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Abstract. We extend to Lie algebroids the notion variously known as a double Lie
algebra (Lu and Weinstein), matched pair of Lie algebras (Majid), or twilled extension of
Lie algebras (Kosmann-Schwarzbach and Magri). It is proved that a matched pair of Lie
groupoids induces a matched pair of Lie algebroids. Conversely, we show that under
certain conditions a matched pair of Lie algebroids integrates to a matched pair of Lie
groupoids. The importance of matched pairs of Lie algebroids has been recently
demonstrated by Lu.

Introduction. The notion of a Lie bialgebra, due to Drinfel'd [5], has arisen in the
study of Poisson Lie groups. A Poisson Lie group G, that is a Lie group G with a
compatible Poisson bracket { }, induces a Lie algebra structure on the vector space dual
'S* of the Lie algebra 'S of G, such that the direct sum CS@ %* of vector spaces acquires a
Lie algebra structure with 'S and <§* as Lie subalgebras. If G* is the connected and simply
connected Lie group whose Lie algebra is <S*, then it is sometimes possible to equip the
product manifold G xG* with a Lie group structure whose Lie algebra is (S® <S*, in such
a way that the triple (G,G*,G x G*) becomes a matched pair of Lie groups [17].
Abstracting the structures of G x G* and CS®CS* leads to the concepts of matched pairs
of Lie groups and matched pairs of Lie algebras.

A matched pair of Lie groups is a triple (V,H,G) of three Lie groups V, H and G
such that V and H are Lie subgroups of G, and the map K x / / - » G defined by
(v,h)i-+vh is a diffeomorphism. Similarly a double Lie algebra is a triple (V, W, <S) of
three Lie algebras Y, W and <S such that <£= V® W as vector spaces, and V, X are Lie
subalgebras of <S. Matched pairs of Lie groups and matched pairs of Lie algebras are also
natural extensions of semi direct products of Lie groups and of their Lie algebras; this is
the case where one action is trivial.

Matched pairs of Lie groups and matched pairs of Lie algebras have arisen in the
work of several authors in connection with Poisson geometry and dressing transforma-
tions, notably Kosmann-Schwarzbach and Magri in [7], where matched pairs of Lie
algebras are studied under the name of twilled extensions of Lie algebras, Majid in [17]
(see also [18]), and Lu and Weinstein in [11]. In [12] Lu and Weinstein showed that the
Lie bialgebra ($, CS*) associated with any Poisson Lie group G may be integrated to a
double Lie groupoid in the sense of [14].

Mackenzie [14] extended the concept of double Lie group to the context of Lie
groupoids, showing that there is a double Lie groupoid structure associated with a double
Lie group (this is not as obvious as the terminology makes it seem). It has been also
shown [14] that the double groupoids which arise from double Lie groups can be
characterized amongst general double groupoids by a simple condition called vacancy.
Since the concept of a double Lie groupoid is more general than that of a vacant double
groupoid the terminology matched pairs of Lie groupoids is more appropriate for the
groupoid version of a double Lie group. Although the paper [14] studied the infinitesimal
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actions associated with a matched pair of Lie groupoids, it did not consider any notion of
matched pair for Lie algebroids.

In this paper we introduce a natural notion of matched pair of Lie algebroids and
show that a matched pair of Lie groupoids induces a matched pair of Lie algebroids. This
process is significantly more involved than for matched pairs of Lie groups and algebras.
The Lie algebroid representations which constitute the matched pair may be obtained
either by linearizing the groupoid actions and then applying the Lie functor, or by
linearizing the infinitesimal actions on the Lie algebroid level. The importance of matched
pairs of Lie groupoids and Lie algebroids has recently been dramatically reaffirmed by
new work of Lu [10], who shows that matched pairs underlie any Poisson action of a
Poisson Lie group.

The article is organized as follows: in Section 1 we review matched pairs of Lie
groupoids. In Sections 2 and 3 we study the induced algebroid actions of A V on H and
AH on V, where (V,H) is a matched pair of Lie groupoids. These actions yield
representations of the Lie algebroids A V and AH on each other by "twisted derivations".
In Section 4 we define a matched pair of abstract Lie algebroids by a Lie algebroid
structure on the vector bundle direct sum, exactly as for double Lie algebras. In Section 5
we prove that the Lie algebroids AV and AH of a matched pair V and H of Lie groupoids
form a matched pair of Lie algebroids. As an example, we show that for a compact
Poisson Lie group G, the Lie algebroid T*G of 1 forms on G, and the Lie algebroid TG
associated to the tangent bundle TG-*G form a matched pair of Lie algebroids. In
Section 6 we prove an integration result for matched pairs of Lie algebroids, modelled on
a result by Lu and Weinstein ([11], Section 3.7). Some further integration results will be
given in another paper.

