Let B be a cycle of nonsingular rational curves, i.e. B is a compact curve whose irreducible
components B1, . . . , Bl are nonsingular rational curves such that Bi and Bi+1 intersect transversally
at a single point pi for 1 � i � l, where Bl+1 = B1, and that there exist no other intersections
among the irreducible components of B. The natural map H1(B,C∗) → H1(B,O∗

C) induces an
isomorphism H1(B,C∗) ∼= Pic0 B, the identity component of the Picard group PicB of B. Moreover,
we have H1(B,C∗) ∼= C∗.

We fix a generator g of the fundamental group π1
∼= Z of B. Suppose that there exists an

anti-holomorphic involution σ of B. It induces an involution σ∗ of π1 and we have σ∗(g) = gε, where
ε = 1 or −1. Also σ induces an anti-holomorphic involution of PicB which is an automorphism of
a group. Denote by PicR B the fixed subgroup of this action and set PicR

0 B = PicR B ∩ Pic0 B.
A line bundle L on B defines a point of PicR B if and only if σ lifts to an anti-holomorphic bundle
automorphism σ̃ of L. (A priori σ̃ may not be an involution.)

Lemma 2.1. Suppose that ε = 1 (respectively −1). Then PicR
0 B ∼= R∗ (respectively S1) with

respect to a natural isomorphism Pic0 B ∼= C∗. Moreover, for any line bundle L in PicR
0 B the lift σ̃

as above can be taken to be an involution.

Proof. First note that an anti-holomorphic involution of C∗ as a group is either t → t̄ or t → t̄−1,
where the bar denotes the complex conjugation; in the former (respectively latter) case the real part
is isomorphic to R∗ (respectively S1). Now let p : B̃ → B be the universal covering map, whose
covering transformation group is identified with π1. We fix a lift σ̃ of σ to an anti-holomorphic
automorphism of B̃. Then we have the equality σ̃gσ̃−1 = gε of biholomorphic automorphisms of B̃.
For any element b ∈ C∗ we define the action of π1 on the product B̃ × C by ĝ((x̃, ζ)) = (g(x̃), bζ),
x̃ ∈ B̃, ζ ∈ C. Then the quotient Lb := (B̃ × C)/π1 is a flat line bundle on B and the map C∗ →
Pic0 B, b → Lb, gives a group isomorphism. Let the anti-holomorphic automorphism σ̃ be lifted to
an anti-holomorphic bundle automorphism σ̂ of B̃ × C via σ̂(x̃, ζ) = (σ̃(x̃), ζ̄). This automorphism
then descends to one of Lb on B if the equality σ̂ĝσ̂−1 = ĝε for ĝ = ĝb holds, which is equivalent to
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Twistor spaces of algebraic dimension two

the condition b = b̄ (respectively b = b̄−1). Together with the remark at the beginning of the proof,
this implies the first assertion of the lemma. The second assertion is clear from the above proof.

Suppose now that l = 2m is even and that for any 1 � i � m the anti-holomorphic involution σ
of B interchanges Bi and Bi+m. Suppose further that B is embedded in a smooth complex surface T
and σ is induced by an anti-holomorphic involution on T (still denoted by σ). Let Picc B be the
connected component of Pic B consisting of the line bundles which have the same Chern class with
K−1

T |B, where KT is the canonical bundle of T . Set PicR
c B = PicR B ∩ Picc B.

Lemma 2.2. Let the notations and assumptions be as above. Then there exists a natural isomor-
phism Picc B ∼= C∗ inducing PicR

c B ∼= R∗. Moreover, for any line bundle F in PicR
c B, σ induces

a natural anti-holomorphic involution on the projective space P H0(B,F ) := (H0(B,F ) − 0)/C∗

which is induced by a complex conjugation on the vector space H0(B,F ).

Proof. Under our assumption on σ we see immediately that σ induces the identity of π1 and
hence PicR

0 B ∼= R∗ by Lemma 2.1. The natural isomorphism v : Pic0 B → Picc B induced by the
multiplication by K−1

T |B is σ-equivariant since K−1
T is σ-invariant. Indeed σ on T lifts naturally to

an anti-holomorphic involution on K−1
T . The first assertion follows. Moreover, combined with the

second assertion of Lemma 2.1 it follows that any F as in the lemma admits a lift σ̃ of σ which is an
involution, F being a product of K−1

T |B and an element of PicR
0 B. From this the second assertion

follows.

2.2 Let S be a projective nonsingular rational surface and C =
⋃

1�j�2k Cj a cycle of nonsingular
rational curves embedded in S. (The numbering is in such a way that Ci ∩Ci+1 = {pi}, 1 � i � 2k,
and that there exist no other intersections, where C2k+1 = C1.) Suppose that S admits a fixed-
point-free anti-holomorphic involution σ which interchanges Ci and Ci+k for all i with 1 � i � k.
We call such a σ a real structure of S, or more precisely of (S,C). If u : S′ → S is the blowing-up
of S with center pi and pi+k for some i, and C ′ = u−1(C) with reduced structure, σ lifts to a
real structure of (S′, C ′) in the sense defined above. We call such a blowing-up admissible and call
admissible any bimeromorphic morphism which is a finite succession of admissible blowing-ups.

By a toric surface we shall mean here a projective nonsingular rational surface S on which the
algebraic torus C∗ × C∗ acts algebraically with an open orbit. The complement C of the open
orbit U consists of a cycle of nonsingular rational curves and is a member of the anti-canonical
system |K−1

S |. The complement C is called the anti-canonical cycle of S. If (S,C) admits a real
structure, we have C2

i = C2
i+k for all i, 1 � i � k, that is, S is a symmetric toric surface in the sense

of [Fuj00, (2.5)].
Let P = C(z) ∪ {∞} be the complex projective line. Let S0 := P × P and pi : S0 → P be the

ith projections, i = 1, 2. Set C̄1 = p−1
1 (0), C̄2 = p−1

2 (0), C̄3 = p−1
1 (∞), and C̄4 = p−1

2 (∞). On P we
have anti-holomorphic involutions σ1 : z → 1/z̄ and σ2 : z → −1/z̄. We consider S0 naturally as a
toric surface with open orbit S0 − C̄ and with real structure σ on (S0, C̄) defined by σ1 ×σ2, where
C̄ =

⋃4
j=1 C̄j . If f : S → S0 is any admissible bimeromorphic morphism, S is again a toric surface

with naturally induced real structure.

