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GENERIC GATEAUX DIFFERENTIABILITY VIA SMOOTH
PERTURBATIONS

PANDO GR. GEORGIEV AND NADIA P. ZLATEVA

We prove that in a Banach space with a Lipschitz uniformly Gateaux smooth bump
function, every continuous function which is directionally differentiable on a dense
G5 subset of the space, is Gateaux differentiable on a dense Gy subset of the space.
Applications of this result are given.

The usual applications of variational principles in Banach spaces are to differentia-
bility of real valued functions. For example, the papers [1] and {2] contain results about
Gateaux differentiability on dense sets. An application of Ekeland’s variational principle
to generic Frechet differentiability is given in the proof of the famous Ekeland-Lebourg
theorem (see [4]). In [6] an application of the smooth variational principle to generic
Gateaux differentiability is presented.

In this paper we prove some results about generic Gateaux differentiability of di-
rectionally differentiable functions. The tool for proving the main result (Theorem 2) is
Proposition 1, which localises precisely the §-minimum point of the perturbed function.
The estimate of this localisation is the same as in the Ekeland variational principle.

Denote by Ly the Lipschitz constant of a Lipschitz function f : E — R and by S,
Blz; 7] (respectively B(x;r)) - the unit sphere of E and the closed (respectively open)
ball with center z and radius 7.

A function b : £ — R is said to be a bump function, if there exists a bounded subset
supp b, such that b(x) = 0 for every z & supp b.

PROPOSITION 1. Letb be a bump function, such that supp b C B(0,1), b(0) =
land 0K b{z) < 1Vz € E. Let f : E - RU {+0o0} be a function, bounded below and
such that D(f) ={z € E : f(z) < 400} #0. Let e > 0, A > 0 be given. Suppose that
yo € X satisfies the condition

flyo) <inf f +e.
Then for every § > 0 there exists a point g € E, such that:
(a) f(zo) — eb((zo — 30)/A) < nf{f(z) —eb((z — yo)/A)} + §;
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(b) (zo — yo)/A € supp b;
(c) llzo = woll < A.
PROOF: Denote
h(z) = f(z) - eb(%).
Then
h(yo) = fyo) — € < inf f.
Let
8y = inf f — h(yo)-

There exists a point o € E such that
h(zg) < infh+ min{4, é;}.
Assume that (zo — yo)/A ¢ supp b. Then using that b((xp — yo)/A) = 0 we have that
b1 > h(zo) = h(yo) = f(zo) —inf f + 61 > 6y,

which is a contradiction. So (b) is satisfied. It is clear that (c) follows immediately from
(b). 0
Now we suppose that the bump function b is uniformly Gateauz differentiable. This
means
lim b(z + th) — b(x)
t—0 t
where Vb(z) € E* is the Gateaux derivative of b at z, and for every h € E this limit is
uniform with respect to the points z € E.
Recall that the function f : E — R is said to be directionally differentiable at point
zg if for every h € E the one-sided directional derivative

flxo +th) — f(xo)
i

= (Vb(z), h),

! . — 1
f'(@o; h) = lim

exists.
The following theorem extends the main result in [6]. Problems in a similar setting
are considered in [9, 5].

THEOREM 2. Let the Banach space E admit a Lipschitz uniformly Gateaux dif-
ferentiable bump function b. Then every continuous function f, defined on an open subset
D C E, which is directionally differentiable on a dense G subset G of D, is Gateaux
differentiable on a dense G5 subset of D.

PRrROOF: From [9, Proposition 2.1] it follows that f is locally Lipschitz on a dense
and open subset D; of D. Let U C D, be an open subset, such that f is Lipschitz on U.
If we prove that f is Gateaux differentiable on a dense G subset of U, then the theorem
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will be proved, having in mind the localisation principle (see {7, Chapter I, Section 10,
VI]), stating that a subset P of a topological space is of first Baire category, if for every
point p € P there exists an open set H 3 p such that P N H is of first Baire category in

H.
Without loss of generality we can assume that 5(0) # 0. Define the bump function
b: E— Rby
b(z) := T(E(dx)),
where d = sup |lsl|, 7 : R — R* is a differentiable bump function with Lipschitz

sesuppb
derivative, such that T(Z(O)) = rtrglx{xr(t) =1, 0 ¢ supp 7. Then b is a Lipschitz
uniformly Gateaux differentiable bump function, such that supp b C B(0;1), b(0) =
1, 0<b(z) <1 Vz e E.

Define the sets

1 — <n
Xo = {z€U:3z, €E, at,.e(o,gz-):z n ¢ supp b, Blza, 2v/tn] C U,

Vi
o0 <y {19 - VBT o)

Since f and b are continuous functions, the sets X, are open. We shall prove that
X, is dense in U.