All manifolds are C°°, real, Hausdorff, and second countable. A Lie groupoid Q. over
base B with the source map o:Q-»K, and the target map /3:Q—»£ is denoted by

D.=tB. The identity map of Q is denoted by l" and its value at b e B by l", or simply by
lb. The notations V and H are always for two Lie groupoids with the same base B; we
denote by vlt v2,. • •,, vn,..., the elements of V and by huh2,...,hn,... the elements
of H. We use the maps av, Bv, aH and BH for the source and the target maps of V and H
respectively, but we omit the subscripts V and H if there is no confusion in doing so.
Finally, we denote by C(M) the module of smooth real valued maps on a manifold M.

1. Matched pairs of Lie groupoids. In this section, we review briefly matched pairs
of Lie groupoids. More details may be found in [14] (see also [19]).

DEFINITION 1.1. [14]. Let V and H be two Lie groupoids over the same base B. The
groupoids V and H form a matched pair of Lie groupoids, or (V, H) is a matched pair of
Lie groupoids, if there exits a left action (h,v)t->hv of H on V and a right action
(h,v)y-^hv of V on H such that the following conditions are satisfied

(i) av{
Hv) = BH(hv) for all (h, v) with aH(h) = Bv(v);

(ii) h(vxv2) = ("vOC1"1 )̂ with ayivj = Bv{v2) and aH(h) = Bv(v});
(iii) (h,h2y = (h?»). (hv

2) for v E V, hu h2eH with aH{hx) = BH(h2).
The following two properties are a consequence of the properties (ii) and (iii) in the
above definition:
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(iv) /l(l£) = 1^, for heH with aH(h) = b and /3w(/i) = c;
(v) (1*0" = l£, for v e V with pv(v) = c and a^(u) = 6.

For two Lie groupoids V and H with the same base B, we denote by V * / / the
submanifold {(v, /i) e V x H \ av(v) = /3w(/i)} of V x //. If V and / / form a matched pair
of Lie groupoids, then we denote by $:(/i,u)i-><E>/,(v) and by xV:(h,v)>-*Wv{h) the left
action of H on V and the right action of V on H, respectively.

PROPOSITION 1.2 [14] (p. 199, Theorem 2.10). (V,H) is a matched pair of Lie
groupoids if and only if the manfold G = V * H has a Lie groupoid structure on base B,
such that

(i) the maps v^(v,l"(V)) and /i •-» (1^/,), h) are Lie groupoid morphisms from V
and H to G, respectively. We denote by V and by H' the images of V and H
under such morphisms.

(ii) The multiplication m:V * H'^g is a diffeomorphism, where V * H' is the set of
all composable pairs {v',h') e V X H'.

We recall [13] that if a Lie group G acts on a manifold M, one can construct a Lie
groupoid structure on the product manifold G X M with base M, called the action
groupoid. This structure is described as follows: a is the projection onto the second factor
of GxM and /3 is the action GxA/ -»M itself; the identity map is m ^ ( l , m ) ; the
inverse of (g,m) is ^"Sgm) and the partial multiplication is (g,m)(g',m') = (gg',m'),
for m = g'm'. We recall also that for any manifold B, there is a Lie groupoid structure on
the product manifold B xB, with base B, called the coarse groupoid structure. The source
and the target maps are the projections of B X B onto the second and the first factor,
respectively, and the multiplication is denned by (bub2)(b3,64) = (bu b4), for b2 = b3.
Now the next proposition gives a class of examples of a matched pair of Lie groupoids;
see [19] for others.

PROPOSITION 1.3. Let H be a Lie group, and <&:HxM-+M, {h,m)*-*hm, an action
of H on a manifold M. Then the action groupoid HK.M, and the coarse groupoid MXM
form a matched pair of Lie groupoids over base M.

Proof. If H = H K M and V = M x M, the pullback

H * V = {(/J, v) e H X V | afi{h) = p9(v)}

is just the trivial Lie groupoid MxHxM. The maps (h,m)\-+{hm,h,m) and (x,y)>-+
(x, l,y) are groupoid morphisms, and represent H and V embedded as wide subgroupoids
in M X H X M. The multiplication of an element of H by an element of V is

(hm,h,m)(m, l,x) = (hm,h,x).