3. Rational surfaces with anti-Kodaira dimension one

Let S be a projective nonsingular surface and set A = {m � 0 : |K−m
S | �= ∅}. When A is nonempty,

the anti-Kodaira dimension κ−1(S) of S is defined to be

κ−1(S) := max
m∈A

dim fm(S),

where fm is the rational map defined by the anti-canonical system |K−m
S | and fm(S) denotes the

rational image of S by fm. If A is empty, we set κ−1(S) = −∞. The purpose of this section is to
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construct a family of rational surfaces with anti-Kodaira dimension one by deforming certain real
symmetric toric surfaces.

Suppose that S is a projective nonsingular rational surface with |K−1
S | �= ∅. Let C be a connected

curve in |K−1
S |. Denote by N := [C]|C the normal bundle of C in S so that N ∼= K−1

S |C. We assume
that N is a torsion line bundle on C of order n � 1.

Lemma 3.1. Let the notations and assumptions be as above. Then we have

h0(K−l
S ) = 1, 1 � l < n, and h0(K−n

S ) = 2. (1)

|K−n
S | induces a structure g : S → P of an elliptic surface on S. When n > 1, C is the unique

member of |K−1
S | and it is the support of a unique multiple fiber of g, whose multiplicity is n.

Proof. By using the Riemann–Roch theorem we have

H0(C,Nk) = H1(C,Nk) = 0 for 1 � k � n − 1. (2)

Let I be the ideal sheaf of C in S. For any integer l > 0 we denote by C(l) the subspace of S defined
by the ideal sheaf I l. Then we have the short exact sequence

0 → OS → K−l
S → K−l

S |C(l)
→ 0,

and the associated long exact sequence

0 → H0(S,OS) → H0(S,K−l
S ) → H0(C(l),K

−l
S |C(l)) → 0. (3)

We compute H0(C(l),K
−l
S |C(l)) for l � n. Noting that N l−k ∼= Ik/Ik+1 ⊗ K−l

S we have

0 → N l−k → K−l
S |C(k+1) → K−l

S |C(k) → 0.

Using (2) we then get

H0(C,K−l
S |C) ∼= · · · ∼= H0(C(l),K

−l
S |C(l)) for any l � n, (4)

while h0(C,K−l
S |C) = 1 if l = n, and = 0 otherwise. Thus by (3) we have h0(S,K−n

S ) = 2 and
h0(S,K−l

S ) = 1 if 1 � l < n. Therefore we get the first assertion. Also, (3) and (4) for l = n show
that |K−n

S | is base-point-free and C(n) is a fiber of the associated morphism g : S → P which induces
an elliptic surface structure on S. When n > 1, C(n) is a multiple fiber with multiplicity n. Finally,
on a rational surface there exists at most one multiple fiber (cf. [Dol81, p. 133, Corollary 2]).

Consider the toric surface S0 := P × P with its real structure σ given as in § 2.2. Denote by
α : T → S0 the blowing-up of the four nodes of C̄, and by Ci, 1 � i � 4, the proper transforms
of C̄i in T . We further define Ei to be the inverse images of the nodes C̄i ∩ C̄i+1, where C̄5 = C̄1.
Then we set qi = Ei ∩Ci, and ri = Ei ∩Ci+1. The real structure σ on S0 lifts to one on T , which is
again denoted by σ. For i = 1, 2, σ interchanges members of each of the pairs (Ci, Ci+2), (Ei, Ei+2),
(qi, qi+2) and (ri, ri+2) respectively. Let B := α−1(C̄) with reduced structure, which is the union of
Ci and Ej , 1 � i, j � 4. Then T is again a toric surface with anti-canonical cycle B.

Now we take an admissible bimeromorphic morphism u : T ′ → T , where we include the case
where T ′ = T and u is the identity. Again T ′ is a toric surface with anti-canonical cycle B′ given
by the reduced inverse image of B and with induced real structure (still denoted by σ).

Let E′
i be the proper transform of Ei in T ′. Then u induces an isomorphism E′

i
∼= Ei. In general

we denote a point of E′
i corresponding to a point p of Ei by p′; for example, we may speak of the

points q′i and r′i of E′
i. We consider the product

E := E1 × E2 × E3 × E4
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and the holomorphic family {Sa}a∈E of nonsingular rational surfaces Sa parametrized by a =
(a1, a2, a3, a4) ∈ E, ai ∈ Ei, where Sa is obtained from T ′ by blowing up the four points a′1, a′2, a′3
and a′4 of T ′. In general Sa is not a toric surface any more.

Suppose that ai �= qi, ri for any i. Then we may also view the surface Sa as follows. Let va :
Ta → T be the blowing-up of ai, 1 � i � 4. Since ai �= qi, ri, there exists an admissible birational
morphism ua : Sa → Ta such that vaua = uwa, i.e.

Sa

ua

��

wa �� T ′

u

��
Ta

va �� T

(5)

where wa : Sa → T ′ is the natural map.
Now we show the following lemma.

Lemma 3.2. Suppose that ai �= qi, ri for any i as above. Let Fa be the line bundle on B defined by
the Cartier divisor a1 + a2 + a3 + a4 on B. Suppose further that

La := F−1
a ⊗ (K−1

T |B) ∈ Picc B (6)

is a torsion line bundle on B. Then we have h0(K−1
Sa

) � 1 and κ−1(Sa) = 1. The case h0(K−1
Sa

) > 1
occurs if and only if u : T ′ → T is the identity and La is trivial. Moreover, in this case h0(K−1

Sa
) = 2.