Let z* € U and gy > 0 be fixed. For every n 2 1, choose € € (0, min{eqg, 1/n})
in such a way that B[z*;¢] C U. We may assume without loss of generality that the
Lipschitz constant Ly of f on U is less than 1. Then

f(z") < zeé?f-,e]{f(z) +Ljjz" - z[|]} < et f(2)+e
and we can apply Proposition 1 with A = £/2, § = €*/16 for the lower semicontinuous
function fp defined by

_ [ f(@) =€ Bz,
fo(z) = {+oo ¢ Bla* €],
Therefore there exists a point y,, € X such that

Yn — T . z—z et
flym) —eb(27——) < _inf {f(2) —eb(2~———)} + o

2€Blz* €]

lom = 2l < 5
2(y, — z*)/e € supp b.
Then, for t, = €%/4, z, = z* we have y, € X,, and y, € B[z*; ¢}, hence the denseness is
proved.
It is clear that in the same way we may construct dense and open sets X,
coresponding to the function —f. From the Baire category theorem the set X, =

(ﬁ Xa) 0 (ﬁ X;) NG is dense and G; in U.
n=1 n=1
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We shall prove that f is Gateaux differentiable on Xj.

Let 2o € Xy. By assumption, for every € > 0 and h € E there exists § € (0,¢) such

that
b{z + th) — b(z)

t
for every = € supp b and for every t € (0,6).
For every £ > 0 and such 6, for n > 1/ and h € S, since

”1:0 + tnh - zn” < ”-TO - mn” + tn < \/t—n+ \/t_n = 2\/t_n»
we have zg + tnh € Blzn, 24/8,] C U. Then

f(xo +tuh) — f(20) 2v/tn [, (o + tah Ty — Zn
t, tn <b( \/t_n )_b( VEn ))‘t"

—(Vb(z),h) > ‘75

\Y

: A -
> <2Vb($°\/_m"),h t.

Since b is Lipschitz, “Vb((zo - zn)/\/ﬂ) “ £ L, and we can choose a w*-converging
generalised subsequence from the sequence {Vb((zo —,)/ \/t_n)}n%, whose w*-limit is
denoted by &7/2.

After passing to limits, we obtain

f'(xo; h) > (b],h) — €
and since this is valid for every € > 0 and & € S we have
f'(wo;h) > (B,h), Vhe E.

By repeating this reasoning for the function (—f) we obtain that there exists b5 € E*
such that
(B3, h) > f'(zo;h) > (B}, h), Vh € E.

Hence b5 = b3 = V f(zo) and the proof is completed. 1]

Since the convex functions are directionally differentiable in the interior of their
domain, the above theorem implies that Banach spaces with a uniformly Gateaux differ-
entiable Lipschitz bump function are weak Asplund spaces.

In the following Lemma we shall show that a Banach space with uniformly Gateaux

differentiable norm admits a Lipschitz uniformly Gateaux differentiable bump function.

LEMMA 3. Let the Banach space E have a uniformly Gateaux differentiable norm.
Then E admits a Lipschitz uniformly Gateaux differentiable bump function.
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PRrROOF: Let ||.]| be an uniformly Gateaux differentiable norm on E and let 7 : R —

R be a function with Lipschitz derivative, such that r = 0 on (—o00,1] U [3, +0oc) and

7(2) # 0. Denote by L,  the Lipschitz constant of v’ and |»'| = sup | 7'(¢) |- Then the
tef1,3]

function

b(z) := r(|lz|])
is Lipschitz and uniformly Gateaux differentiable. Indeed, let h € S, ¢ > 0 be fixed and
0 < v <e/(2]r']). There exists ty < £/L. such that forevery 0 <t <tyand y € S

lly + th| — 1

W il ) <
From the definition of the function r it is clear that it is enough to restrict our considera-
tion only to z € E such that 1 < ||z|| £ 3. Let t € (0,%0/2). By the mean value theorem
we have: {where @ = a(z,t) is between ||z|| and ||z + th|])

b(z + th) — b(z) 7
Mo BB 203 ay,m

= [Pzt 20 =2l o )

= | L= ey,

Iz * gl -
= @)L iy, ) = el ol 2y
ll=ll
< Wy+Lola=lell <y + 20, < 45 =c
? 0

Since every separable Banach space admits a uniformly Gateaux differentiable norm
(see [2, Corollary 6.9 (i))], for such spaces Theorem 2 is valid.

Now we shall give some applications.

Let A be an arbitrary non-void set and {g, : £ & R, a € A} be a family of
functions. Define the function f: E — R by f(z) = ;1612 Ju(z).