For (y, h, m) e M X H X M we have (_y,/i,/i~1}')('I~1}'»l>A:) = (y,h,x), in a unique way,
with (y,h,h'1y)sH, and ( / r ^ , ! , * ) e V. It follows from the Proposition 1.2, that
(H, V) is a matched pair of Lie groupoids. D

If G is a Lie groupoid on base B with m as multiplication, the tangent bundle TG
equipped with Tm as multiplication is then a Lie groupoid over TB. Assume now that
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(V, H) is a matched pair of Lie groupoids, and let m be the multiplication in V * H. Since
T(V * H) = TV * TH, there is a Lie groupoid structure on TV * TH, such that the maps:
X^{X,T{l)TaX) and Y^{T(l)TBY,Y) represent TV and TH as embedded wide
subgroupoids in T(V * H). The proof of the following proposition follows now from the
Proposition 1.2.

PROPOSITION 1.4. If(V, H) is a matched pair of Lie groupoids then (TV, TH) is also a
matched pair of Lie groupoids.

2. Lie algebroids. Here we briefly recall the concept of Lie algebroid. A Lie
algebroid on base B is a vector bundle q.A^B together with a map a :A —* TB of vector
bundles over B, called the anchor of A, and an R-bilinear, antisymmetric bracket of
sections, [ , ]:TAxTA-*TA, which obey the Jacobi identity, and satisfies the relations
(i) a[X, Y] = [«(*), a(Y)] and (ii) [X,fY] = f[X, Y] + (a(X)f)Y), for X,YeTA,fe
C(B). Here a(X)(f) is the Lie derivative of/with respect to the vector field a(X).

Let A be a Lie algebroid on B and let / : M >-» B be a smooth map. Then an action of
A on M is an R-linear map X>-*X\ TA^TA such that (i) [X, Yf = [X\ Yt], for
X,Ye TA; (ii) (uX)f = (u »f)x* for XeTA,ue C(fl); (iii) Tf(Xt(m)) = a(X)(J)(m)
for Z e IM, m E M.

The construction of the Lie algebroid of a Lie groupoid follows closely the
construction of a Lie algebra of a Lie group; we refer to [13] for full account. Let G=tB
be a Lie groupoid, and let TaB = Ker(Ta) be the vertical bundle along the fibers of a.
Let AG-+B be the vector bundle pullback of the vector bundle TaG across the identity
map 1 :B —» G. Notice that a section X e TAG is characterized by X(b) e TlbGb, V6 e B,
where Gb = a~\b). Now take X eTAG and denote by X the right invariant vector field
on G, defined by X(g)= TRgX(/3(g)); the correspondence X>-*X from TAG to the
module of right invariant vector fields is a bijection; we equip FAG with the Lie algebra
structure obtained by transferring the Lie algebra structure of the module of right
invariant vector fields on G to TAG, via the bijection X •-»• X. Namely, if X, Y e TAG, we
define [X, Y] = [X, Y) ° 1, and a.AG^TB, by fl(A"6) = TpXb. The vector bundle AG
constructed above is called the Lie algebroid of G; we will denote it by qc:AG^>B, and
its anchor map by ac:AG^> TB. If there is no confusion we will omit the subscript. The
pullback of X by the inversion map / of G, is denoted by X and is a left invariant vector
field on G. Lastly, if (x,) is the one parameter group of local diffeomorphisms which
generates a right invariant vector field X on G, then x,(v) =*,(l/3(l,))ii, Vu e G, and we
write x,(v) = exp tX(B(v))v, where exp tX(b) = x,(\b).

Now assume that (V, H) is a matched pair of Lie groupoids. The left action $ of H
on B:V^B induces an action of the Lie algebroid AH on the groupoid V. This action
associates to Y e TAH the vector field Y* on V, called the fundamental vector field
generated by Y, defined by:

y » = T(h M.*A(I;))Y(/3(I/)), Vu e V,

and a left action of H on q:AV-*B, defined by:

for all (/z,JQ eHxAV with aH(/t) =
Similarly, the right action W of V on a:H—>B, induces an infinitesimal action of the
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Lie algebroid AV on H. This action associates to X sYAV the vector field X* on H
defined by:

X\h) = T(v^Vv(h))TiX(a(h)),Vh e H,

and a right action of the Lie groupoid V on q:AH-+B, given by the formula:

for all (Y, v) G AH x V such that qH(Y) = Pv(v)- Finally, we will denote by m and m' the
multiplications in the groupoids V and H respectively.