Proof. We first study the structure of Ta. Let n be the order of La on B. Let Ba be the proper
transform of B in Ta. Then since ai �= qi, ri, va|Ba : Ba → B is isomorphic, and Ba is again an
anti-canonical cycle of Ta. In particular as a line bundle we have

K−1
Ta

|Ba
∼= [Ba]|Ba, (7)

where KTa is the canonical bundle of Ta. On the other hand, if we denote the exceptional curve
of va by Da :=

⋃
1�i�4 v−1

a (ai) we have [Da]|Ba
∼= (va|Ba)∗Fa. Therefore we get

K−1
Ta

|Ba
∼= (v∗aK

−1
T ⊗ [Da]−1)|Ba

∼= (va|Ba)∗(K−1
T |B ⊗ F−1

a ) = (va|Ba)∗La. (8)

By (7), (8) and our assumption, [Ba]|Ba is thus a torsion line bundle of order n. Then by Lemma 3.1,
|K−n

Ta
| defines a holomorphic map fa : Ta → P making Ta an elliptic surface over P such that Ba(n)

is the unique multiple fiber of fa.
Using this we next show that κ−1(Sa) = 1. Since the morphism ua : Sa → Ta is admissible,

the inverse image Ca := u−1
a (Ba) of Ba in Sa with reduced structure is a member of |K−1

Sa
| and

Ca is the support of a fiber of the induced elliptic surface structure faua : Sa → P . In particular
h0(K−1

Sa
) � 1, and we have the equalities

κ−1(Sa) = κ([Ca];Sa) = κ([Q];Sa) = 1,

where κ(L;Sa) denotes the Iitaka dimension of a line bundle L on Sa in general [Uen75] and Q
denotes a general fiber of faua.

Finally, when ua is not isomorphic, the member Ca of |K−1
Sa

| is reduced and is a support of a fiber,
but does not coincide with the fiber. It follows that Ca cannot move and hence dim h0(K−1

Sa
) = 1.

Suppose next that ua is isomorphic so that Sa
∼= Ta and T ′ ∼= T . In this case if dim|K−1

Ta
| > 0 and

B′
a is any member other than Ba, we must have Ba ∩B′

a = 0 since K−1
Ta

|Ba is torsion. This implies
that K−1

Ta
|Ba is trivial, or La is trivial on B by (8). Conversely, if this condition is satisfied, we have

h0(K−1
Ta

|Ba) = 1, so that by the sequence (3) applied to S = Ta and l = 1 we have h0(K−1
Ta

) = 2.

Let U ∼= C∗4 be the Zariski open subset of E consisting of those points a = (a1, a2, a3, a4) for
which ai �= qi, ri for any i. Let Picc B be the connected component of Pic B containing K−1

T |B as
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defined in § 2.1. The real structure σ of T induces anti-holomorphic involutions of E,U,Picc B, etc.,
all denoted still by σ and referred to as real structures. Note that the induced real structure on E
interchanges E1 and E3, and E2 and E4. A point which is fixed by σ is called a real point. PicR

c B
is thus the set of real points on Picc B. Now we consider the special real point a# := (q1, r2, q3, r4)
of E.

Lemma 3.3. For any line bundle F in Picc B and for any neighborhood V of a# in E there exists a
point a = (a1, a2, a3, a4) of U ∩ V such that the associated line bundle Fa on B is isomorphic to F .
If F belongs to PicR

c B, we may take a to be a real point.

Proof. For any element F ∈ Picc B we have deg F |Ei = 1 and deg F |Cj = 0 for any i and j.
By Serre duality and by our assumption we have h1(B,F ) = h0(B,F−1) = 0 in view of the
triviality of KB := (KT ⊗ [B])|B. Then by the Riemann–Roch theorem we get h0(B,F ) = 4. In fact
it is readily shown that the restriction map H0(B,F ) → ⊕

j H0(Cj , F |Cj) ∼= C4 is isomorphic.
Let pj : H0(B,F ) → H0(Cj , F |Cj) ∼= C be the induced projection, and Kj(F ) its kernel. Then we
obtain a P 3-bundle h : W → Picc B whose fiber over F ∈ Picc B is the projectified vector space
PH0(B,F ) := (H0(B,F ) − {0})/C∗. Moreover we obtain its P 2-subbundles Wj → Picc B, 1 �
j � 4, with fibers P Kj(F ) ⊆ P H0(B,F ).

Let U0 := W − ⋃
j Wj . Note that a point of W belongs to

⋃
j Wj if and only if a representative

of it in H0(B,F ) vanishes at least one of the points in a#; in fact since deg F |Cj = 0, if a section
of F vanishes at a point of Cj it vanishes identically on Cj . Then we have a natural biholomorphic
map g : U0 → U of U0 onto U , where a point of U0 represented by a section s of F , which never
vanishes on any of the points in a# by the above remark, corresponds to the point (a1, a2, a3, a4)
of U , ai being the unique zero of s on Ei − {qi, ri}.

Now for any neighborhood V of a# in E if we take a sufficiently small neighborhood N of
W1 ∩ W3 in W we have g(N ∩ U0) ⊆ V since points of W1 ∩ W3 are represented by sections which
vanish at all points in a#. Any point a of the set g(N ∩ U0 ∩ h−1(F )), which is clearly nonempty,
then meets the requirement of the lemma.

Suppose finally that F belongs to PicR
c B. Then E and W have natural real structures of which

U and U0 are σ-invariant open subsets respectively. Moreover, g and h are compatible with real
structures. By Lemma 2.2 the real part h−1(F )R of h−1(F ) is diffeomorphic to a three-dimensional
real projective space and it has nonempty intersection with the σ-invariant P -bundle W1 ∩ W3

over Picc B. Thus N ∩ h−1(F )R is never empty, and we can take any point a of g(N ∩ h−1(F )R) as
a desired real point.