We need the following lemma.
LEMMA 4. Let the family {go: F — R, o € A} be such that
(i) for every o € A, g, is K-Lipschitz;
(il) forevery x € E, h € S, there exists € > 0 such that the limit

ga(z + th) — ga(x)
t

! . — l
9oz h) = lim
exists and it is uniform with respect to o € M.(z), where

M (z) ={a €A : galz) < f(z) + €}
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Then the function f(z) = ir€1£ 9a(x) is K-Lipschitz, f'(z;h) exists and it is equal to

inf g’ (x:h).
b aeMe(z) Y al@ih)

PROOF: First let us note that

(1) Vrg € B, Ve > 0, 36 > 0 such that M;(z) C M.(zo), Yz € B(zy;0).

Indeed, from (i) we have |ga(2) — gu(20)| € K ||z — o), for every @ € A and |f(z) — f(zo)|
€ K ||z — zo||- Then, for § = min{e/4K,e/2},z € B(zo;6) and o € Ms(x) we have

ga(Z) + K|z — z0|| € f(2) + 8+ K ||z — 0]
f(@o) + 6 + 2K ||z — zol| < f(zo) +¢,

ga(zo) <
<

which means a € M,(z,), and (1) is proved.
Let z € E be fixed. It is enough to consider only the case when |||} = 1. Denote
a:=sup inf g, (z;h). From (ii), for every ¢ > 0, there exist €9 > 0 and to = to(e)
>0 a€EM.(x)
such that
ga(x + th) _ ga(x)
t
for every o € M, (z) and t € (0,%p).

Let ¢; € (0,t0) and 0 < €; < min{¢,6/3,€0}. There exists @y € M,,(z) such that

—go(z;h)] <€/3

inf gl (z;h) > g, (z;h) — /3.
LB 0 (a5h) > gl (i) — e/

Since €; < &g, we have M., (z) C M, (z) and:

f(I+t1h) —f(.’E) < gal(x+tlh)—gu1(x) — &
t1 = tl
e £La
< o, (z;h) + 3 + i
< inf()g;(x;h)+e< a+e.

aEMel

Hence ( h
lim sup L&) — /(@)
40 t
and since € > 0 is arbitrary small,

< a+e¢

i sup £+ 1) = £(2)

< a.
0 t =

Now we shall prove the oposite inequality. Let £3 > 0 be such that inf ¢/ (z;h) >

C!EM,a(z)

a —¢/3. From (1), there exists § > 0 such that Ms(z') C M., (x) whenever ||z’ — z|| < é.
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Let 0 < t; < min{tp, 0}, 0 < €, < min{tse/3,€0,0} and o € M,,(z + toh). Then
M., (z + tyh) C Ms(z + t2h) C M,,(z) and we can write:

flz + k) — f(2) 9os (T + tah) — ga,(T) — €9
tz t2

Vv

E_&
3 1
inf{g,(z; h) : @ € M, (z + t2h)} — 2%

2 gg,(z;h) —

\

i "z h) —28 > a-—
ae;ﬁf(z)ga(x,h) 23>a €.

Hence lirﬂ(i)nf(f(a: +th) — f(z))/t > a— ¢ and since € > 0 is arbitrary small,
lir{nui]nf (f(z +th) — f(z))/t = a and the proof is completed. g

If A is a non-empty subset of a E, the distance function to A is defined by
dist(z, A) := ir€1£ llz — a|.

COROLLARY 5. Let the norm of the Banach space E be such that Vh € S,
Ye>0, 36 >0

thl} -
w — .l (z; ) <€, Yt € (0,8), Vz € S,
where S is the unit sphere of E. Then for every non-empty closed subset A C E the

distance function dist(., A) is directionally differentiable on E \ A.

The following theorem is a direct consequence of Theorem 2 and Lemma 4, and can
be considered as a generalisation of a “Gateaux” version of the Ekeland-Lebourg theorem
[4] (see also 8], where another variant is announced).

THEOREM 6. If the Banach space E admits a Lipschitz uniformly Gateaux dif-
ferentiable bump function, then the function f(z) = égg 9o (), where for the family
{ga, @ € A} the assumptions (i) and (ii) from Lemma 4 hold, is Gateaux differentiable
on a dense G subset of E.

Recall that from an uniformly Gateaux differentiable norm we can construct a uni-
formly Gateaux differentiable Lipschitz bump function (see Lemma 3) and therefore, we
have the following fact, announced in (8].

COROLLARY 7. In a Banach space E with an uniformly Gateaux differentiable
norm, any distance function is Gateaux differentiable on a dense G5 subset of E.
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