Lastly, we have

PROPOSITION 2.1 [14] (p. 224, Theorem 4.9). / / (V,H) is a matched pair of Lie
groupoids, then for Y eTAH, X e YAV, v and w in V, h and I in H, such that
a(v) = /3(w) and a(h) = /3(/), the following relations are satisfied:

and

X\hl) = Tm'((Xl(X(a(l))y(h), X\l)). (2)

Notice that from 1.1 the vector fields Y* and X^ satisfy the relations

r(lZ)=T(l»)aH(Y)(b), (3)
and

(4)

3. The representations induced by a matched pair. For a matched pair (V,H) of
Lie groupoids, there are induced representations of the Lie algebroids AV and AH on
each other by "twisted observations", exactly as in the Lie algebra case. We recall now
from [6] the definition of a representation of a Lie algebroid on a vector bundle. Let sd be
a Lie algebroid over B with anchor map a:sd^> TB. Let £ be a vector bundle over B. A
representation of sd on E is a U bilinear map

p: I\rf X TE ^ TE: (X,

such that for all X,Y sTst, fie TE and / E C(B),
(0
(ii)

[ , \ )

For a matched pair of Lie groupoids (V, H) and Y e YAH, let pY:TAV^>TAV be
the map defined by:

Py(X)(b) = [i,r,X](lb), VbsB. (5)

Since Y* is /3 projectable, i ^ is a projectable and then pY(X) e IMK. Similarly, p'x for
* e TAV is the map YAH-* YAH defined by:

P ^ W ) = [*+,?KU W e 5. (6)
Since the vector field Art is a projectable the map p'x takes its value in YAH.

PROPOSITION 3.1. The map Y*-^pY is a representation of the Lie algebroid AH on the
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vector bundle AV, and the map X *->p'x is a representation of the Lie algebroid AV on the
vector bundle AH.

LEMMA 3.2. / / W is a vector field on V tangent to the a fibres, that is TaW(v) = 0, for
any v sV, then:

for any b e B, where W ° 1 is the right invariant vector field on V associated to the section
W°leTAV.

Proof of the lemma. The vector field X = W — W ° 1 vanishes identically on 1B and
the relation / ^ ( l ^ ) = T(l)TBY(lb) shows that i*Yt restricts to the base 1B as a vector
field. It follows that [/!|cy

t,A'] vanishes identically on 1B. D

Proof of the proposition 3.1. For / G C{B), we have

Since )8(16) = b and X(lb) = X(b), for all b m B, we have

PY(fX)(b) =f(pY(X)(b)) + (i*

But

itr(lb){f o p) = (df o Ta)r{\b) = (aH(Y)f)(b),
then

pY(f(X)(b)=fPy(X)(b)

It follows that

pY(fX)=fpy(X) + aH(

For / e C(B), we have (/Y)+ = (/ ° p)Y*, by the very definition of yt, therefore

It follows, by noticing that

that

The assertion
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follows from the Jacobi identity and from the relation:

* r V , V6 e B,

which is a consequence of the Lemma 3.2.
The second part of the proof concerning p'x is proved in the same way. •

The following proposition shows that the representations p and p ' may also be
obtained by linearizing the actions <& and W, as for the Lie group case.

PROPOSITION 3.3. For all Y e YAH, all X e YAV, and all b e B,we have the relations
d

(0 P'x(Y)(b) = -
1=0

TWexplX(b)Y(p°exptX(b)),

(ii)
1=0

TWiexplY(b)TiX(p°exptY(b)).

Proof. We prove the first assertion. The second one can be proved by the same
argument. Let F,(h) = ^lexp^a/oC^) be the (local) flow of X*. We have

d_
dt ,=o

but

/ 7 1 (exp sy(0<» (exp «*)(&)))
ds

d_
'ds

s=0

j = 0

by using the relation exp tX(b) = i (exp - tX{$ ° exp tX(b))); see ([13], Chap. 2, Sect. 5),
and that proves the proposition. •

We need now the following lemma.