Corollary 3.4. Let n be a positive integer. Then for any neighborhood V of a# in E there exists
a point a of U ∩V such that the corresponding line bundle La (cf. (6)) is a torsion line bundle on B
of order n. If n = 1 or 2, we can take a to be a real point in U ∩ V .

Proof. For the first assertion we have only to take F in the lemma in such a way that F−1⊗K−1
T |B

is a torsion line bundle of order n on B and then apply the above lemma to F . When n = 1
or 2, F−1 ⊗ K−1

T |B, and hence F also, is real and the assertion again follows from the above
lemma.

For later reference we shall summarize what we have obtained in this section in terms of defor-
mation of surfaces. Let S be the toric surface with real structure σ obtained from T ′ by blowing
up the four points q′1, r′2, q′3 and r′4, i.e. S = Sa# for a# = (q1, r2, q3, r4). For a neighborhood V
of a# in E we consider the surfaces Sa, a ∈ V , as small deformations of S. The surface Sa contains
a cycle Ca of nonsingular rational curves and the point a defines a holomorphic line bundle La on
the cycle of nonsingular rational curves B on T by the formula (6).
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Proposition 3.5. Let n be any positive integer. Then for any neighborhood V of a# as above,
we can find a point a ∈ U ∩ V such that La is a torsion line bundle of order n and κ−1(Sa) = 1.
Moreover, if n = 1 or 2, we can take Sa to be a real surface with real structure σa so that (Sa, σa)
is a deformation of (S, σ) with real smooth parameters.

Note that the last statement follows from the proof of Lemma 3.3.

4. Algebraic dimension of Z and anti-Kodaira dimension of S

Let Z be the twistor space associated to a self-dual structure of positive type on mP 2,m > 0.
In this section we shall show that the algebraic dimension a(Z) of Z equals two, provided that Z
contains a special rational surface as considered in Lemma 3.2 as a smooth member of the system
|K−1/2|, where K := KZ is the canonical bundle of Z and K1/2 is its canonical square root.

Suppose now that |K−1/2| contains a smooth member S, which is necessarily a rational sur-
face (cf. [PP94a]). By the Hitchin vanishing theorem H2(Z,OZ) = 0 (see [Hit80]). Then we get
H1(Z,OZ ) = 0 since χ(Z,OZ) = c1c2/24 = 1/2(χ − τ) = 1 (cf. [Hit81]), where χ and τ are respec-
tively the Euler characteristic and the signature of mP . Then in view of the relation K−1/2|S = K−1

S

we get the exact sequence of sheaves

0 → OZ → K−1/2 → K−1
S → 0 (9)

and the associated exact sequence of cohomology

0 → H0(Z,OZ) → H0(Z,K−1/2) b→ H0(S,K−1
S ) → 0. (10)

In particular we have h0(K−1/2) = 1+h0(K−1
S ). Suppose that h0(K−1

S ) > 0 so that dim|K−1/2| � 1.
Let P be a linear subpencil of |K−1/2| whose general member is smooth. Then there exists a
countable or finite subset N of P such that for any y ∈ P −N the corresponding surface Sy on Z is
nonsingular and its anti-Kodaira dimension κ−1(Sy) = d for some fixed integer d = d(P ), 0 � d � 2.
We shall relate this number d with the algebraic dimension a(Z) of Z.

Proposition 4.1. Let P be a linear pencil with d = d(P ) as above. Then we have the equality
a(Z) = d + 1. In particular d = d(P ) is independent of the choice of such a P .

Proof. Let S be any general smooth member of P . Then we have the inequality

a(Z) � κ−1(S) + 1 = d + 1

by [Cam91, Proposition 1.5]. It thus suffices to show the reverse inequality a(Z) � d + 1. By elimi-
nating the indeterminacy of the pencil P and taking a resolution of the singularities we obtain the
diagram

Ẑ

f

��

u �� Z

P

of compact complex manifolds, where u is a bimeromorphic morphism; moreover, the proper trans-
form Ŝ of a general member S of P in Ẑ is a fiber of f and is mapped isomorphically onto S by u.
Then by [Uen75, Proposition 12.2] we get that

a(Ẑ) � d + dimP = d + 1 = κ−1(S) + 1.

Suppose further that S is isomorphic to a nonsingular rational surface Sa for some a =
(a1, . . . , a4) ∈ U defined before Lemma 3.2. We identify S with Sa in what follows. Surface S contains
a cycle Ca of nonsingular rational curves, which is a member of the anti-canonical system |K−1

S |.
1103
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If |K−1/2 − Ca| denotes the linear subsystem of |K−1/2| consisting of elements which contain Ca,
we have dim |K−1/2 − Ca| = 1 by (10).

Proposition 4.2. Suppose that the line bundle La on B in Lemma 3.2 is a torsion line bundle.
Then we have a(Z) = 2.

In view of Proposition 4.1, the proposition is a consequence of the following lemma.

Lemma 4.3. Let P = |K−1/2 − Ca|, which is a subpencil of |K−1/2| containing S. Then under the
assumption of the previous proposition we have d(P ) = κ−1(S) = 1.

Proof. Let a point o ∈ P correspond to S. Then by the definition of d(P ) it suffices to show that
there exists a neighborhood U of o in P such that for any point t ∈ U the corresponding surface St

is nonsingular and with κ−1(St) = 1.
For this purpose first we note that Ca = C1 + · · · + C2k, k = m + 2, is naturally contained in

every St and recall a sequence of bimeromorphic morphisms wa : S = Sa → T ′, u : T ′ → T and
α : T → S0 of nonsingular surfaces, where wa contracts four (−1)-curves Dai, 1 � i � 4, in Sa to the
smooth points a′i of B′ ⊆ T ′ and u and α are admissible bimeromorphic morphisms. More precisely,
we have decompositions u = µm−2 · · ·µ1 and α = µm−1µm, where µi : Ti−1 → Ti are admissible
blowing-downs with T0 = T ′ and Tm = S0, and for each i there exists a unique index κi, 1 � κi � k
(with κi �= κj for i �= j) such that if we set νi := µi · · ·µ1 : T ′ → Ti, 1 � i � m, and ν0 := idT ′ , then
νi−1(Cκi) and νi−1(Cκi+k) are (−1)-curves on Ti−1 and µi is precisely the contraction of these two
(−1)-curves.