LEMMA 3.4. For all X e YAV, for all Y e YAH, and for all b eB, the following
properties hold:

(i) (X + TiX(b) = 7-(l)(7a(*-) + W(X))(b);
(ii) [r,ij)(lb) = -[Y\X](lb) + T(l)[aH(Y),av(X)];
(iii) pY{X)b = [ y \ X](lb) - T(l)Ta[r, X](l)
(iv) p'x(Y)b = [iX

Proof, (i) We have Tm(X(b), TiX{b)) = T(l)TpX(b), since TV is a Lie groupoid
with base TB and multiplication Tm. But

Tm(X(b), TiX{b)) = Tm(X(b) - T(l)TaX(b),0) + Tm(T(l)TaX(b), TiX(b))

= X(b) - T(l)TaX(b) + TiX{b),

thus the result.
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(ii) Let F,(v) = $>expyWv))(v) be the (local) flow of 7 \ then

d
dt

d_
dt

TF, TiX(l
(=0

-TF]
(=0

d_
dt »=0

+ T(lv)[aH(Y),av(X)](b),

by using the formula TiX + X = T(1V)A(X), from the first part of the lemma.
(iii) Notice that the two relations TpY*(v) = aH(Y)(pv) and TpX(v) = avX(Pv)

imply
Tp[r, X](lb) = [aH(Y), av(X)](b), V6 e B.

We have

Py(X)(b)=[i*Y\X](lb)

= -Ti[r,X](lb) + T(lv)[aH(Y),av(X)](b) (by (1)),

= [y\ X](lb) - T(lv)(Ta[r, X](lb) + Tp[r, X))(lb)

+ T(lv)[aH(Y), av(X)](b) (by (1) of 3.4),

= [Y\X)(lb)-T(l)Ta[r,X](lb).

(iv) The statement for p'x(Y) is proved by the same method. •

PROPOSITION 3.5. If(V,H) is a matched pair of Lie groupoids then the representations
p and p' satisfy the following relations:

(v) = [Y\ X](v) + (p'AYmv), (7)

for all v in V, and

pW)(h) = [i,X\ Y](h) + iMX))\h), (8)

for all heH.

Proof. Let I b e a right invariant vector field on V with X e TA V, and let /, be its
(local) flow. We recall that

f,{vw) =f,(v)w, Vu, w eV, such that a(v) = fi(w),

with f,(v) = exptX(p(v))v; it follows that if Z and W are two vector fields in V, with
TaZv = TPWW, then the following relation holds

Tf,Tm(Zv, Ww) = Tm(Tf,Zv, Ww).

Now if in the relation (1) we replace v by f,(lb), with b = p(w), and then if we apply this
operator 7/,"1 to both sides of this relation by TfJx, we get

(f,)*r(w) = Tm((f,)*r(lb), T(h -» ®h(v))TWfiOb)Y(Pf,(lb))).
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Differentiating the above relation with respect to t at t = 0, we get

by the Proposition 3.3. Now the above relation may be written as follows

[r,X)(w) = Tm([r, X](lb), -p'x(Y)\">))
= Tm([r,X](lb)-T(l)Ta[r,X](lb),O)

+ Tm(T(l)Ta[r,X](lb), -p'A
= Py(X)(w)-(p'x(Y)y(w),

by the Lemma 3.4.
From the relation (2) we deduce similarly

and if Y is any right invariant vector field on H, then we have by the same argument

[i*X\ Y](h) = f

wherea = /3(/i). •

THEOREM 3.6. / / (V, H) is a matched pair of Lie groupoids and if p and p' are the
induced representations defined by (5) and (6), then for all Y, W s YAH, and all
X,Z e TAV, the following relations are satisfied

(i) pY[X, Z] = [Py(X), Z] + [X, pY(Z)] - PpitiY)(Z) + PpKY)(X),
(ii) p'x[Y, W] = [p'AY), W] + [Y, p'x(W)] - p'Py(X)(W) + p'Pw(x)(Y).
(iii) av(pY{X)) - a^p'^Y)) = [aH(Y), av(X)].

Proof. To avoid overloading notations, we shall denote here by the same letter a
section of the Lie algebroid AV and the corresponding invariant vector field on V.