We also recall a general fact: Let {Xt}t∈A be a holomorphic family of nonsingular complex
surfaces parametrized by a domain A in C. Let C be a (−1)-curve on Xo for some o ∈ A. Then there
exist a neighborhood U of o in A and a unique holomorphic family {Ct} of (−1)-curves Ct in Xt

such that Co = C (cf. [Kod63]). Moreover, there exists a holomorphic family of bimeromorphic
morphisms Xt → Yt, t ∈ U , which blow down Ct to nonsingular points pt of Yt (cf. [FN72]).

Applying this result to the family {St}t∈P in a neighborhood of o and the (−1)-curves Dai, 1 �
i � 4, in S we have the following: There exist a neighborhood U of o in P , holomorphic families
of (−1)-curves {Dai,t}t∈U in St with Dai,o = Dai, 1 � i � 4, and a holomorphic family of bimero-
morphic morphisms wt : St → T ′

t contracting Dai,t to points where T ′
o = T ′ and wo = wa. Here,

if we take U sufficiently small, we can assume that each Dai,t intersects transversally at a single
point with a unique irreducible component of Ca which is independent of t. Thus Ca is mapped
isomorphically onto a curve in T ′

t denoted again by Ca independently of t.
The self-intersection number of each irreducible component of Ca in T ′

t is independent of t;
in particular Cκ1 and Cκ1+k are considered as (−1)-curves in T ′

t for all t. Then µ1 extends to
a holomorphic family of admissible blowing-downs µ1t : T0t := T ′

t → T1t which are indeed the
blowing-downs of these (−1)-curves in T ′

t with µ1o = µ1 and T1o = T1. Clearly the restriction µ1t|Ca

is independent of t and hence so is the image C
(1)
at := µ1t(Ca) in T1t up to isomorphisms together

with the self-intersection numbers of its irreducible components.
Then µ1t(Cκ2) and µ1t(Cκ1+k) are (−1)-curves in T1t and we have again a holomorphic fam-

ily of admissible blowing-downs µ2t : T1t → T2t contracting the two curves with µ2o = µ2 and
T2o = T2. Continuing in this way we finally obtain holomorphic families of admissible blowing-
downs µit : Ti−1,t → Tit with µio = µi and Tio = Ti, 1 � i � m, such that the image C

(i)
at := νit(Ca)

is independent of t up to canonical isomorphisms, where νit = µit · · ·µ1t. In particular the pair
(Tmt, C

(m)
at ) is isomorphic to the pair (Tmo, νmo(Ca)) = (S0, νm(Ca)) ∼= (P × P , C̄) since the last

pair is rigid under small (log-)deformations.

Then identifying (Tmt, C
(m)
a ) with (P×P , C̄) if we follow the above process of successive blowing-

downs in the reverse way as a succession of admissible blowing-ups, we conclude that the blowing-up
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occurs in each step on the same pairs of points independently of t, and in particular (T ′
t , Ca) are all

isomorphic to (T ′, B) independently of t (after possible restriction of U).
Thus taking and fixing isomorphisms of these spaces we shall suppress the suffix t; e.g. we write

T ′
t = T ′, Tt = T, S0t = S0, ut := µm−2,t · · · µ1t = u, and αt := µmtµm−1,t = α. Accordingly, we

consider wt as a bimeromorphic morphism (St, Ca) → (T ′, B′), which is the blowing-down of four
(−1)-curves Dit, 1 � i � 4, in St that are deformations of Dio = Dai. Thus if a′it = wt(Dit) are the
points of T ′ which form the center of the blowing-up wt, and [Dt] is the line bundle on St defined
by the divisor Dt := D1t + D2t + D3t + D4t, we get that [Dt]|Ca is the pull-back of the line bundle
F̃at on B′ defined by the Cartier divisor a′1t + a′2t + a′3t + a′4t on B′ with respect to the isomorphism
wt|Ca : Ca

∼→ B′, which is independent of t and coincides with wB := w|B. Note that if we restrict
U smaller if necessary, a′it belongs to E′

i − {q′i, r′i}.
Now since K−1

St
|Ca

∼= K−1/2|Ca by the adjunction formula, K−1
St

|Ca is independent of t. Further-
more we have

(K−1
St

⊗ [Dt])|Ca
∼= (w∗

t K
−1
T ′ )|Ca = (wt|Ca)∗(K−1

T ′ |B′) = w∗
B(K−1

T ′ |B′).

Hence we get

(wt|Ca)∗F̃at
∼= (KSt |Ca) ⊗ w∗

B(K−1
T ′ |B′).

By what we have shown above, the right-hand side is independent of t, and hence the same is
true for the left-hand side. Moreover, since (wt|Ca)∗O∗

Ca
∼= O∗

B′ , w∗
t : Pic B′ → PicCa is injective.

This implies that F̃at itself is independent of t as an element of PicB′. Furthermore, since u|B′ :
B′ → B induces isomorphisms of E′

i and Ei, we have F̃at
∼= u∗Fat, where Fat is the line bundle on

B defined by the Cartier divisor a1t + a2t + a3t + a4t on B with ait = u(a′it).
Thus if we set at = (a1t, . . . , a4t), we can identify St with Sat and Fat with Fat in the notation

of Lemma 3.2, and therefore Lat := F−1
at

⊗ (K−1
T |B) is also independent of t as a line bundle on B.

In particular it is a torsion line bundle on B as well as La. Hence, by Lemma 3.2, κ−1(St) =
κ−1(Sat) = 1 for all t ∈ U as was desired.

5. Deformations of Moishezon twistor spaces

Let Z be a Moishezon twistor space associated to a compact self-dual manifold (M, [g]) with
M = mP 2, m > 0, which is necessarily of positive type [Poo88]. Suppose that Z contains a
smooth member S of |K−1/2|, which is a rational surface (cf. [PP94a]). In this section we show the
vanishing of the obstructions related to deformations of Z and S. Similar but somewhat weaker
results can be found in the articles by Campana [Cam91, Cam94], LeBrun [LeB92], and Pedersen
and Poon [PP94b]. The proof of the following theorem is given after Lemma 5.5

Theorem 5.1.

1) For i = 2, 3 we have

H i(Z,Θ) = H i(Z,Θ(−log S)) = H i(Z,Θ(−S)) = H i(S,Θ) = 0.

2) The natural map H1(Z,Θ(−log S)) → H1(S,Θ) is surjective.

3) We have

h1(Z,Θ) − h0(Z,Θ) = 7m − 15, h1(ΘZ(−log S)) − h0(ΘZ(−log S)) = 5m − 6.

Here Θ denotes the sheaf of germs of holomorphic vector fields on Z, and Θ(−log S) (respec-
tively Θ(−S)) the subsheaf of Θ defined by those vector fields which are tangent to (respectively
vanish on) S. Note that if H2(Z,Θ(−log S)) vanishes, then the local deformations of the pair (Z,S)
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are unobstructed and the tangent space of the corresponding Kuranishi space is naturally identified
with H1(Z,Θ(−log S)). In particular we obtain the following corollary.

Corollary 5.2. The Kuranishi spaces TZ , TS and T(Z,S) for the local deformations of Z,S and the
pair (Z,S) respectively are all smooth. The versal holomorphic maps T(Z,S) → TS are submersive
at the base point.

Let Ω = Ω1
Z be the sheaf of holomorphic 1-forms on Z. Applying ⊗K1/2 to (9) we obtain a short

exact sequence
0 → K → K1/2 → KS → 0.

Applying ⊗Ω to (9) and to this sequence we further get

0 → ΩK1/2 → Ω → Ω|S → 0

and
0 → ΩK → ΩK1/2 → Ω|SKS → 0,

respectively. (Here and in what follows the juxtaposition denotes the tensor product.) Consider the
associated long cohomology exact sequences

→ H0(S,Ω|S) → H1(Z,ΩK1/2) → H1(Z,Ω) a→ H1(S,Ω|S) → (11)

and
→ H0(S,Ω|SKS) → H1(Z,ΩK) → H1(Z,ΩK1/2) → H1(S,Ω|SKS) → . (12)

On the other hand, by applying ⊗KS to the standard exact sequence

0 → N∗ → Ω|S → ΩS → 0,

we obtain
0 → N∗KS → Ω|SKS → ΩSKS → 0,

where N is the normal bundle of S in Z and N∗ its dual. From these we get the associated coho-
mology exact sequences

0 → H0(S,N∗) → H0(S,Ω|S) → H0(S,ΩS)

→ H1(S,N∗) → H1(S,Ω|S) b→ H1(S,ΩS) → (13)

and
0 → H0(S,N∗KS) → H0(S,Ω|SKS) → H0(S,ΩSKS) → H1(S,N∗KS) → . (14)

Since S is rational, in view of N∗ = KS and N∗KS = 2KS we see that H0(S,N∗)=H0(S,N∗KS)=0,
H1(S,N∗) = 0 and H0(S,ΩSKS) = 0. Substituting these into (13) and (14) we get the next lemma.

Lemma 5.3. We have that H0(S,Ω|S) = 0 and H0(S,Ω|SKS) = 0.

Next we prove the following.

Lemma 5.4. The restriction map H1(Z,Ω) → H1(S,ΩS) is injective.

Proof. Since both Z and S are Moishezon with h2,0 = 0, it suffices to show the injectivity of the
restriction map r : H2(Z,C) → H2(S,C). Let t : Z → M be the C∞ twistor fibration. We consider
the commutative diagram

H2(Z,C) ∼=
r

������������
H2(M,C) ⊕

t∗S
��

Cc1(Z)

r

��
H2(S,C) ⊇ Cc1(S)
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where the horizontal isomorphism is via the Leray–Hirsch theorem (cf. [Hit81]), tS : S → M is the
restriction of t to S and c1 denotes the first Chern class.

We know the injectivity of t∗S; indeed, if we describe S as a surface obtained from P × P by a
succession of blowing-ups of pairwise σ-conjugate points, the Chern classes c(i) of the exceptional
curves Ei + Ēi in S coming from the ith blowing-up forms a basis of t∗SH2(M,C) (cf. [PP94a, § 3]).
Moreover, c1(S) is not a linear combination of c(i) in H2(S,C). Thus the injectivity follows from
the above diagram.

Applying these to the above sequences (11) and (12) we obtain our next lemma.

Lemma 5.5. We have that H i(Z,ΩK) = H i(Z,ΩK1/2) = 0, i = 0, 1.

Proof. The assertion for i = 0 follows from the fact that K−1/2 is effective and H0(Z,Ω) = 0
(cf. [Hit81]). For i = 1 we note that the restriction map H1(Z,Ω) → H1(S,ΩS) factors as

H1(Z,Ω) a→ H1(S,Ω|S) b→ H1(S,ΩS).

Since ba is injective by Lemma 5.4, a also is injective. Thus in view of (11) and Lemma 5.3 we get
H1(Z,ΩK1/2) = 0, which in turn yields the vanishing of H1(Z,ΩK) in view of (12) and Lemma 5.3.

Proof of Theorem 5.1. By Serre duality and Lemma 5.5 we get

H i(Z,ΘZ) = H i(Z,ΘZ(−S)) = 0 for i = 2, 3.