(i) and (ii). From the relation (7) we deduce that
(a) Py[x, z] = [y\ [x, z]] + (pix.ziVOY;
(b) [pY(X), Z] = [[Y\X], Z] + [(p'AY))\ Z);
(c) [X, pY(Z)) = [X, [Y\ Z]] + [X, (p'z(Y)n
(d) Ppk(Y)(X) = [(p'z(Y))\ X] +
(e) pp,(Y)(Z) = [(p'x(Y))\ Z] +

If we add the equations (b), (c) and (d) and then subtract (e), we get the equation (a), by
using the Jacobi identity and the relation p{x,z] = Pxp'z~PzPz- We prove the similar
assertion for p by the same method,

(iii) The relation (7) gives

avpY{X)b = T/3[Y\X](lb)

but Tp[Y1,X](lb) = [aH(Y),av(X)](b), Vb e B. As the vector field YT on V is 0
projectable to the vector field aH{Y) on B, and (p^Y))^^) = T(lv)(aHp'x(Y)(b)) by (3),
the result follows. •

In the next section we will see that the equations proved in the Theorem 3.6 may be
used to define an abstract notion of matched pairs of Lie algebroids.
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We will prove later that under some topological assumptions, a matched pair of Lie
algebroids is integrable to a matched pair of Lie groupoids, provided that the Lie
algebroids arise from Lie groupoids. The last assumption is crucial since not all Lie
algebroids are integrable.

4. Matched pairs of Lie algebroids. The following definition is an extension to Lie
algebroids of the definition of a double Lie algebra in [11] or a matched pair of Lie
algebras in [17], or of a twilled extension of Lie algebras in [7].

DEFINITION 4.1. Two Lie algebroids si and 33, with the same base B form a matched
pair of Lie algebroids if the direct sum <<? = si © S3, of vector bundles has a Lie algebroid
structure on base B, such that si and 38 are Lie subalgebroids of (€.

The following theorem shows that a matched pair of Lie algebroids (si, 53) induces a
representation of si on 38 and a representation of 38 on si, and these two representations
are by "twisted derivations", as in the Lie algebra case.

THEOREM 4.2. / / the Lie algebroids si and S3 form a matched pair of Lie algebroids,
there exists a representation

of 38 on si and a representation

p':I\s#xrS3->rS3

of si on S3. These two representations satisfy the relations
(i) pY[X, Z] = [pY(X), Z] + [X, pY(Z)] - pp,iY){Z) + pH)

(ii) p'x[Y, W] = [p'xiY), W] + [Y, p'x{W)] - p'pAX)(W) + p'Pw(X)(Y),
(iii) a(pY{X)) - a'ip'xiY)) = [a'(Y), a(X)].

for all X,Zm Tsi, and Y,W s TS8.

Proof. Let Ili and n2 be the projections of si (B 28 onto the first and the second
factor, respectively. We define p, and p' by:

and

p'x(Y) = U2[X,Y],

for all X eTsi and all Y e TS3. It follows that:

[X,Y], (9)
and therefore, the relation (iii) of 4.2 follows by applying the enchor map to the left and
right hand side of (9). We have also

Py(fX)=fpY(X)+a«(X)fY,
and

PfY(X)=fpY{X),

for all / e C(B), by the properties of a Lie bracket. The similar statements for p'fX(Y) and
p'xifY) hold, by the same argument.
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Now for y G FS8, we have

-plY,y](X) + p'x[Y,Y>] = [X,[Y,Y)]

= [[X, Y), 7'] + [Y, [X, Y']]

= [-pY(X) + p'x(Y), Y'] + [Y, -pY.(X) + pW)]

= -[pY(X), Y'] + [p'AY), Y') - [Y,pY.(X)] + [Y,p'AY')]

= +pY.pY(X) - p'pAX)(Y>) + [p'^Y), Y'] + [Y, pW)]

-pYpY.(X) + p'PY<x)(Y);

the second equality is by using the Jacobi identity. The relation (ii) of 4.2 and the relation

[PY,PY] - PYPY' ~PYPY

follow from the last equation. The similar results for p' are proved by the same method.

The next theorem is a converse of the Theorem 4.2.

THEOREM 4.3. Let si and 28 be two Lie algebroids with the same base B, with anchor
maps a and a', respectively. If there exist representations p and p' of 31 and s£ on each
other, such that the relations (i) and (ii) and (iii) in the Theorem 4.2 hold, then there is a
unique matched pair structure on si and S3 which induces the representations p and p'.

Proof Let a:si®9S^TB be denned by a(X®Y) = a(X) + a'(Y). We define on
si © S3 bracket by setting

(10)

We have then

[X + Y,X' + y ] = [X,X'] + pY(X') -pY(X)

+ [Y,Y'] + p'x(Y')-p'AY).