Consider the long exact sequence

0 → H0(Z,ΩK(log S)) → H0(Z,ΩK1/2) → H0(S,ΩSKS) →
→ H1(Z,ΩK(log S)) → H1(Z,ΩK1/2) → H1(S,ΩSKS) →

associated to the sheaf exact sequence

0 → ΩK(log S) → Ω(S)K → ΩSKS → 0,

where we have used the isomorphism Ω(S)K ∼= Ω(K1/2). By Lemma 5.5, H i(Z,ΩK1/2) vanish for
i = 0, 1 and H0(S,ΩSKS) = 0 since S is rational. Thus we get

H0(Z,ΩK(log S)) = H1(Z,ΩK(log S)) = 0.

By taking the Serre dual we get

H2(Z,Θ(−log S)) = H3(Z,Θ(−log S)) = 0.

Thus part 1 is proved. Further, from the exact sequence of cohomology

0 → H0(S,ΘS) → H1(Z,Θ(−S)) → H1(Z,Θ(−log S)) → H1(S,ΘS) → 0,

arising from the sheaf exact sequence

0 → Θ(−S) → Θ(−log S) → ΘS → 0,

we get part 2 of the theorem.
In view of the Riemann–Roch theorem and the relations (cf. [Hit81])

c3
1 = 16(2χ − 3τ), c1c2 = 12(χ − τ) and c3 = 2χ,

where ci are Chern classes of Z, and χ and τ are the Euler number and the signature of M
respectively, we obtain

χ(Z,Θ) = 1
2{4(12c3

1 − 19c1c2 + 12c3)} = 15
2 χ − 19

2 τ = −7m + 15,
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since χ = m + 2 and τ = m. Hence by part 1 we have

h1(Z,Θ) − h0(Z,Θ) = 7m − 15.

Further, from the sheaf exact sequence

0 → ΘZ(−log S) → ΘZ → NS/Z → 0,

we get

χ(ΘZ(−log S)) = χ(ΘZ) − χ(S,K−1
S ) = −7m + 15 − (c2

1(S) + 1) = −5m + 6.

Hence by part 1 we have

h1(ΘZ(−log S)) − h0(ΘZ(−log S)) = 5m − 6.

Thus part 3 is proved. This completes the proof of Theorem 5.1.

Let K := S1 × S1 be the real two-torus and G := C∗ × C∗ its complexification. Let m be a
positive integer and fix a smooth effective action of K on mP 2. In [Joy95] Joyce has constructed
a family of K-invariant self-dual metrics on mP 2. We call a twistor space corresponding to any
such invariant self-dual metric a Joyce twistor space (associated to the given K-action on mP 2).
It admits a naturally induced biholomorphic G-action. The structure of a Joyce twistor space has
been studied in detail in [Fuj00]. In particular it is Moishezon.

The class of Joyce twistor spaces contains as a special case the degenerate case of LeBrun’s
twistor spaces [LeB91], which we call of LeBrun type (cf. [Fuj00, Proposition 6.14] for the details).
Now we specialize the above consideration to the case of Joyce twistor spaces and determine the
dimensions of the individual cohomology groups in Theorem 5.1.

Proposition 5.6. In Theorem 5.1 suppose that Z is a Joyce twistor space and S is G-invariant
(which is automatic unless Z is of LeBrun type). Suppose further that m � 3. Then we have

1) h0(ΘZ(−log S)) = 2 and h1(ΘZ(−log S)) = 5m − 4
2) h0(Z,ΘZ) = 2 and h1(Z,Θ) = 7m − 13.

Proof. The assertion on h1 follows from the assertion on h0 by Theorem 5.1. So we shall compute h0.
(For the details on the structure of Z used below we refer to [Fuj00, § 6].) Since Z admits a G-action
which preserves S, it is clear that 2 � h0(ΘZ(−log S)) � h0(ΘZ). Thus it suffices to show that
h0(ΘZ) = 2.

First we show this assuming that Z is not of LeBrun type. (In particular m � 3.) In this case
|K−1/2| is a pencil and its base locus C is a cycle of nonsingular rational curves. Let µ : Ẑ → Z
be the blowing-up of Z with center C. Then Ẑ becomes a holomorphic fiber space f : Ẑ → P over
a nonsingular rational curve P and E := µ−1(C) is isomorphic to the product C × P . Clearly, the
biholomorphic automorphism group AutZ of Z preserves |K−1/2| and hence the action lifts to one
on Ẑ preserving the fibers of f and E. Note that the induced action of Aut0 Z on |K−1/2| is trivial
since for m � 3 it contains more than three singular fibers as pointed out below. Let Aut(Ẑ, E)/P be
the relative Lie group over P whose fiber over a point y ∈ P is just the automorphism group of the
pair (Zy, Ey). Then an irreducible component of Aut(Ẑ, E)/P which contains the identity section
and is mapped surjectively onto P is unique and is isomorphic to G × P . Since only holomorphic
sections of the projection G × P → P are constant sections, the identity component Aut0 Z must
coincide with G. It follows that h0(Z,ΘZ) = dim G = 2. Thus the non-LeBrun case is finished.

In the LeBrun case the linear subsystem |K−1/2|G := P (H0(Z,K−1/2)G) of |K−1/2| is a pencil.
There exist m + 2 pairs (S+

i , S−
i ), 1 � i � m + 2, of σ-conjugate divisors such that Si := S+

i + S−
i

belongs to |K−1/2|G. Moreover, one can check that S±
i do not move in Z except for exactly two

successive i, say m + 1 and m + 2, if m � 3 (cf. [Fuj00, Lemmas 6.13 and 2.10]). In this case
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S±
i , i �= m + 1,m + 2, are preserved by the action of Aut0 Z. Since S1 and S2 generate the pencil

|K−1/2|G, Aut0 Z also preserves |K−1/2|G. The rest of the argument is then precisely the same as
in the non-LeBrun case, starting from |K−1/2|G instead of |K−1/2|.
Remark. For general LeBrun twistor spaces we have h1(ΘZ(−log S)) = 5m−5 [PP94b, Theorem 2.3]
and h1(Z,Θ) = 7m − 14 [LeB92, p. 302, Corollary 1] for m � 3.