Equipped with the above brackets and with the map a is an enchor map the vector bundle
si © 53 is a Lie algebroid; the verification is straightforward.

Since the injections of si and S3 in si® 8ft are Lie algebroid morphisms (si, S3) is a
matched pair of Lie algebroids with p and p ' as induced representations. The uniqueness
of the Lie algebroid structure o n i ® ^ with p and p' as induced representations follows
from the relation (10). •

For a matched pair (si, S3) of Lie algebroids, we denote by ĵ txlSS the Lie algebroid
si © S3, following the convention in use for the Lie algebra case [[17], [11]].

5. Matched pairs of Lie algebroids induced by matched pairs of Lie group-
oids. Matched pairs of Lie algebroids arise from matched pairs of Lie groupoids in the
same way that matched pairs of Lie algebras arise from matched pairs of Lie groups, by
applying the Lie functor to the Lie groupoids.
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In this section V and H are always two Lie groupoids over the same base B, and the
manifold G is the pullback V * H, defined in Section 1. The maps aG and Bc are defined
by ac{v,h) = aH(h), and Bc(v,h) = Bv(v). If we denote by K the submanifold
{(Xtf, 7,») E Ttf^G I TaHYxi; = 0} of T(V x / / ) , then K may be regarded as a vector
bundle on B and the module TK of sections of K may be identified with the submodule

{(X + T(lv)TBY, Y)\Xe TAB, Y e YAH)

of TiBT(V X H).

PROPOSITION 5.1. 77ie L/e algebroids AV and AH form a matched pair of Lie
algebroids if and only if K has a Lie algebroid structure with base B, such that the maps
X^>(X,0), and Y^(T(lv)TBY,Y) are Lie algebroid morphisms, from AV and AH
respectively, to K.

Proof. Let F be the map AV®AH-+ K, defined by

F{X®Y) = (X + T(1V)TPY, Y), VX® Y e AV @AH,

then F is clearly a vector bundle isomorphism. This isomorphism carries the Lie algebroid
structure from AV® AH to K, and vice versa.

Assume that (AV,AH) is a matched pair of Lie algebroids, then K has a Lie
algebroid structure isomorphic to AV®AH, by the isomorphism F. Since the maps
iv:X<-+(X, 0) and iw:Y»-»(0, Y) are Lie algebroid morphisms from AV and AH to
AV®AH, the maps iv ° F and iH ° F are Lie algebroid morphisms, as well.

Conversely, assume that K has a Lie algebroid structure such that jv:X>-> (X, 0) and
jH:Y>-+ T(1V)T/3Y, Y) are Lie algebroid morphisms. We have only to prove that AV and
AH are Lie subalgebroids of AV®AH\ this follows from the relations iv = F~x ° j v ,
and iH = F~1 °jH. •

THEOREM 5.2. / / (V,H) is a matched pair of Lie groupoids, then (AV,AH) is a
matched pair of Lie algebroids, and for X e TAV, Y e YAH, the bracket [X, Y] is given
by

where the maps p and p' are the representations defined by the relations (5) and (6).

Proof. The theorem is a consequence of the Theorems 3.6 and 4.3. •

EXAMPLE 5.3. Let (V, H) be a matched pair of Lie groupoids over the base B.
Assume H is the trivial Lie groupoid BxB^sB, and V is a symplectic groupoid [2].
Then,

AV®AH = T*B®TB,

and (T*B, 75) is a matched pair of Lie algebroids.

EXAMPLE 5.4. If (V,H) is a matched pair of Lie groupoids, then (TAV, TAH) is a
matched pair of Lie algebroids. Indeed, (TV, TH) is a matched pair of Lie groupoids
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(over TB), by 1.4 and the Lie algebroids ATV and ATH are isomorphic to the Lie
algebroids TAV and TAH by ([15], Theorem 7.1).

EXAMPLE 5.5. Let G x M -»M be an action of a Lie group G on a manifold M and let
<$ be the Lie algebra of G. The trivial vector bundle 'S x M on Af has a Lie algebroid
structure on base M, denoted by ^K M and called the action Lie algebroid. Furthermore
S K M = A(GKM) [6], and now from the Proposition 1.3 the Lie algebroids TM and
'Six M form a matched pair of Lie algebroids.

Let (P, n) be a Poisson manifold with Poisson bivector field n. Let nu be the
associated bundle map nn(p):T*P^> TPP defined by

(ap,n*(Bp)) = n(p)(ap,Bp).