6. Proof of Main Theorem

Recall that a member of the system |K−1/2| is called a fundamental divisor. Let S = Sa# be the
symmetric toric surface defined before Proposition 3.5. It has the natural real structure induced
from that of S0 (cf. § 2.2). Then the second Betti number b2 of S is always even and �10 by our
construction. We start with the following proposition.

Proposition 6.1. There exists a Joyce twistor space Z associated to a self-dual structure on mP 2

with 2m + 2 = b2 such that it contains the surface S as a real smooth fundamental divisor, where
the real structure on S induced from Z coincides with the original one. In particular m � 4.

Proof. Set k = b2/2 + 1. By our construction of S we have b2 � 10 and hence k � 6. The toric
surface S is determined by the associated fan which consists of primitive elements ρi = (si, ti)
in Z2, 1 � i � 2k, arranged counterclockwise such that (si+k, ti+k) = −(si, ti) for 1 � i � k, where
si and ti are coprime integers. We then define (mi, ni) := (−ti, si) for 1 � i � k. The smoothness
of S implies for the determinant that

∣
∣
∣
∣

mi ni

mi+1 ni+1

∣
∣
∣
∣ =

∣
∣
∣
∣

si ti
si+1 ti+1

∣
∣
∣
∣ = 1. (15)

Hence the sequence {±(mi, ni)}1�i�k is the Orlik–Raymond invariant of a unique smooth K-action
on mP 2, where m = k − 2 � 4 (cf. [Fuj00, (3.3) and (3.4)] and [Joy95, 3.1]). Take any of the Joyce
twistor spaces Z associated to this action. Then by [Fuj00, Lemma 5.12] together with the results
of [Fuj00, § 6] Z contains a real smooth G-invariant fundamental divisor, which is isomorphic to the
original S and will be identified with S. The final assertion on the real structure on S then follows
from the general result of Pedersen and Poon [PP94a, § 3] on the induced real structure of a real
fundamental divisor.

Remark. If we take Sa in such a way that each successive blowing-up forming the morphism T ′ → T
takes place always on the proper transform of E1 and E3, then the resulting twistor space is of
LeBrun type and vice versa.

For the proof of the Main Theorem we need some remarks about the real structure on the spaces
considered in § 5. Let Z be a Joyce twistor space. Then the linear system |K−1/2| contains the real
pencil |K−1/2|G whose general member S is a smooth projective toric surface with respect to the
induced G-action. Consider a triple (Z,S, {p, p̄}) consisting of such a pair (Z,S) with S real and a
pair (p, p̄) of a point p and its conjugate p̄ := σ(p), where p, and hence p̄ also, is assumed to be in
the open orbit U on S. We then consider the local deformations {(Zt, St, {pt, qt})}t∈T of the triple
(Z,S, {p, p̄}), where Zt is a compact complex threefold, St a smooth divisor on Zt, and pt and qt

are two points of St. From Theorem 5.1, Corollary 5.2 and Proposition 5.6 we deduce easily that
the Kuranishi family for such deformations of triples exists and its parameter space T is smooth of
dimension 5m − 2. Moreover, T admits a natural submersion u onto the smooth parameter space
of the Kuranishi family of the deformation of the pairs (S, {p, p̄}) defined similarly.

On the other hand, since p and p̄ belong to U , by part 1 of Proposition 5.6, the identity component
of the automorphism group of the triple (Z,S, {p, p̄}) (respectively the pair (S, {p, p̄})) reduces to
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the identity. It follows that the above Kuranishi families are both universal. Therefore as in [DF89,
Lemma 2.1] these Kuranishi families admit natural real structures and u is compatible with them.
In particular u induces a submersion between the real parts of the parameter spaces.

Proof of the Main Theorem. Fix an integer m � 4. Consider the toric surface S with real struc-
ture σ in Proposition 6.1. By that proposition we can find a Moishezon twistor space Z associated
to a self-dual structure on mP 2 which contains S as a real fundamental divisor. Taking n = 1
or 2 in Proposition 3.5 we find arbitrarily small deformations (Sa, σa) of (S, σ) as a surface with
real structure such that κ−1(Sa) = 1. For any point p of the open orbit U of S we can find real
deformations (Sa, {pa, p̄a}) of (S, {p, p̄}) for a suitable choice of points pa of Sa, where p̄a = σa(pa).
By the description preceding the proof these deformations of the pairs can be extended to real
deformations (Za, Sa, {pa, p̄a}) of the triple (Z,S, {p, p̄}).

It is then known by a standard argument that Z is a twistor space associated to some self-
dual structure on mP 2. Moreover, it contains Sa as a fundamental divisor as follows the relations
la · Sa = l · S = 2 and H1(Za, OZa) = 0, where la and l are twistor lines on Za and Z respectively.
By Proposition 3.5 the line bundle La in (6) is a torsion line bundle of order n. Thus, by Proposi-
tion 4.1, a(Za) = 2, in which case the corresponding self-dual metric is necessarily of positive type
by [Pon91]. This completes the proof of the Main Theorem.

We conclude by making a remark on the case m = 4. In this case the surface Sa is an elliptic
surface over P with a unique multiple fiber Ca with multiplicity n, where Ca is a cycle of eight
nonsingular rational curves. Suppose that Sa is realized as a real fundamental divisor of a twistor
space of algebraic dimension two. Then we have seen that n = 1 or 2 and in fact that both cases
are actually realized. On the other hand, in the original examples of Campana and Kreußler [CK99]
the corresponding fundamental divisor is an elliptic surface whose multiple fiber is a multiple of a
nonsingular elliptic curve. Moreover, it is shown by Honda [Hon00] that the multiplicity n can take
arbitrary positive values.
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