Then, with -n* as the anchor map, the cotangent bundle T*P has a Lie algebroid
structure over P, where the Lie bracket on the space Clx(P) of 1-forms on P is given by

{a, 0} = -D(n(a, j8)) -

where LKt,aB denotes the Lie derivative of the 1-form B in the direction of the vector field
n*a, see [11] (and the references given there).

For a compact and simply connected Poisson Lie group G, we prove that the Lie
algebroid TG which arise from the tangent bundle TG^G, and the Lie algebroid T*G
of one forms on G, form a matched pair of Lie algebroids.

THEOREM 5.6. Let G be a compact and simply connected Poisson Lie group, with
Poisson tensor n, then (TG, T*G) is a matched pair of Lie algebroids.

Proof. Let G* be the dual Poisson Lie group of G, and let <& and <§* be the Lie
algebras of G, and G*, respectively [5] (see also [11]).

For a e <§*, let a] = n(at), where a, is the left invariant one form on G with
at(e) = a. Since G is compact, the left infinitesimal dressing action of 'S* on G, a i-» a] is
integrated to a global left action of G* on G. If we identify T*G with G x <§*, via right
translations 6g e T*Gt-*(g,9g ° TRg), then the Lie algebroid structure on T*G, defined
by K coincides with the action Lie algebroid A{G*wG), see [9]. It follows from the
Proposition 1.3, that (T*G,A(G X G)) is a matched pair of Lie algebroids; since
A(G X G) = TG, the theorem is now proved. •

6. Integration of matched pairs of Lie algebroids. In the theorem of this section we
prove that under some topological assumptions, a weakly integrable matched pair of Lie
algebroids gives rise to a matched pair of Lie groupoids, generalizing the Theorem 3.7 in
[11] (see also [17] for an integration result of a different type).

DEFINITION 6.1. A matched pair of Lie algebroids {d, S3) is weakly integrable if there
exist three Lie groupoids V, H and G, with the same base B, such that G is connected
and simply connected, and si = AV, 9& = AH, and AV® AH = AG.

Let M and B be two manifolds and n:M-*B a surjective submersion. We call M a
n-(simply) connected manifold if for all b e B the fibers n~l{b) are (simply) connected
subspaces of M.

THEOREM 6.2. Let (si, 28) be a weakly integrable matched pair of Lie algebroids, on
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base B. Let V, H and G be the Lie groupoids with Lie algebroids si, S8 and
respectively. Then, if V and H are compact, a-connected and simply connected, (V, H) is a
matched pair of Lie algebroids.

LEMMA 6.3. Under the hypothesis of 6.2 the manifold

V*H = {(v, h)eVxH\ av(v) = BH(h)}

is connected.

Proof. The manifold B is connected, since B is the base of the connected and simply
connected Lie groupoid G whose Lie algebroid is AV®AH. Let C = {(1^, 1") | b e B),
and Cb = ay\b) X BJ,\b). Then,

beb

Since C and Cb are connected for all b <= B, and since C C\Cb is not empty, V * H is
connected. •

Proof of Theorem 6.2. Let G be the connected and simply connected Lie groupoids
on base B with Lie algebroid AV®AH. Since the a fibers of V and H are simply
connected, the Lie algebroid morphisms A'I -^A' ,0) and Y>-+(0, Y) from AV and AH to
AG can be integrated to get V and H as wide subgroupoids of G by [16]. Let m be the
map V * H\-^G defined by m(v,h) = vh and let a and B be respectively the source and
the target maps of the Lie groupoid G. Let {Xv, Yh) E T(vJl){V * H) be such that

Tm(Xv,Yh) = 0. (11)

By taking each side of the relation (11) by Ta and then by TB we find TaYh = TBXV = 0.
Since the vector tangents Xv and Yh are tangent to the B fibers and the a fibers
respectively, the tangent vectors TLZlXv and TR^Yh are defined and are in the Lie
algebroids AV and AH, respectively. If we take now simultaneously each side of the
relation (11) by TL~* and by TRJ, \ we obtain

Since the sum of AV (BAH is direct we have

It follows that Xv = Yb = 0, and the map m is an immersion. Since AV ®AH = AG, we
have dim G = dim(V * H), hence m is a local diffeomorphism. Since V * H is compact, m
is a proper map, and hence a covering map. By the Lemma 6.3, V * H is connected; now
m is a covering map from the connected space V * H to the simply connected space G,
hence m is a diffeomorphism. •
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